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Measurement of a one-dimensional matter-wave quantum breather
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1Instytut Fizyki Teoretycznej, Uniwersytet Jagielloński, ulica Profesora Stanisława Łojasiewicza 11, PL-30-348 Kraków, Poland
2Mark Kac Complex Systems Research Center, Uniwersytet Jagielloński, ulica Profesora Stanisława Łojasiewicza 11,
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Employing the Bethe ansatz approach and numerical simulations of measurements of particles’ positions
we investigate a post-quench many-body dynamics of attractively interacting bosons on a ring, which in the
mean-field approach corresponds to the so-called breather solution. Despite the fact that the initial many-body
ground state is translationally invariant, the measurements reveal breather dynamics if quantum fluctuations
of the center of mass of the system are extracted. Moreover, the analysis of the many-body evolution shows
signatures of dissociation of the solitons that form the breather.
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I. INTRODUCTION

Ultracold weakly interacting Bose gases can be success-
fully analyzed in the so-called mean-field approximation
where all bosons are assumed to occupy the same single-
particle state being a solution of the Gross-Pitaevskii equation
(GPE) [1]. The GPE is a nonlinear equation that in the one-
dimensional (1D) space can possess solitonic solutions [2].
Interactions between ultracold atoms are usually described by
the zero-range contact potential and if they are attractive the
so-called bright soliton solution of the GPE representing the
lowest mean-field energy state in the 1D space can appear [3].
For repulsive interactions, the ground state corresponds to the
uniform atomic density but there exist dark soliton solutions
of the GPE which describe collectively excited Bose gas [4].

When particles in a many-body system live in an infinite
space or are confined in a ring geometry, the total momentum
is a conserved quantum number and the many-body Hamil-
tonian of the system exhibits space translation symmetry.
In such a case the probability density corresponding to the
system eigenstates have to be also invariant under space trans-
lations of all particles by the same vector in space and thus
the single-particle density calculated for an eigenstate has to
be spatially uniform. On the other hand, it is clear that mean-
field solitonic solutions break the space translation symmetry.
Nevertheless, the existence of the solitonic solutions does not
mean that the quantum many-body system has forgotten about
the translation symmetry it should obey. There are quantum
many-body processes, neglected in the mean-field description,
which are trying to restore the symmetry [5–19]. In the case
of the bright soliton which describes the mean-field ground
state of attractively interacting bosons, the soliton position
coincides with the center of mass of the system. The center of
mass can be initially prepared in a localized wave packet, but
in the full many-body time evolution, the wave packet starts
spreading and after sufficiently long time we will not know
where the soliton is located [20–22]. Interestingly, the center
of mass of a bright soliton can tunnel through a potential

barrier [23] or in the presence of a weak disorder potential it
can Anderson localize [24,25]. In the dark soliton case quan-
tum many-body fluctuations are a bit more difficult to describe
because the position of the dark soliton is not the position of
the center of mass of the system. Moreover, a dark soliton does
not represent the ground state but a collectively excited state
of the Bose system. Nevertheless, quantum many-body effects
could be described [26–41] and even the emergence of dark
solitons in the course of measurements of positions of atoms
prepared in translationally invariant many-body eigenstates
was demonstrated [42–47].

Apart from the fundamental bright or dark solitons, there
are also higher-order solitonic solutions of the GPE that
describe, for instance, two solitons propagating in the 1D
space that approach each other, collide, and afterward restore
their initial shapes and propagate further [3,4,48,49]. While
the parameters describing the positions and velocities of the
individual solitons in the mean-field solutions can be the well-
defined classical parameters, in the many-body description of
the Bose gas they are associated with quantum operators and
consequently reveal quantum fluctuations. For example, two
dark solitons can stay at the same distance according to the
mean-field predictions, while in the many-body description
one observes quantum fluctuations of the relative distance
between them [42–45]. It means that not only the location
of an entire solitonic structure, but also relative distances
between solitons can be subject to quantum fluctuations due
to many-body effects.

Another example of quantum fluctuations of a relative
distance between solitons is dissociation of the 1D breather,
which is a superposition of two bright solitons located at
the same position [50–55]. In the mean-field description the
breather corresponds to periodic oscillations of the probability
density due to periodic evolution of the relative phase between
the two nonmoving solitons localized at the same position.
In the full many-body approach, the relative position of the
localized solitons reveals quantum fluctuations and neither
the relative distance nor the relative velocity are well-defined
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classical quantities, and quantum dissociation of the breather
is predicted [54,55].

In this paper we are interested in quantum many-body
effects that go beyond the mean-field approximation. On one
hand, the total number of bosons N has to be large enough
if one wants to apply the mean-field approach. On the other
hand, N must be sufficiently small if one would like to ob-
serve quantum many-body effects in the laboratory, otherwise
the timescale needed for the emergence of the effects is ex-
tremely long. In this article our analysis concentrates on the
emergence of the breather from a translationally invariant
many-body state of the Bose system and signatures of its dis-
sociation. It turns out that even for a small number of bosons,
the breather dynamics can be observed in the measurements
of positions of particles provided fluctuations of the center
of mass of the system, which on a ring is determined by the
particles’ barycenter, are extracted.

II. MODEL

Ultracold bosonic atoms in the 1D space can be described
by the Lieb-Liniger Hamiltonian [56,57]

H =
N∑

i=1

p2
i

2
+ g0

2

N∑
i �= j=1

δ(xi − x j ), (1)

where units are chosen so that h̄ = m = 1, N is the total num-
ber of particles, p j = −i∂x j , and g0 denotes the strength of the
contact interactions which is determined by the atomic s-wave
scattering length. In this paper we focus on the attractive
interactions between atoms, i.e., g0 < 0.

Let us start with the mean-field description of the system.
If atoms form a Bose-Einstein condensate (BEC), the many-
body state can be approximated by a product state where
all bosons occupy the same single-particle wave function,
i.e. �(x1, x2 . . . , xN , t ) = φ(x1, t )φ(x2, t ) . . . φ(xN , t ), where
φ(x, t ) fulfills the Gross-Pitaevskii equation [1]

i∂tφ(x, t ) = − 1
2∂2

x φ(x, t ) − g|φ(x, t )|2φ(x, t ), (2)

with g = −g0(N − 1) and 〈φ(t )|φ(t )〉 = 1. Within the mean-
field approximation, the ground state of the Bose system is
described by the fundamental bright soliton solution

φ(x, t ) =
√

g eig2t/8

2 cosh[g(x − xc.m.)/2]
. (3)

It is a bound state of atoms which form a localized wave
packet located at xc.m.. The latter is the center-of-mass position
of atoms which in the mean-field description is represented by
a number: a classical position variable. In the full many-body
description, xc.m. is a Hermitian operator and in the ground
state the probability density to measure the center-of-mass
position is uniform along the ring. However, the mean-field
soliton density profile, Eq. (3), emerges from the full many-
body description if we calculate a particle density with respect
to the center-of-mass position [20,21].

Apart from the fundamental bright soliton, there are also
higher-order solitonic solutions of the GPE. In this paper we
consider the so-called breather solution. Suppose that we have
prepared the system in the mean-field product state with φ

like in Eq. (3) but at t = 0 the interaction strength in the GPE

FIG. 1. Periodic evolution of the probability density correspond-
ing to the mean-field breather solution, Eq. (4), for g = 11.85 and
xc.m. = 0. Note that at t = mTB, m ∈ Z (solid blue line) the mean-
field breather solution coincides with the fundamental bright soliton,
Eq. (3). After half of the period, i.e., at t = (m + 1

2 )TB, we can
observe a very high and narrow central peak accompanied by two
small side maxima located symmetrically on the left and on the right
(dashed red line).

is suddenly increased by a factor of 4, i.e., g → 4g. Then,
φB(x, 0) = φ(x, 0) but for t > 0 the mean-field time evolution
of the system is

φB(x, t ) =
√

g cosh(3x̃) + 3
√

g cosh(x̃)eiωBt

3 cos ωBt + 4 cosh (2x̃) + cosh (4x̃)
eiωBt/8, (4)

where x̃ = g(x − xc.m.)/2 and ωB = g2. Equation (4) describes
two bright solitons localized at xc.m. whose relative phase
changes with the period TB = 2π/ωB [see the phase factor
eiωBt in the numerator of Eq. (4)]. Both solitons do not move
and the resulting probability density oscillates as depicted in
Fig. 1. It is a special case of a more general solution describ-
ing two solitons with a mass ratio 3 : 1 where these solitons
can be localized at different positions in space or propagate
with different constant velocities [49]. At time moments equal
to integer multiple of TB the probability density |φB(x, t )|2
matches the probability density of the fundamental bright
soliton, Eq. (3).

Now, let us switch to the full many-body description within
the Bethe ansatz approach [45,56–59]. In the case of the
contact interactions, atoms behave like free particles except
moments when they collide. Thus, if positions of all particles
are different, many-body eigenstates of the system must re-
duce to plane waves eik1x1 eik2x2 . . . eikN xN . When two particles
meet each other (i.e., xi = x j), eigenstates have to fulfill the
boundary conditions determined by the strength g0 of the con-
tact interactions [59]. Moreover, states of a Bose system must
be symmetric with respect to an exchange of any two bosons.
It results in many-body eigenstates which are superpositions
of N! terms of plane waves. Assuming that atoms are on a
ring with the circumference L and fulfill the periodic boundary
conditions, the parameters k j of the plane waves, which are
called quasimomenta, are solutions of the Bethe equations
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[56,57]

eik j L = −
N∏

s=1

k j − ks + ig0

k j − ks − ig0
, j = 1, 2, . . . , N. (5)

The set of quasimomenta k j=1,...,N satisfying Eq. (5) deter-
mines an eigenstate which is characterized by the eigenenergy
E = 1

2

∑N
j=1 k2

j and the total momentum P = ∑N
j=1 k j .

The translation symmetry of the many-body Hamiltonian
in Eq. (1), resulting in the total momentum conservation,
implies that the density of atoms (i.e., the single-particle
probability density multiplied by N) corresponding to an
eigenstate must be uniform in space. One may ask where is
the fundamental bright soliton, Eq. (3), that in the mean-field
approach describes the ground state of the attractively inter-
acting bosons. It turns out that even if the system is prepared
in the translationally symmetric many-body ground state (i.e.,
an eigenstate of the translation operator that shifts positions of
all particles by the same distance), the soliton will emerge in
the measurements of particles’ positions but we do not know
where on the ring it will turn up [20–22]. Indeed, in different
realizations of the same experiment, the measurements of the
atomic density will result in the profile very well approxi-
mated by the probability density corresponding to the state
in Eq. (3). However, in each realization xc.m. will appear as a
random number chosen with the uniform distribution on the
ring.

In the following we analyze the emergence of the breather
dynamics when the Bose system is initially prepared in the
translationally invariant many-body ground state and the in-
teraction strength is quenched by a factor of 4, i.e., g0 → 4g0.

III. RESULTS

Exact many-body simulations of the Bose system de-
scribed by the Lieb-Liniger Hamiltonian in Eq. (1), within
the Bethe ansatz approach, are possible for a small number
of particles only. This is due to dramatic proliferation of the
Bethe eigenstates complexity with increasing N [45,56–59].
Moreover, in order to obtain eigenstates of the system, the
nonlinear Bethe equations have to be solved numerically (only
in the limiting cases of very weak or very strong interactions
approximate analytical solutions are attainable). For attractive
interactions, even numerically it is not easy to get solutions
of the Bethe equations because the so-called quasimomenta
are complex valued and extremely high numerical precision
is required in order to obtain eigenstates which fulfill peri-
odic boundary conditions. In addition, in comparison to the
ground state, the numerical determination of quasimomenta
corresponding to excited eigenstates, that may undergo bifur-
cation with the change of the attraction strength, is even more
challenging. Therefore, when we analyze time evolution of
the system after the quench of the interactions we restrict to
N = 4 (see also [60] for time evolution of a similar system).
In the case of the fundamental bright soliton, it was shown
that N � 3 is sufficient to observe the mean-field behavior
in the quantum many-body description [16]. In the previous
study of the breather [52], for such a small particle number,
signatures of the mean-field evolution could not be identified

in the many-body simulations where the Lieb-Liniger model
was approximated by the Bose-Hubbard Hamiltonian.

Exact many-body analysis predicts dissociation of the two
solitons that form the breather but the picture how the breather
dynamics and its dissociation look like in the measurements
of the atomic density has not been demonstrated within the
Bethe ansatz formalism [54]. In the large number of particles’
limit, one may apply approximate many-body methods and
it was shown that the particle density of the Bose system
prepared initially in a localized state reveals the breather os-
cillations which decay in time due to quantum many-body
effects [53,54]. The decay of the oscillations is also visible
in the second-order correlation function indicating that not
only the center of mass of the system but also the relative
distribution of particles is spreading in time [53].

Here, we focus on the exact description of the small Bose
system prepared initially in a translationally invariant state
and show that the breather dynamics can be observed if quan-
tum fluctuations of the center-of-mass position are extracted.
In addition, a careful analysis of the many-body breather
evolution allows us to identify signatures of the dissociation
process.

Let us consider N = 4 atoms on a ring of the circum-
ference L = 1. The particles are initially prepared in the
ground state �0(x1, . . . , xN ) of the Lieb-Liniger Hamiltonian
(1), where the initial interaction strength g0 = −3.95. In the
GPE, Eq. (2), the parameter g = −g0(N − 1) = 11.85 what
implies that the attractive interactions are sufficiently strong
(i.e., g > π2) for a bright soliton to form in a ring geometry. It
is worth stressing that with increasing g, the mean-field bright
soliton on a ring quickly approaches the fundamental bright
soliton solution in the infinite space [Eq. (3)]. In the many-
body description, the ground state is translationally invariant
and the corresponding single-particle probability density

ρ(x) =
∫ 1/2

−1/2
|�(x1, . . . , xN−1, x)|2dx1 . . . dxN−1 (6)

is spatially uniform, i.e., ρ(x) = 1 for � = �0.
For N = 4 the mean-field bright soliton profile can only

emerge if we measure positions of atoms in many realiza-
tions of the same experiment and prepare the histogram of
the particles’ positions. Before the histogram is prepared, the
detected positions have to be shifted so that the center of mass
of the system on a ring is always located at the same point
in each realization of the same experiment [20–22,45]. In the
case of particles confined in a ring geometry, it is not straight-
forward to determine the center-of-mass position. In order
to do that, we first calculate the barycenter of particles in a
two-dimensional (2D) plane which contains the ring and then
determine the angle θc.m. corresponding to the center-of-mass
position on a ring θc.m.

2π
L ≡ f [see Fig. 2(a)]. The bright soliton

profile can be obtained by calculating the single-particle prob-
ability density like in Eq. (6) provided the position of the N th
particle is shifted with respect to the center-of-mass position
f (x1, . . . , xN−1) of the remaining N − 1 particles:

ρrel(x) =
∫ 1/2

−1/2
|�[x1, . . . , xN−1, x − f (x1, . . . , xN−1)]|2

× dx1 . . . dxN−1. (7)
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FIG. 2. (a) Illustrates how the center of mass of particles on a
ring is determined in the three-particle case. First, the barycenter
in the 2D space is calculated and next the line starting from the
center of the ring and passing through the barycenter is drawn, and
its crossing with the ring determines the center-of-mass position of
particles. Note that the barycenter is associated with the angle θc.m.,
which measures the angular distance from the reference position
x = 0. (b) The normalized histogram (solid blue line) presents the
single-particle probability density ρrel (x) [Eq. (7)], where � = �0 is
the many-body ground state of N = 4 particles which attract each
other with the strength g0(N − 1) = −11.85. The histogram consists
of 106 realizations of the measurements of the positions of N = 4
particles (see Appendix B). A similar result but obtained for N = 10
is illustrated by a gray shading. For comparison, the dashed red
line shows the probability density of the corresponding mean-field
ground state which is the fundamental bright soliton [Eq. (3)].

Note that due to the indistinguishability of bosons it does
not matter which particle is chosen as the N th particle. The
integral in Eq. (7) is calculated by means of the Monte Carlo
integration (see Appendix B) and the result for � = �0 are
presented in Fig. 2(b) together with the mean-field solution
for the fundamental bright soliton on a ring.

In the mean-field case, if the fundamental bright soliton
is chosen as the initial state and the interaction strength is
quenched by a factor of 4, g → 4g, the breather dynamics
is observed [cf. Eq. (4)]. In the many-body description, we
choose the four-particle ground state of the system as the
initial state,

�(x1, x2, x3, x4; t = 0) = �0(x1, x2, x3, x4), (8)

and we would like to examine if the signatures of the breather
can be observed when the interactions are quenched similarly
to the mean-field case. To perform the time evolution, the

wave function in Eq. (8) is expanded in the basis of the
four-particle eigenstates of the Lieb-Liniger Hamiltonian af-
ter the quench. The four-particle eigenstates are obtained by
means of the Bethe ansatz approach and the projections of
�(x1, x2, x3, x4; t = 0) on the eigenstates after the quench are
determined by analytical four-dimensional integrations (see
Appendix B).

The modulus of the wave function �(x1, x2, x3, x4; t ) is
translationally invariant at any time. Thus, when we plot the
single-particle probability density ρ(x; t ) [Eq. (6)], we always
obtain a uniform distribution which reflects the fact that the
center of mass of the system is perfectly delocalized in a
translationally symmetric state. However, if the fluctuations
of the center-of-mass position are extracted, signatures of the
breather dynamics emerge. Indeed, the left column of Fig. 3
shows that up to t = td ≈ 0.073, the time evolution of the
single-particle distribution ρrel(x; t ) [Eq. (7)] reveals strong
oscillations of the central peak which resemble the mean-field
behavior of the breather. This observation is further supported
by the behavior of the second-order correlation function

G(2)(x − y; t ) =
∫ 1/2

−1/2
|�(x, y, x3, x4; t )|2dx3dx4, (9)

which, apart from the oscillations of the central peak, reveals
also a periodic appearance of two side maxima, similar to
those which characterize the mean-field breather dynamics
(cf. Figs. 1 and 3). Note that for a translationally invariant
state, G(2) depends only on the relative distance x − y between
two particles and is completely unaffected by fluctuations of
the center-of-mass position. Figure 3 shows that for t � td ,
according to G(2)(x − y; t ), two particles prefer to locate close
to each other but there appear also maxima at |x − y| ≈ 0.25.
These side maxima are deformed and thus not clearly visible
in ρrel(x; t ) due to a small number of particles N − 1 = 3 used
to determine the center-of-mass position f (x1, x2, x3). If we
assume that three particles are measured at the same position,
e.g., at x = 0, then the probability density of the wave function
for the fourth particle ψ (x4) = �(0, 0, 0, x4, t ) shows clearly
the side maxima and its phase reproduces the behavior of the
phase of the mean-field breather solution. Note that the period
of the observed oscillations TQB ≈ 0.0168 is different from
the mean-field prediction for the breather which is equal to
TB ≈ 0.0447, but we should not expect quantitative agreement
for the N = 4 particle system.

In Fig. 4 we present ρrel(0; t ) and G(2)(0; t ), i.e., the tempo-
ral behavior of the amplitudes of the central peak oscillations
in the single-particle density ρrel and in the correlation func-
tion G(2). It turns out that the oscillations of the central peak
nearly die out at t ≈ td and consequently signatures of the
breather dynamics are not observed. In addition, analyzing the
plots of G(2)(x − y; t ), one can observe that the damping of
the central peak oscillations is accompanied by an increasing
distance between the central peak and the side maxima (com-
pare Figs. 3 and 4). This can be attributed to dissociation of
the breather where the big soliton consisting of 3N/4 atoms
and the small soliton that contains N/3 atoms are supposed to
move apart [54]. One should keep in mind that the quantum
state � does not favor the situation when the big soliton is
moving to the right and the small soliton towards the left over

063308-4



MEASUREMENT OF A ONE-DIMENSIONAL MATTER-WAVE … PHYSICAL REVIEW A 102, 063308 (2020)

FIG. 3. Time evolution of the four-particle system. The system
is initially prepared in the ground state for g0 = −3.95 and then the
interactions are quenched by a factor of 4, i.e., g0 → 4g0. Left col-
umn shows ρrel (x; t ) ]Eq. (7)] (solid blue line) and G(2)(x; t ) [Eq. (9)]
(dashed red line) for different moments of time as indicated above
the panels. Right column: color-coded plots of P(x, y; t ) [Eq. (10)]
at the same time moments as in the corresponding left panels. By
monitoring the time evolution of the considered system we estimate
the period of the quantum breather oscillations TQB ≈ 0.0168. At
td ≈ 0.073 the oscillations nearly die out (cf. Fig. 4 where the time
moments presented in the current figure are indicated by vertical
black lines).

the situation when the directions of their motion are reversed.
In other words, signatures of the both scenarios are present

FIG. 4. Time evolution of ρrel (0; t ) (dashed red line) and
G(2)(0; t ) (solid blue line) which corresponds to the results presented
in Fig. 3 and illustrates decay and revival of the amplitudes of the
central peak oscillations in the plots of ρrel (x; t ) and G(2)(x; t ). While
initially the oscillations are significant and indicate the breatherlike
dynamics known from the mean-field description, for longer times
(of the order of td ≈ 0.073) they nearly die out. The decay of the
central peak oscillations is accompanied by the increasing distance
between the central peak and side maxima (cf. Fig. 3).

in many realizations of particles’ positions measurements. In
the result the plots of the average density and the correla-
tion function exhibit the reflection symmetry with respect to
the position of the central peak. We interpret the increasing
distance between the central peak and the side maxima, ac-
companied by the damping of the central peak oscillations,
as signatures of the breather dissociation. These features are
better visible in the plots of the conditional probability for
the detection of two particles provided one particle is initially
measured at a fixed position, e.g., at t = 0 the third particle is
measured at x3 = 0:

P(x, y; t ) =
∫ 1/2

−1/2
|�(x, y, 0, x4; t )|2dx4. (10)

Figure 3 shows that two particles most probably can be de-
tected at the same position as the third one (i.e., at x ≈ y ≈
x3 = 0) or around six side maxima visible in the color-coded
plots of P(x, y; t ). Note that the distance between the side
maxima and the central peak in P(x, y; t ) increases in time
reaching a maximal value at td ≈ 0.073 when the amplitudes
of the oscillations of ρrel(0; t ) and G(2)(0; t ) are minimal.
We can also calculate the time needed for two dissociating
solitons to get on the opposite side of the ring. Assuming
that their relative velocity is approximated by the velocity
scale v0 of dissociating solitons estimated in Ref. [54], i.e.,
v0 = 2|g0| = 7.9, we obtain t ≈ 0.063 which is comparable
to td . For longer time evolution, the N = 4 particle system
shows quantum revival where the breather dynamics that we
have observed initially returns but not ideally.

The many-body state �(x1, x2, x3, x4; t ) does not describe
a BEC with all bosons occupying the single-particle wave
function corresponding to the mean-field breather solution
(4). The translationally invariant state � can be rather in-
terpreted as a superposition of two-soliton solutions with
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different positions and velocities of the solitons [54]. In the
case of a fundamental bright soliton or a dark soliton, a single
realization of the measurement of particles’ positions reveals
clearly a soliton, but its location is random in the different
realizations due to strong quantum fluctuations of the center of
mass of the system [20,22,42,43,45]. In the present case, the
situation is more complicated because averaged results of the
measurements consist of mixtures of different mean-field two-
soliton contributions. In addition, the size of the investigated
structures is not much smaller than the ring circumference
and thus in the time evolution they feel periodic boundaries
quite quickly, which also distorts the results. Consequently,
we cannot expect clear pictures of the breather dynamics or
the dissociation of the solitons, but only signatures of them.
Moreover, the system we analyze in this paper is small and in
order to plot density of atoms we have to perform simulations
of the detection of particles’ positions many times. If a large
system was attainable numerically, then single realizations of
the measurement process would allow for the plots of the
densities and probably different solitonic structures would be
much better visible.

IV. SUMMARY AND CONCLUSIONS

Bose systems which form Bose-Einstein condensates can
be quite accurately described by the Gross-Pitaevskii equa-
tion which in the 1D case can possess soliton solutions. The
latter do not obey the space translation symmetry despite
the fact that the original many-body Hamiltonian is trans-
lationally invariant. In such circumstances, one may expect
quantum many-body effects which go beyond the mean-field
approximation and which can be responsible for destruction
of solitons or quantum fluctuations of solitons’ parameters.

In this paper we investigate a quantum many-body system
that in the mean-field approximation is described by a higher-
order soliton solution called the breather. Apart from quantum
fluctuations of the center of mass of the system, which have
been already investigated in the case of single-soliton solu-
tions [20,42,43,45], there are additional degrees of freedom
that can suffer from quantum many-body effects. That is, the
relative position of two solitons, which form the breather,
and their relative velocity reveal quantum fluctuations. Such
fluctuations are expected to lead to the breather dissociation
[54,55]

Here we show that the breather dynamics can emerge from
the translationally invariant ground state of the system after
the interactions are quenched if one performs measurements
of particles’ positions. Moreover, time evolution of the quan-
tum many-body system reveals signatures of the breather
dissociation where the two solitons are moving away from
each other.

The exact many-body approach we perform allows for the
analysis of a small system only. There are approximate many-
body methods that are valid for a large particle number N
which were already applied to the breather problem [53–55].
It would be very interesting if the gap between the small and
large values of N was filled. It is the regime where quantum
many-body fluctuations are expected to have strong influence
on the system behavior on the timescale attainable experi-
mentally. Moreover, soliton structures, that could emerge in

the measurement process, should be in quantitative agreement
with the mean-field predictions.
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APPENDIX A: EIGENSTATES OF THE LIEB-LINIGER
MODEL WITHIN THE BETHE ANSATZ APPROACH

Eigenstates of the N-particle Lieb-Liniger Hamiltonian (1)
can be cast into the following form [56–59]:

�{k}({x}) = N
∑
σ∈SN

Aσ ({x}, {k}) exp

(
i

N∑
j=1

kσ ( j)x j

)
, (A1)

where SN is the group of all N-element permutations,

Aσ ({x}, {k}) =
∏
l>m

(
1 − i g0 sgn(xl − xm)

kσ (l ) − kσ (m)

)
, (A2)

and the normalization constant

N =
∏

l>m (kl − km)√
N! det[M(k)]

∏
l>m

[
(kl − km)2 + g2

0

] (A3)

can be determined with the help of the Gaudin matrix

Mαβ = δαβ

(
1 +

N∑
l=1

2g0

(kα − kl )2 + g2
0

)
− 2g0

(kα − kβ )2 + g2
0

.

(A4)
In the case of periodic boundary conditions, the set of N quasi-
momenta {k} has to satisfy the Bethe equations (5), and can
be found iteratively starting from the weakly interacting limit
|g0|L 
 1 where the Bethe equations can be approximated by

k j = 2π

L
dj + g0

L

N∑
s = 1 s �= j

1

k j − ks
, j = 1, 2, . . . , N.

(A5)
The numbers d j = 0,±1,±2, . . . do not have to be distinct
for different j and they denote excitations if |dj | �= 0 [61].
That is, in the weakly interacting limit the set of quasimo-
menta determining the ground state can be found by setting
d j=1,2,...,N = 0. Other sets {k} of approximated values of
quasimomenta corresponding to excited eigenstates are re-
lated to at least one d j different from zero. The solutions of the
approximate equations. (A5) can be used as an initial guess to
solve the original Bethe equations (5). In the consecutive steps
we slightly increase the coupling strength determined by g0

and use the linear extrapolation basing on the previous solu-
tions of Eq. (5). Starting from different sets {d1, d2, . . . , dN },
excluding permutations of dj numbers, we obtain different

063308-6



MEASUREMENT OF A ONE-DIMENSIONAL MATTER-WAVE … PHYSICAL REVIEW A 102, 063308 (2020)

solutions of the Bethe equations (5). For more details, see
Ref. [62].

APPENDIX B: DETERMINATION OF OVERLAPS
BETWEEN DIFFERENT EIGENSTATES

Let us consider two different N-particle eigenstates
�{k}({x}) and �̃{q}({x}) [Eq. (A1)], but corresponding to
the Lieb-Liniger systems with possibly different coupling
strengths determined by g0 and g̃0, respectively. It turns out
that the overlap between these two eigenstates can be written
as the following sum of (N!)2 integrals:

〈�̃|�〉 = NÑ ∗N!
∑
π∈SN

∑
σ∈SN

Ã∗
σ ({q}) Aπ ({k})

∫ L

0
dxL

×
∫ L

x1

dx2 . . .

∫ L

xN−1

dxN exp

(
i

N∑
j=1

(kπ ( j) − q∗
σ ( j) )x j

)
,

(B1)

where

Aπ ({k}) =
∏
l>m

(
1 − ig0

kπ (l ) − kπ (m)

)
, (B2)

Ã∗
σ ({q}) =

∏
l>m

(
1 + ĩg0

q∗
σ (l ) − q∗

σ (m)

)
, (B3)

and Ñ is given by Eq. (A3) with {k} and g0 replaced by {q}
and g̃0, respectively. Note that for small number of particles
N , like N = 4 which we analyze in the main text, the over-
lap given by the analytical expression (B1) can be explicitly
calculated.

Proof of Eq. (B1). The overlap in question reads as

〈�̃|�〉 =
∫ L

0
dx1

∫ L

0
dx2 . . .

∫ L

0
dxN �̃∗

{q}({x})�{k}({x}).

(B4)
First of all, we observe that the integration over the N-
dimensional hypercube can be decomposed into a sum of N!
integrations over the sectors in which 0 � xτ (1) � xτ (2) . . . �
xτ (n) � L, where τ is the permutation belonging to SN , i.e.,

∫ L

0
dx1

∫ L

0
dx2 . . .

∫ L

0
dxn

=
∑
τ∈SN

∫ L

0
dxτ (1)

∫ L

xτ (1)

dxτ (2) . . .

∫ L

xτ (N−1)

dxτ (N ). (B5)

Note that by employing such a decomposition we get rid of
the sign function present in the coefficients A [Eq. (A2)]. The
latter become the coordinate independent numbers A defined
in Eq. (B2). Moreover, thanks to the Bose exchange sym-
metry, i.e., �{k}(τ {x}) = �{k}({x}) and similarly �̃{q}(τ {x}) =

TABLE I. Quasimomenta {q} divided by 2π , energies, and prob-

abilities |α{q}|2 = |〈�̃{q}|�0〉|2 corresponding to relevant eigenstates
�̃{q} of the four-particle system after the fourfold quench of the inter-
action strength from g0 = −3.95 to g̃0 = 4g0. The quasimomenta {q}
which determine the eigenstates �̃{q} were obtained as described in
Appendix A, starting with different sets of integers {d1, . . . , d4}. The
analytical results for overlaps α{q} [Eq. (B1)] are compared with the
results obtained by employing the Monte Carlo integration (B8). The
values {q}/(2π ) are rounded to 10−2 for real and imaginary parts.

|α{q}|2 |α{q}|2
{q}/(2π ) Energy Eq. (B1) Eq. (B8)

−0.003, −2.52i, 2.52i, 0.003 −249.7 0.458422 0.458319

−3.77i, y1.26i, 1.26i, 3.77i −624.1 0.227098 0.228112

−0.37−1.27i, −0.37+1.27i, −115.5 0.068781 0.068779

0.37−1.27i, 0.37+1.27i

−0.43−2.52i, −0.43+2.52i, −205.4 0.053255 0.053224

−0.43, 1.30

−1.30, 0.43, −205.4 0.053255 0.053224

0.43−2.52i, 0.43+2.52i

1.02, −1.26i, 1.26i, −1.02 −22.5 0.050643 0.050505

−1.03+1.26i, −1.03−1.26i, −40.6 0.024169 0.024250

1.03+1.26i, 1.03−1.26i

−2.37, −1.26i, 1.26i, 2.37 158.7 0.011749 0.011761

−2.48, 0.83+2.52i, −88.1 0.006947 0.006761

0.83, 0.83−2.52i

−0.83+2.52i, −0.83, −88.1 0.006947 0.006761

−0.83−2.52i, 2.48

�̃{q}({x}), the analyzed expression can be reduced as follows:

∑
τ∈SN

∫ L

0
dxτ (1) . . .

∫ L

xτ (N−1)

dxτ (N ) �̃
∗
{q}({x})�{k}({x})

=
∑
τ∈SN

∫ L

0
dx1 . . .

∫ L

xN−1

dxN �̃∗
{q}(τ

−1{x})�{k}(τ−1{x})

=
∑
τ∈SN

∫ L

0
dx1 . . .

∫ L

xN−1

dxN �̃∗
{q}({x})�{k}({x})

= N!
∫ L

0
dx1 . . .

∫ L

xN−1

dxN �̃∗
{q}({x})�{k}({x}). (B6)

Thus, Eq. (B1) can be easily reproduced by employing
Eqs. (B5) and (B6) in Eq. (B4). �

In this paper we analyze N = 4 bosons prepared initially in
the ground state, i.e., �(t = 0) = �0, for a certain value of the
interaction strength g0. In order to obtain time evolution of the
many-body state �(t ) after the quench of the interactions, i.e.,
when g0 → g̃0 = 4g0, we have to calculate overlaps α{q} =
〈�̃{q}|�0〉 where �̃{q}’s are eigenstates corresponding to g̃0.
Then,

�({x}, t ) =
∑
{q}

α{q} e−iE{q}t �̃{q}({x}), (B7)
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where E{q} = ∑N
j=1 q2

j/2. Note that as long as we start
with the system ground state � = �0, which possesses a
zero total momentum, the only contributions in the ex-
pansion in Eq. (B7) are related to eigenstates �̃{q} with
P = ∑N

j=1 q j = 0. In addition, we restrict the expansion to

the eigenstates �̃{q} corresponding to non-negligible am-
plitudes α{q}. In Table I we present values of leading
amplitudes obtained with the help of the exact formula (B1)
for N = 4.

The analytical results of the overlaps can be also used as
a benchmark for the Monte Carlo integration employed by
us to calculate ρrel(x; t ), G(2)(x − y; t ), and P(x, y; t ). Within
the Monte Carlo approach the overlaps can be calculated by

means of the following summation:

〈�̃{q}|�0〉 ≈ 1

NU

∑
{x}∈U

�̃∗
{q}({x})�0({x}), (B8)

where U is a collection of NU sets of positions {x} randomly
chosen from the uniform distribution. In our simulations we
take NU = 106 sets of positions, which allows us to determine
the overlaps with accuracy of the order of 10−3 (see Table I).
The integrals in Eqs. (7), (9), and (10) can be computed in a
similar way as the overlaps in Eq. (B8). The overall overlap
of eigenstates used for obtaining ρrel(x; t ), G(2)(x − y; t ), and
P(x, y; t ) equals to 0.9946 and 0.9940 for Monte Carlo inte-
gration and analytic one, respectively.
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