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Vortex structures in a rotating Rydberg-dressed Bose-Einstein condensate with the
Lee-Huang-Yang correction
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We numerically investigate the vortex structures in a fast rotating two-dimensional Rydberg-dressed Bose-
Einstein condensate (BEC) taking into account the Lee-Huang-Yang (LHY) quantum correction. In a rotating
BEC of reduced dimensionality, it is shown that there is room to tune the LHY coupling against the short- and
long-range couplings. In the absence of the LHY effect, hexagonal, square, striped, and honeycomb lattices
can exhibit upon increasing the long-range interaction, which can be realized in the context of superfluid (SF)-
supersolid (SS) transition. In the presence of the LHY effect, competition between LHY and long-range terms
results in rich lattice structures. In particular, clustering of multiple vortices can occur due to the trapping effect
of the SS triangles or grids. Estimates of number of vortices in the clustering are provided.
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I. INTRODUCTION

In 1957, Abrikosov published a classic paper on magnetic
vortices in type-II superconductors and predicted the vortex
lattices to be hexagonal close packing (HCP) [1,2]. It then
inspired people to investigate the vortex lattice structures in
various superconducting and superfluid (SF) systems. Pio-
neering works in rotating SF include studies of vortex lattices
in superfluid helium [3,4] and cold atoms [5,6].

Supersolid (SS) is a state of matter that simultaneously
possesses superfluidity and solidity in which both gauge and
continuous translational symmetries are broken [7–12]. To
maintain global phase coherence in the SF background, spon-
taneous density modulation associated with SF-SS transition
then arises [13–16]. Recently SS states have been realized in
a spin-orbit coupling Bose-Einstein condensate (BEC) in the
stripe phase [17], and in optical cavities coupled BEC [18].
Moreover, crystallization of SS with the help of long-range
interaction has also been detected in dipolar BEC [16,19–
21]. Another promising candidate to observe the SS state is
the Rydberg-dressed atomic BEC which exhibits a defocusing
soft-core interaction [22–26].

Lee-Huang-Yang (LHY) quantum correction is considered
the first correction beyond the mean-field approximation in
SF systems [27]. In dipolar BECs, energy of the LHY term
is repulsive and ∝n5/2 (n being the atom density), whereas
due to anisotropy of the dipolar interaction, energy of the
dipolar interaction could be attractive and ∝ n2. Competition
of the two terms then finds a ground state to form self-bound
droplets [20,28–32]. By contrast, in Rydberg-dressed BECs,
the long-range interaction is isotropic and the system can
stabilize itself and form a SS in the absence of the LHY
correction. Nevertheless, the higher-order LHY effect could
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still play some interesting roles in Rydberg-dressed BEC. Re-
cently the effect of LHY correction on ground-state properties
[16,33,34] and excitation spectra [34–36] have been inves-
tigated in Rydberg-dressed BEC. The present paper aims to
explore how the vortex structures behave with the LHY effect
in Rydberg-dressed BECs under high rotation.

In a three-dimensional (3D) Rydberg-dressed BEC, LHY
coupling is completely bounded by the short (g) and long-
range (α) couplings, so there is not much room to adjust the
LHY coupling once g and α are fixed. However, in a two-
dimensional (2D) geometry of particular interest for vortex
lattices, there occurs an additional dependence of lz (conden-
sate size along the rotation axis). Consequently due to the
different-power dependence of lz on the LHY term versus
the short- and long-range terms, it gives room to adjust the
LHY coupling against the short- and long-range couplings
(see Sec. II). This in turn makes rich vortex structures in a
2D system.

In the literature, Henkel et al. [37] studied rotating SS
and presented a phase diagram for the competition between
SS crystal and rotation-induced vortex lattice in a Rydberg-
dressed BEC. Cheng and Jheng [38] studied the von Neumann
vortex lattices in a BEC with dipole interatomic interaction.
Kwasigroch and Cooper [39] studied quantum fluctuations
of vortex lattices in ultracold gases by a variational method.
Kumar et al. [40] studied vortex lattices in binary BEC with
dipolar interaction. Tengstrand et al. [41] studied rotating
binary BEC and vortex clusters in quantum droplets. Tamil
Thiruvalluvar et al. [42] studied vortex formation and vortex
lattices in a BEC with LHY correction. Roccuzzo et al. [43]
studied rotating SS in a dipolar gas with LHY correction.
Gallemí et al. [44] investigated quantized vortices in dipolar
SS BEC with LHY correction. In an earlier paper, Sinova
et al. [45] studied quantum melting and absence of BEC in
2D vortex matter.

The paper is organized as follows. Section II introduces
the basic formalism of the Gross-Pitaevskii equation (GPE)
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with the LHY correction. Section III studies the vortex lattices
in a 2D rotating Rydberg-dressed BEC in the absence of
LHY correction. Section IV studies the vortex structures in
a 2D rotating Rydberg-dressed BEC with the LHY correction.
Section V is a conclusion. In Appendix, a derivation for the
lattice constant of the hexagonal trapped Rydberg-dressed SS
is given.

II. FORMALISM

This paper takes the approach of GPE. In a three-
dimensional Rydberg-dressed BEC, condensed atoms interact
with each other via the following potential [22]:

U (r − r′) = gδ(r − r′) + α

R6
c + |r − r′|6 , (1)

where g = 4π h̄2a/m (a being the s-wave scattering length) is
responsible for the short-range interaction and α and Rc are
the van der Waals interaction strength and blockade radius of
the long-range interaction. The sound velocity of the system
is then given by

c(r) =
√

geffn(r)

m
, (2)

where n(r) is local density, m is atom mass, and geff is the
effective coupling given by

geff = Ũ (k = 0) = g + 2π2α

3R3
c

(3)

with Ũ (k) the Fourier transform of U (r) in (1). Under local
density approximation, the energy functional of the LHY cor-

rection is given by [27]

ELHY = 8m4

15π2 h̄3

∫
c(r)5dr = 2

5
γ

∫
|ψ (r)|5dr, (4)

where the LHY coupling γ = 4m
3
2 g

5
2
eff/3π2h̄3 and the total

wave function ψ (r) is subject to the normalization condition∫ |ψ (r)|2dr = 1. Consequently the total energy functional of
the system is [46]

E =
∫ [

h̄2|∇ψ (r)|2
2m

+ mω2
⊥(ρ2 + λ2z2)

2
|ψ (r)|2 + g

2
|ψ (r)|4

+ α

2

∫ |ψ (r′)|2|ψ (r)|2
R6

c + |r − r′|6 dr′ + 2

5
γ |ψ (r)|5

]
dr, (5)

where ρ2 = x2 + y2, ω⊥ (ωz) is the trapping frequency in the
x-y plane (along the z axis), and λ = ωz/ω⊥ is the aspect ratio.

In a two-dimensional geometry confining to the x-y plane
(λ � 1), total wave function ψ (r, t ) ≈ φ(�ρ, t )φ̄(z), where
�ρ = (x, y) and the z-component wave function can be well
approximated by a Gaussian,

φ̄(z) = 1

π1/4l1/2
z

exp

(
− z2

2l2
z

)
, (6)

with lz = √
h̄/mωz. In the case Rc � lz appropriate for the 2D

limit, the long-range term in (5) can then be approximated by

∫∫ |ψ (r′)|2|ψ (r)|2
R6

c + |r − r′|6 dr′dr ≈ 1√
2π lz

∫∫ |φ( �ρ ′)|2|φ(�ρ)|2
R6

c + |�ρ − �ρ ′|6 d �ρ ′d �ρ. (7)

Consequently the total energy functional (5) is reduced to

E =
∫ ⎡

⎣ h̄2|∇⊥φ(�ρ )|2
2m

+ mω2
⊥ρ2

2
|φ(�ρ)|2 + g

2
√

2π lz
|φ(�ρ)|4 + α

2
√

2π lz

∫ |φ( �ρ ′)|2|φ(�ρ)|2
R6

c + |�ρ − �ρ ′|6 d �ρ ′

+
(

2

5

) 3
2 γ

π
3
4 l

3
2

z

|φ(�ρ)|5 + h̄ωz

2

⎤
⎦d �ρ. (8)

Considering a rotation around the z axis, the total energy functional in the rotating frame is then

Erot = E − �

∫
φ∗(�ρ)L̂zφ(�ρ)d �ρ, (9)

where � is the angular frequency of rotation and L̂z is the z-component angular momentum. Based on (9), one can write down a
corresponding time-dependent 2D GPE with the LHY correction:

ih̄∂tφ(�ρ ) =
[
− h̄2∇2

⊥
2m

+ mω2
⊥ρ2

2
+ ḡ|φ(�ρ)|2 + ᾱ

∫ |φ( �ρ ′)|2
R6

c + |�ρ − �ρ ′|6 d �ρ ′ + γ̄ |φ(�ρ)|3 − �Lz

]
φ(�ρ). (10)

Here ḡ = g/
√

2π lz, ᾱ = α/
√

2π lz, and γ̄ = √
2/5γ /π

3
4 l

3
2

z . Thus ḡ/g = ᾱ/α ∝ l−1
z , whereas γ̄ /γ ∝ l

− 3
2

z . As a matter of fact,
due to the different-power dependence of lz on γ̄ versus ḡ and ᾱ, it gives room to adjust the LHY coupling against the short- and
long-range couplings Throughout this paper, the units of length and frequency are chosen to be the blockade radius Rc and the
characteristic frequency associated with Rc, ωc = h̄/mR2

c , respectively.
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FIG. 1. Vortex lattices of a fast rotating 2D Rydberg-dressed condensate without LHY correction. RTF = 7Rc, ω⊥ = 3ωc, � = 0.95ω⊥ =
2.85ωc, and ḡeff = 1655 are used in all frames. All axes are in units of Rc. Upon decreasing (increasing) the short-range (long-range) coupling
ḡ (ᾱ), it exhibits (a) hexagonal (ḡ = 200; ᾱ = 383), (b) square (ḡ = 150; ᾱ = 397), (c) striped (ḡ = 63; ᾱ = 420), and (d) honeycomb (ḡ = 38;
ᾱ = 426) lattices.

The stationary lattice configurations discussed in the rest of this paper are obtained by evolving Eq. (10) in imaginary time.
Fast Fourier transformation (FFT) and inverse fast Fourier transformation (IFFT) are employed to deal with spatial difference and
integration [47]. We discretized the two-dimensional calculating domain (−4π, 4π ) × (−4π, 4π ) to 384 × 384 grids. Besides,
the time-splitting method with a fixed time step t = 0.001 is used to deal with temporal difference and integration. The “ground
states” we obtained are very robust against the using of the spatially random trial wave functions and the convergence criterium
of chemical potential.

III. VORTEX LATTICES WITHOUT LHY CORRECTION

It is useful to first examine vortex lattices in the absence
of LHY correction (γ̄ = 0). Under Thomas-Fermi (TF) ap-
proximation, the TF radius of the rotating 2D condensate is
given by

RTF =
√

2μ

m(ω2
⊥ − �2)

=
√

2ḡeffn0

m(ω2
⊥ − �2)

, (11)

where μ is the chemical potential and n0 = 2/πR2
TF is the nor-

malized number density maximum at ρ = 0. The 2D effective
coupling,

ḡeff = Ũ2D(k‖ = 0) = ḡ + 2π2ᾱ

3
√

3R4
c

, (12)

where Ũ2D(k‖) is the Fourier transform of the 2D potential
involving both short- and long-range interactions,

U2D(�ρ) = ḡδ(ρ) + ᾱ

R6
c + ρ6

. (13)

Equation (11) also reveals

ḡeff = m(ω2
⊥ − �2)πR4

TF

4
, (14)

so ḡeff is fixed once ω⊥, �, and RTF are fixed.
Figure 1 shows vortex lattices of a fast rotating 2D

Rydberg-dressed condensate without LHY correction. We
consider a large condensate of RTF = 7Rc and ω⊥ = 3ωc,
which is under fast rotation with � = 0.95ω⊥ = 2.85ωc.
Based on (14), it yields ḡeff = 1655. With ḡeff fixed and by
varying relative magnitudes of ḡ and ᾱ [see (12)], four distinct
vortex lattices are observed. Given Fig. 1, the smaller ḡ (or
the larger ᾱ) is, the condensate lines more anisotropically
which spontaneously breaks continuous translational symme-
try and finally conforms to the hexagonal, square, striped,
and honeycomb vortex lattices. Recently numerical results of

honeycomb vortex lattice have been found in dipolar SS BEC
[32,44].

Vortices correspond to local energy or density minima
in the ground state. In the current system, condensate with
large RTF can accommodate more vortices and high rotation
frequency � can generate large angular momentum. Starting
from the case of uniform SF where vortex lattice exhibits
to be hexagonal close packing [case (a)], vortices are dis-
torted into a square pattern due to the increasing weight of
the long-range interaction [case (b)]. As long-range interac-
tion increases further, there is the first-order transition from
square to the anisotropic striped lattice [case (c)] until the
striped lattice finally transforms into the honeycomb lattice
commensurate with the hexagonal SS structure [case (d)] [37].
Evolution of vortex lattices in which vortices accommodate in
the valleys of condensate density can thus be deemed as the
SF-SS transition [44].

IV. VORTEX STRUCTURES WITH LHY CORRECTION

Figure 2 shows vortex structures of a fast rotating 2D
Rydberg-dressed condensate with LHY correction. Following
Fig. 1, we again consider a large condensate with RTF =
7Rc and ω⊥ = 3ωc, which is under fast rotation with � =
0.95ω⊥ = 2.85ωc. As shown in (12) and (14) and also noted
before, the effective coupling ḡeff , which is the combination
of the short-range ḡ and long-range ᾱ couplings, is fixed once
RTF, ω⊥, and � are set. The above RTF, ω⊥, and � used yield
ḡeff = 1655.

Figure 2 intends to study the competition between long-
range coupling ᾱ and LHY coupling γ̄ . For simplicity, we
fix ḡ = 0 and ᾱ = 436 (a combination also corresponding to
ḡeff = 1655) and vary γ̄ . Later in Figs. 4 and 5, we will take
the same approach to turn off the short-range coupling ḡ by
considering the effects of higher rotation frequencies. The
effect of ḡ will be studied and discussed in Fig. 7.
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FIG. 2. (a)–(d) Vortex structures of a fast rotating 2D Rydberg-dressed condensate with LHY correction γ̄ . RTF = 7Rc, ω⊥ = 3ωc,
� = 0.95ω⊥ = 2.85ωc, and ḡeff = 1655 with ḡ = 0 and ᾱ = 436 are used in all frames. All axes are in units of Rc. Upon increasing γ̄ , it
exhibits (a) honeycomb lattice (γ̄ = 0), (b) striped lattice (γ̄ = 200), (c) clustering of paired vortices in a hexagonal structure (γ̄ = 260),
and (d) hexagonal lattice (γ̄ = 1000). (e)–(h) Corresponding to the phase distributions of (a)–(d). The clustering of paired vortices in (c) is
confirmed by the circle in (g).

Analogous to the one in Fig. 1(d) with relatively larger ᾱ =
426 and smaller ḡ = 38, a honeycomb lattice is also observed
in Fig. 2(a) for γ̄ = 0. Upon increasing the LHY coupling γ̄ ,
Fig. 2 also shows (b) striped lattice (γ̄ = 200), (c) clustering
of paired vortices in a hexagonal structure (γ̄ = 260), and (d)
hexagonal lattice (γ̄ = 1000).

A. Roton instability

Energy of LHY term is ∝γ̄ |φ|5 [see (8)]. It implies when
γ̄ is increased, a higher local density would cost more energy
and consequently, SS could transform towards the SF phase

FIG. 3. Schematic showing the effect of LHY correction on the
BdG excitation spectra (15). With the long-range coupling ᾱ and
density n0 fixed, roton instability is lifted by increasing the LHY
coupling γ̄ .

with a more flat and uniform density distribution. To see
how SS would transform towards the SF state by increasing
the LHY coupling, we study the phenomenon of roton insta-
bility. Based on Bogoliubov-de Gennes (BdG) equation, the
excitation spectrum of a 2D uniform Rydberg-dressed LHY
condensate can be given by

h̄ω(k‖) = ±
√√√√ h̄2k2

‖
2m

[
h̄2k2

‖
2m

+ 2Ũ2D(k‖)n0 + 3γ̄ n
3
2
0

]
, (15)

where n0 is the 2D uniform density and Ũ2D(k) is the Fourier
transform of the 2D interaction potential given in (13). At
k‖ → 0, the excitation dispersion is phononlike,

ω = ck‖; c = c0

[
1 + 3γ̄ n

1
2
0

2ḡeff

] 1
2

, (16)

where c0 = √
ḡeff n0/m and ḡeff was given in (12).

Figure 3 shows roton instability occurs in a case with
ᾱn0 = 100 and γ̄ n3/2

0 = 0 (solid blue curve). When γ̄ is in-
creased while ᾱn0 is fixed at 100, excitation dispersion is
raised and eventually, roton instability is lifted (dashed green
curve). It indicates the SS state can transform towards the
homogeneous SF state.

B. Clustering of multiple vortices

Figure 2(c) exhibits the clustering of paired vortices of the
same circulation [40,48], as confirmed by the corresponding
phase distribution in Fig. 2(g) (see the circle). By contrast,
vortex lattices in Figs. 2(a), 2(b), and 2(d) are all made up of
a single vortex.

In fact, clustering of multiple vortices can occur in both
small and intermediate γ̄ regimes. For small γ̄ ’s, the vortex
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FIG. 4. (a)–(d) Vortex structures of a fast rotating 2D Rydberg-dressed condensate with LHY correction γ̄ . RTF = 6Rc, ω⊥ = 6ωc, � =
0.95ω⊥ = 5.7ωc, and ḡeff = 3573 with ḡ = 0 and ᾱ = 941 are used in all frames. All axes are in units of Rc. Upon increasing γ̄ , it exhibits
(a) clustering of paired vortices in a honeycomb structure (γ̄ = 300), (b) striped lattice (γ̄ = 600), (c) clustering of three vortices in a hexagonal
structure (γ̄ = 990), and (d) hexagonal lattice (γ̄ = 1100). (e)–(h) Corresponding to the phase distributions of (a)–(d).

structure is a honeycomb in the background of hexagonal SS
[Fig. 2(a)]. Let n1 denote the number of vortices trapped in
a triangle formed by three nearby droplets of the hexagonal
SS. Assume that a is the lattice constant of the hexagonal SS
and the area of triangle is A = √

3a2/4. In Appendix, we
have shown a ≈ πRc/2 for the hexagonal Rydberg-dressed
SS under studies. Consequently A ≈ (

√
3π2/16)R2

c ≈ 1.07.
On the other hand, based on the lowest Landau level (LLL)
approximation for a fast rotating condensate [49], each vortex
takes up an averaged area ALLL = π�2 with � = √

h̄/m�

and � the rotation frequency. We have found empirically

that

n1 ≈ Rounding

[ A
ALLL

]
≈ Rounding

[√
3πR2

cm�

16h̄

]
, (17)

where Rounding [x] denotes rounding to the nearest integer.
In the present case, � = 2.85ω⊥, it yields ALLL ≈ 1.10 and
A/ALLL ≈ 0.97. Consequently, n1 = 1.

When γ̄ is increased, SS droplets start to get flattened and
connect first to form linear arrays [Fig. 2(b)]. By the linear
SS arrays, vortices then form single-vortex lines (stripes) in
the density-low regions. The lattice constant of the stripes

FIG. 5. (a)–(d) Vortex structures of a fast rotating 2D Rydberg-dressed condensate with LHY correction γ̄ . RTF = 6Rc, ω⊥ = 9.29ωc,
� = 0.95ω⊥ = 8.82ωc, and ḡeff = 8579 with ḡ = 0 and ᾱ = 2260 are used in all frames. All axes are in units of Rc. Upon increasing γ̄ , it
exhibits (a) clustering of three vortices in a honeycomb structure (γ̄ = 1250), (b) striped lattice (γ̄ = 1500), (c) clustering of four (see the white
oval) or five (see the black oval) vortices in a linear structure (γ̄ = 1805), and (d) hexagonal lattice mixed with the striped SS (γ̄ = 1810).
(e)–(h) Corresponding to the phase distributions of (a)–(d).
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FIG. 6. Phase diagram of the vortex structures for a fast rotating
2D Rydberg-dressed condensate with LHY correction γ̄ . CMV-
HoVL denotes clustering of multiple vortices in a honeycomb vortex
lattice, SVL denotes the striped vortex lattice, CMV denotes cluster-
ing of multiple vortices either in hexagonal or linear structure, and
HeVL denotes the hexagonal vortex lattice.

(shortest distance between two neighboring stripes) is a′ =√
3a/2 ≈ √

3πRc/4. When γ̄ is increased further, SS gets fur-
ther flattened and extends also to the direction perpendicular
to the stripes. Consequently a SS grid structure can form and
each grid has an area A� = (a′)2 = 3a2/4 ≈ 3π2R2

c/16. The
number of vortices trapped in a single SS grid, named n2, is
found to be

n2 ≈ Rounding

[ A�
ALLL

]
≈ Rounding

[
3πR2

cm�

16h̄

]
. (18)

In the present case, A� ≈ 1.85 and A�/ALLL ≈ 1.68, thus
n2 = 2. This is what is seen in Fig. 2(c) in which paired vor-

FIG. 7. Effect of contact interaction ḡ on the vortex structures
of a fast rotating 2D Rydberg-dressed condensate. RTF = 7Rc, ω⊥ =
3ωc, � = 0.95ω⊥ = 2.85ωc, ḡeff = 1655, and the LHY correction
γ̄ = 260 are used in all frames. All axes are in units of Rc. Upon
increasing ḡ, it exhibits (a) clustering of paired vortices in a hexago-
nal structure (ḡ = 10 and ᾱ = 432.9), (b) paired vortices in a striped
structure (ḡ = 15 and ᾱ = 431.6), (c) striped lattice (ḡ = 20 and
ᾱ = 430.3), and (d) hexagonal lattice (ḡ = 140 and ᾱ = 398.7).

tices tend to form a hexagonal structure in a closed-packing
manner.

Once γ̄ is increased further to hit the SS-SF transition, the
system is in the homogeneous SF regime and the vortex lattice
will be in the closed-packing hexagonal structure [Fig. 2(d)].

To see how reliable the estimated n1 and n2 in (17) and (18)
are, we show another set of vortex structures in Fig. 4. Now we
fix ḡeff = 3573 with ᾱ = 941 and ḡ = 0 and RTF = 6Rc, and
the frequencies are doubled, ω⊥ = 6ωc and � = 0.95ω⊥ =
5.7ωc. Upon increasing the LHY coupling γ̄ , it exhibits
(a) clustering of paired vortices in a honeycomb structure
(γ̄ = 300), (b) striped lattice (γ̄ = 600), (c) clustering of three
vortices in a hexagonal structure (γ̄ = 990), and (d) hexag-
onal lattice (γ̄ = 1100). In the present case, ALLL ≈ 0.55
and A/ALLL ≈ 1.95. It yields n1 = 2 and is the case seen
in Figs. 4(a) and 4(e). Moreover, A�/ALLL ≈ 3.36 and thus
n2 = 3. Clustering of three vortices is indeed seen in Figs. 4(c)
and 4(g). Once again, the clustering of three vortices appears
in a closed-packing hexagonal structure.

Finally, one more set of vortex structures are shown in
Fig. 5. In this set, we fix ḡeff = 8579 with ḡ = 0 and ᾱ = 2260
and RTF = 6Rc, and the frequencies are further increased to
ω⊥ = 9.29ωc and � = 0.95ω⊥ = 8.82ωc. Upon increasing γ̄ ,
it exhibits (a) clustering of three vortices in a honeycomb
structure (γ̄ = 1250), (b) striped lattice (γ̄ = 1500), (c) clus-
tering of four (see the white oval) or five (see the black oval)
vortices in a linear structure (γ̄ = 1805), and (d) hexagonal
lattice mixed with the striped SS (γ̄ = 1810). In this set
of parameters, ALLL ≈ 0.36 and A/ALLL ≈ 2.98. It yields
n1 = 3 which is the case seen in Figs. 5(a) and 5(e). However,
A�/ALLL ≈ 5.18 and then n2 = 5, but clustering of four or
five vortices in a linear structure is actually seen in Figs. 5(c)
and 5(g). When the rotation frequency � is high and plenty of
vortices occur, n2 given by (18) becomes not too accurate.

Once γ̄ is increased to hit the SS-SF transition, hexagonal
vortex lattice would appear. In Fig. 5(d), we instead show the
case by slightly increasing γ̄ from 1805 in case (c) to 1810.
One sees hexagonal vortex lattice is mixed with the striped
SS. This is just to show how rich the vortex structures could
be in a fast rotating 2D Rydberg-dressed condensate with the
LHY correction.

To increase the readability, the results shown in Figs. 2, 4,
and 5 are summarized in a “phase diagram” in Fig. 6.

C. Effect of contact interaction

Similar to the effect of LHY coupling γ̄ , it is known that
contact interaction ḡ can also suppress the crystallization, and
the presence of it could also result in rich vortex structures.
Figure 7 presents a study on the effect of the contact inter-
action. In particular, we focus on how the contact interaction
affect the clustering of multiple vortices. By fixing the LHY
coupling γ̄ and ḡeff , and changing the relative magnitudes of
ḡ and ᾱ, it is seen that upon increasing ḡ, clustering of paired
vortices in a hexagonal structure [Fig. 7(a)] is evolved into
paired vortices in a striped structure [Fig. 7(b)]. Once ḡ is
increased further, it evolves into a striped lattice [Fig. 7(c)],
and eventually to a hexagonal lattice [Fig. 7(d)]. These vortex
structure changes occur in a small window of ḡ.
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V. CONCLUDING REMARKS

In conclusion, vortex structures in a fast rotating 2D
Rydberg-dressed BEC with LHY correction are investigated.
In a rotating BEC of reduced dimensionality, it is found that
LHY coupling can be tuned again the short- and long-range
couplings. Consequently, a rich phase diagram of vortex struc-
tures can occur. Much of the results can be understood in the
context of SF-SS transition. In addition, clustering of multiple
vortices can form due to the trapping effect of the SS triangles
and grids. We have provided estimates for the number of
vortices in the clustering.

Finally, we remark on the feasibility of the possible ex-
periments. It is not going to be an easy experiment as many
techniques are required. One has to first prepare Rydberg-
dressed atoms in a quasi-2D trap and then rotate the trap

potential. In any event, this can be done, in principle! The
parameters RTF, ω⊥, �, ᾱ, and ḡ used are realistic to the
system [25,37]. Besides, the LHY coupling γ̄ , which is tun-
able in a quasi-2D geometry, is estimated to be also realistic
to the system. We really hope the experiment can be done
soon.
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APPENDIX: LATTICE CONSTANT OF TRAPPED
HEXAGONAL RYDBERG-DRESSED SS

Starting from the 2D time-dependent GPE, Eq. (10), for the rotating BEC in the rotating frame,

ih̄∂tφ(�ρ, t ) =
[
− h̄2∇2

⊥
2m

+ V̄ (�ρ) +
∫

U2D(�ρ − �ρ ′)|φ( �ρ ′, t )|2d �ρ ′ + γ̄ |φ(�ρ, t )|3
]
φ(�ρ, t ), (A1)

where V̄ (�ρ) = m(ω2
⊥ − �2)ρ2/2 and U2D(�ρ − �ρ ′) was given in (13). Now, let φ(�ρ, t ) ≡ exp(−iμt/h̄)[φ0(�ρ) + δφ(�ρ, t )], where

φ0(�ρ) satisfies the time-independent GPE,[
− h̄2∇2

⊥
2m

+ V̄ (�ρ) +
∫

U2D(�ρ − �ρ ′)|φ0( �ρ ′)|2d �ρ ′ + γ̄ |φ0(�ρ )|3
]
φ0(�ρ) = μφ0(�ρ), (A2)

and to the linear order, the fluctuation δφ(�ρ, t ) satisfies

ih̄∂tδφ(�ρ, t ) �
[
− h̄2∇2

⊥
2m

+ V̄ (�ρ) +
∫

U2D(�ρ − �ρ ′)|φ0( �ρ ′)|2d �ρ ′ + γ̄ |φ0(�ρ)|3 − μ

]
δφ(�ρ, t )

+
∫

U2D(�ρ − �ρ ′)φ0( �ρ ′)δφ∗( �ρ ′, t )d �ρ ′φ0(�ρ) +
∫

U2D(�ρ − �ρ ′)φ∗
0 ( �ρ ′)δφ( �ρ ′, t )d �ρ ′φ0(�ρ)

+ 3γ̄ |φ0(�ρ)|3
2

δφ(�ρ, t ) + 3γ̄ |φ0(�ρ)|3φ0(�ρ)

2φ∗
0 (�ρ)

δφ∗(�ρ, t ). (A3)

In the uniform limit appropriate for the region near the trap center, V̄ (�ρ ) → 0, φ0(�ρ) ≡ √
n0 is a real constant and (A2) yields

n0
∫

U2D(�ρ − �ρ ′)d �ρ ′ + γ̄ n3/2
0 = μ. In addition, (A3) is reduced to

ih̄∂tδφ(�ρ, t ) � − h̄2∇2
⊥

2m
δφ(�ρ, t ) + n0

∫
U2D(�ρ − �ρ ′)δφ∗( �ρ ′, t )d �ρ ′ + n0

∫
U2D(�ρ − �ρ ′)δφ( �ρ ′, t )d �ρ ′

+ 3γ̄ n3/2
0

2
δφ(�ρ, t ) + 3γ̄ n3/2

0

2
δφ∗(�ρ, t ). (A4)

Equation (A4) can be used to study the SS state in the background of uniform density n0. For simplicity, we consider δφ(�ρ, t )
to be a real periodic function with no time dependence. Thus (A4) reduces to

− h̄2∇2
⊥

2m
δφ(�ρ ) + 2n0

∫
U2D(�ρ − �ρ ′)δφ( �ρ ′)d �ρ ′ + 3γ̄ n3/2

0 δφ(�ρ ) = 0. (A5)

The integral term in (A5) can be expanded as∫
U2D(�ρ − �ρ ′)δφ( �ρ ′)d �ρ ′ = 1

(2π )2

∫
Ũ2D(k‖)δφ̃(k‖)eik‖·�ρdk‖ = Ũ2D(0)δφ(�ρ ) − Ũ ′′

2D(0)

2!
∇2

⊥δφ(�ρ) + · · ··, (A6)

where Ũ2D(k‖) and δφ̃(k‖) are Fourier transforms of U2D(�ρ) and δφ(�ρ ). Keeping up to second-order terms in Fourier expansion,
(A5) can be approximated by[

− h̄2

4m
− Ũ ′′

2D(0)n0

2!

]
∇2

⊥δφ(�ρ ) +
[

n0Ũ2D(0) + 3γ̄ n3/2
0

2

]
δφ(�ρ) = 0. (A7)
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Recall in (12) that Ũ2D(0) ≡ ḡeff = ḡ + 2π2ᾱ/3
√

3R4
c and Ũ ′′

2D(0) = −π2ᾱ/6
√

3R2
c . Consequently, (A7) can be rewritten as

∇2
⊥δφ(�ρ ) + K2δφ(�ρ ) = 0, (A8)

where

K2 = 4

R2
c

(
1 + 3γ̄ n

1
2
0

2ḡeff

)[
mn0R2

c (ḡeff − ḡ) − 2h̄2

mn0R2
c ḡeff

]−1

, (A9)

and under Thomas-Fermi approximation, the background density n0 can be approximated as

n0 = m(ω2
⊥ − �2)R2

TF/2ḡeff . (A10)

Now we consider the SS with a hexagonal structure, such as those shown in Figs. 2(a), 4(a), and 5(a). Subject to the constraint
of a circular trap, when one picks a SS droplet near the center as the origin, the nearby six droplets all have a distance a from the
center. In other words, they are all located in the circumference of a circle with radius a. Connecting the origin with any nearby
droplet at �ρ, the periodic density modulation along that direction should behave as

|δφ(�ρ)|2 ∝ cos2(kρ) with k = π

a
and ρ = |�ρ|. (A11)

Substitution of (A11) into (A8), one obtains K2 = k2 = (π/a)2, or

a = π

K = πRc

2

(
1 + 3γ̄ n

1
2
0

2ḡeff

)− 1
2 [

mn0R2
c (ḡeff − ḡ) − 2h̄2

mn0R2
c ḡeff

] 1
2

. (A12)

The parameters used in Figs. 2, 4, and 5 all fulfill a ≈ πRc/2.
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