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It is well known that Tan’s contact could be calculated by using any of the following three methods: by the
asymptotic behavior of momentum distribution, by Tan’s adiabatic sweep theorem, or by the operator product
expansion as an expectation value of the interaction term. We argue that if a theory describing a Bose (or Fermi)
system with the only contact interaction is self-consistent, then it should lead to the same result in all three cases.
As an example, we considered mean-field theory (MFT)-based approaches and established that among existing
approximations of MFT, the Hartree-Fock-Bogoliubov (HFB) approach is the most self-consistent. Actually,
HFB is able to describe existing experimental data on Tan’s contact for dilute Bose gas but fails to predict its
expected behavior at large gas parameters (γ > 0.015). So, for appropriate description of properties of a Bose
gas even at zero temperature, this approximation needs to be expanded by taking into account fluctuations in
higher order then the second one.
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I. INTRODUCTION

The experimental discovery of superfluidity of 4He at very
low temperatures and atmospheric pressure and realization of
Bose-Einstein condensation (BEC) of alkali atoms [1] have
impacted development of various theories describing thermo-
dynamics of the system of ultracold atoms. Most of them are
based on field theoretical approaches, developed before for
high energy physics, and nicely reviewed by Andersen [2].
In accordance with the classification proposed by Proukakis
and Jackson, existing theoretical formalisms may be classi-
fied, loosely speaking, into three classes of approaches, based
on certain common conceptual notions shared between them
[3]. Namely, mean-field theories (MFTs), number-conserving
perturbative treatments, and stochastic approaches. Although
there is no universally accepted optimal theory for description
of ultracold Bose gases at low temperatures, a researcher may
prefer one of those approaches depending on the nature of his
main goal. For example, when the dynamics or the behavior of
the system at a critical point is not the issue, then MFT seems
to be optimal.

Mean-field approaches for ultracold gases rely on sponta-
neous symmetry breaking, which mathematically manifests
itself by splitting the Bose field operator ψ (r, t ) into a
mean-field condensate contribution φ(r, t ) and an operator
describing fluctuations (quantum, thermal) about this mean
field. After such splitting, also called a Bogoliubov shift
[4], the full system Hamiltonian breaks down into various
contributions as H = H0 + H1 + H2 + H3 + H4 based on the
number of condensate and noncondensate factors contained
in each of them. For example, H0 has no operators, while H4

includes fluctuation operators in fourth order. Further, various
approaches within MFT arise depending on the way of taking
into account those fluctuations, since even a simple λφ4 model
has no analytical complete solution. For example, for weakly
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interacting ultracold Bose gases, characterized by a small
diluteness gas parameter γ , one limits oneself to the simple
Bogoliubov or one-loop approximation, when only H2 term
is taken into account. All and all, in general, each approxi-
mation in the framework of MFT leads to a closed system of
equations with respect to self-energy, condensed fraction, etc.
Obviously, these equations should be solved self-consistently,
which requires the self-consistency of a chosen approach or a
theory as a whole by itself.

In the present paper, we propose that evaluation of Tan’s
contact of a system with contact s-wave interaction may serve
as a checkpoint for the self-consistency of a model. As an
example, we shall consider various approximations within
MFT and check their self- consistency by evaluation of Tan’s
contact in different ways.

Nearly 15 years ago, Tan introduced [5–7] a quantity, C
which is further referred in the literature as a Tan’s contact.
By using rigorous mathematical methods to study the system
of fermions with contact interaction, Tan obtained exact
universal relations, which include the contact. He proved that
this quantity measures the density of pairs at short distances
and determines the exact large momentum or high-frequency
behavior of various physical observables. Further, Tan’s
ideas were developed in Refs. [8–13] and his relations have
been rederived and extended by using alternative methods.
Particularly, Combescot et al. [13] have shown that Tan’s
relations are valid not only for fermions but also for bosons.
It is remarkable that Tan’s relations, including C, hold for any
state of the system, few-body or many-body, homogenous or
in a trapping potential, superfluid or normal, zero or nonzero
temperatures [8].

Summarizing, Tan’s contact for Bosons with zero range
interaction may be theoretically evaluated (or measured ex-
perimentally) by using any of following equations [14]:

1. By the asymptotic behavior of momentum distribution
nk ,

Cn = lim
k→∞

k4nk, (1)
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where nk is normalized to the total number of particles N,
such that

∑
k nk = N . So,1 C has a dimensionality length−4.

2. By Tan’s adiabatic sweep theorem as

CE = 8πma2

V

(
∂E

∂a

)
, (2)

where E and V are the total energy and volume of the system,
respectively, a is the s-wave scattering length and m is the
mass of particle. This equation manifests the relation between
macroscopic thermodynamical parameter E and microscopic
parameter a. Consequently, the variation of the total energy
can be written in the following general form [14,15]:

dE = T dS − PdV + μdN + HdM + CV

8πma2
da. (3)

In this sense, Tan’s contact and the scattering length may be
considered as conjugate parameters of a system, regardless, in
the superfluid or normal phase.

3. By the operator product expansion as an expectation
value of the interaction term as [8]

Cψ = (mg)2

V

∫
dr〈ψ†(r)ψ†(r)ψ (r)ψ (r)〉, (4)

where g = 4πa/m is the coupling constant of zero range in-
teraction.

From Eqs. (1)–(4), it is seen that for the case of quantum
particles with pointlike interactions, short-range correlations
are embedded in Tan’s contact, which is proportional to
the probability that two particles approach each other very
closely.

Obviously, regardless of the way of evaluation (or measur-
ing) of Tan’s contact by using any of three Eqs. (1), (2), or (4),
one is supposed to obtain the same value, i.e.,

C = Cn = CE = Cψ. (5)

This trivial statement gives us an opportunity to check self-
consistency of an applied theory. In the first part of the present
paper, we shall derive explicit expressions for C and revise
various versions of MFT in this way. In the second part of the
paper, we shall compare our results with existing experimental
data on C and make an attempt to predict its behavior at large
gas parameter.

Presently, Tan’s contact has been experimentally studied
not only for fermions [16,17] but also for bosons at ultracold
temperatures [18–21]. Particularly, Tan’s relations on tails of
the momentum distribution and the tail of the transition rate
have been tested experimentally by using short time probes of
ultracold atoms. Moreover, C plays an important role in the
radio frequency (rf) spectroscopy [8]. As expected, the values
of Tan’s contact, obtained from both kinds of measurements,
ballistic and rf spectroscopy show a good agreement [17].

The present paper is organized as follows. In Sec. II, we
derive explicit expressions for Tan’s contact in various ap-
proaches of MFT; in Sec. III, we shall study self-consistency
of each approach by numerical analysis and compare our
theoretical predictions with experimental values of C. In the

1Here and below, we adopt h̄ = 1 and kB = 1 for convenience.

last section, we present our conclusions. The details of cal-
culations and summary of working equations are presented in
Appendices A and B, respectively.

II. TAN’S CONTACT FOR HOMOGENOUS BOSE
GAS IN MFT

A grand canonical ensemble of Bose particles with a short
range s-wave interaction is governed by the Euclidian action
[2],

S[ψ,ψ†] =
∫ β

0
dτ

∫
d�r{ψ†(τ, �r)[∂τ − ∇2

2m
− μ]ψ (τ, �r)

+ g

2
[ψ†(τ, �r)ψ (τ, �r)]2}, (6)

where ψ+(τ, �r) is a complex field operator that creates a
boson at the position �r, μ is the chemical potential, β = 1/T
the inverse of temperature T . This corresponds to the Hamil-
tonian:

H =
∫

d�r
{
ψ+

[
−∇2

2m
− μ

]
ψ + g

2
(ψ+ψ )2

}
. (7)

The quantities, required for evaluation of Tan’s contact, can
be obtained by using following expressions:

ρ1 = 〈ψ̃†ψ̃〉= 1

V

∑
k

nk, F = �+μN, E = F + T S,

� = −T ln Z, Z =
∫

DψDψ+ exp{−S[ψ,ψ†]},

〈(ψ̃†ψ̃ )2〉 = ρ0
2 + ρ0

∫
dr[3〈ψ2

1 〉 + 〈ψ2
2 〉]

+ 1

4

∫
dr[〈ψ4

1 〉 + 2〈ψ2
1 ψ2

2 〉 + 〈ψ4
2 〉], (8)

where ρ1 is the density of uncondensed atoms, � free energy,
S is the entropy, ρ0 is the condensed fraction introduced by
the standard Bogoliubov shift,

ψ (τ, r) = √
ρ0 + ψ̃ (τ, r), (9)

and ψ1, ψ2 are the components of fluctuation field defined as

ψ̃ = 1√
2

(ψ1 + iψ2), ψ̃† = 1√
2

(ψ1 − iψ2). (10)

After the insertion of Eqs. (10) into (6), the total effective
action is separated as follows:

S = S0 + S1 + S2 + S3 + S4,

S0 = ∫ β

0 dτ
∫

dr{ − μρ0 + gρ0
2

2 },

S1 = ∫ β

0 dτ
∫

dr{√2ρ0(gρ0 − μ)ψ1},

S2 = 1
2

∫ β

0 dτ
∫

dr{(∂τ − ∇2

2m − μ + 3gρ0)ψ2
1

+ (∂τ − ∇2

2m − μ + gρ0)ψ2
2 },

S3 = g
√

ρ0√
2

∫ β

0 dτ
∫

drψ1[ψ2
1 + ψ2

2 ],

S4 = g
8

∫ β

0 dτ
∫

dr{ψ4
1 + 2ψ2

1 ψ2
2 + ψ4

2 }.

(11)
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Equations (6)–(11) are exact equations of MFT for a homoge-
nous Bose gas and cannot be evaluated exactly. The problem
is hidden in the evaluation of the path integrals over the fluc-
tuating fields: It is well known that there is no handbook of
path integrals, so one has to use an approximation. The only
case when the path integral can be evaluated explicitly is the
so-called Gaussian integral, based on the following formula
[22]2:∫

Dψ1Dψ2e− 1
2

∫
dxdx′ψa(x)G−1

ab (x,x′ )ψb(x′ )e
∫

dx ja (x)ψa(x)

= (
√

DetG) exp

[
1

2

∫
dxdx′ ja(x)Ḡab(x, x′) jb(x′)

]
, (12)

where x = (τ, r), and Ḡab(x, y) = [Gab(x, y) + Gba(y, x)]/2
is usually interpreted as a Green’s function.

A. Gaussian approximation

As a first approach, we limit ourselves to the case when
in Eqs. (11) the terms S3 and S4 are neglected.3 From the
explicit expression for S2 in (11), one obtains the propaga-
tor Gab(x, x′) = (1/V β )

∑
n,k Gab(ωn, k) exp(iωn(τ − τ ′) +

ik(r − r′)), where in momentum space

G(ωn, k) = 1

ω2
n + E2

k

(
εk + gρ0 − μ ωn

−ωn εk + 3gρ0 − μ

)
,

(13)

(a, b = 1, 2), and ωn = 2πnT is the Matsubara frequency,
Ek = √

εk + 3gρ0 − μ
√

εk + gρ0 − μ is the quasiparticle
(Bogolon) dispersion with εk = k2/2m. Now using Eqs. (8),
(12), and (A10) leads to the following free energy at zero
temperature:

�(T = 0) = −V μρ0 + V gρ0
2

2
+ 1

2

∑
k

(Ek − εk ). (14)

In a stable equilibrium, this should be minimized with respect
to ρ0 to give

∂�
∂ρ0

= −V μ + V gρ0 = 0,

μ = gρ0.
(15)

Now inserting this chemical potential into Ek one obtains a
linear at low momentum dispersion,

Ek = √
εk

√
εk + 2gρ0 = ck + O(k3), (16)

with the sound velocity c = √
gρ0/m.

For the condensate depletion ρ1 at zero temperature it is
easy to obtain following equation:

ρ1(T = 0) = 1

2V

∑
k

[εk + gρ0

Ek
− 1

]
≡ 1

V

∑
k

nk, (17)

2Here, there is a summation over repeated indices (a, b = 1, 2).
3In quantum field theory, this corresponds to the one-loop approxi-

mation.

where we used Eqs. (8) and (A10), and hence

Cn(Gaussian) = lim
k→∞

k4nk = (gmρ0)2

= (4πaρ)2n2
0 = Cclassn

2
0, (18)

where n0 = ρ0/ρ is the condensate fraction, γ = a3ρ is the
gas parameter, and Cclass = 16π2γ 2/a4 is the Tan’s contact,
corresponding to the case when all fluctuations have been ne-
glected. When the total number of particles (not the chemical
potential) is fixed and given by the density ρ, the density
of condensate ρ0 in the above equations can be found as a
solution to the following equation:

ρ0 = ρ − ρ1 = ρ − 1
2V

∑
k

[
εk+gρ0√

εk
√

εk+2gρ0
− 1

]

= ρ − (mgρ0 )3/2

3π2 .

(19)

Now we pass to calculation of CE , defined by (2). First,
using Eqs. (14) and (15), we represent the total energy at zero
temperature as

E = � + μN = V gρ2

2
− V gρ2

1

2
+ 1

2

∑
k

(Ek − εk ). (20)

Following the ideology of the Gaussian approach, when the
fluctuations, explicitly higher than first order, are neglected,
we can rewrite the last equation as

E = E0 + Efluc, E0 = V gρ2

2
,

Efluc = V

4π2

∫ ∞

0
k2dk(

√
εk

√
εk + 2gρ0 − εk ). (21)

The integral in Eqs. (21) is divergent. This may be evaluated
by using dimensional regularization [23] or just by subtracting
infinite parts from the integrand, leading to the same result.
So, using the method of subtraction, one may easily obtain

Efluc = 1

2

∑
k

(Ek − εk ) → 1

2

∑
k

[Ek − εk − gρ0

+ (gρ0)2

2εk
] = 8V m3/2(gρ0)5/2

15π2
. (22)

Taking the derivative with respect to a requires an explicit
expression for dρ0/da, which could be obtained by differ-
entiation of both sides of (19) and solving it with respect to
dρ0/da. This gives

dρ0

da
= −ρ0

a

1

(1 +
√

π

4
√

n0γ
)
. (23)

Finally, by using Eqs. (2), (22), and (23), we obtain

CE (Gauss) = Cclass

[
1 + 64n5/2

0
√

γ

3(
√

π + 4
√

γ n0)

]
. (24)

As to the Cψ , defined by (4), it can be easily found from
Eqs. (8) and (A10) as

Cψ = Cclass[1 + 2(n1 + σ̃ )], (25)
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where n1 = ρ1/ρ. In Eq. (25), we neglected higher order
fluctuations and introduced the fraction of anomalous density
as σ̃ = (〈ψ̃+ψ̃+ + ψ̃ψ̃〉)/2ρ.

B. Optimized Gaussian approximation

In the previous subsection, we have taken into account the
depletion ρ1 and anomalous density σ only up to the linear
order, neglecting the terms S3 and S4 in Eqs. (11). Below we
extend those relations for Tan’s contact by taking into account
quantum fluctuations in a more accurate way. For this pur-
pose, we employ variational perturbation theory, developed by
Stevenson many years ago [24] for the λφ4 theory and further
referred to as a δ-expansion method [25]. In this method, one
introduces an auxiliary parameter δ and uses a perturbative
scheme in a power series of δ, which is set to unity at the end
of calculations. Note that the main disadvantage of this theory
is that there is an arbitrariness in the choice of the expansion
parameter δ.

For the effective action (6), the method includes two varia-
tional parameters, which may be fixed by principle of minimal
sensitivity. In the present section, we apply variational pertur-
bation theory to derive explicit expressions for Tan’s contact
, limiting ourselves to the first order in δ, which is referred to
in the literature as an optimized Gaussian approximation. This
will give us an opportunity to take into account ρ1 as well as
σ up to second order explicitly. Below we present the main
equations needed for calculation of Tan’s contact, referring
the reader to the Appendix A for details. Note that the present
approximation is equivalent to the Hartree-Fock-Bogoliubov
(HFB) approach [3,4] used in Hamiltonian formalism. The
preference of the path integral formalism is that, in contrast
to Hamiltonian one, it gives a natural opportunity for going
beyond HFB approximation, as was shown by Stancu and
Stevenson [26].

Thus, for the free energy and densities, we have4

�(T = 0) = −Nμ + V gρ2

2
+ V g(ρ1

2 − 2ρ1σ − σ 2)

2

+ 1

2

∑
k

(Ek − εk ),

ρ1(T = 0) = 1

2V

∑
k

[
εk + �

Ek
− 1

]
≡ 1

V

∑
k

nk

= (�m)3/2

3π2
,

σ (T = 0) ≡ ρσ̃ = − �

2V

∑
k

[
1

Ek
− 1

εk

]

= (�m)3/2

π2
≈ �m3/2

π2

√
gρ0, (26)

where the energy dispersion is similar to the Bogoliubov one:

Ek = √
εk

√
εk + 2�. (27)

4See Appendix A for details.

For the zero-temperature energy, from the relation E = � +
V ρμ, one obtains

E (T = 0) = V gρ2

2
+ V g

2
[ρ1

2 − σ 2 − 2ρ1σ ]

+ 1

2

∑
k

(Ek − εk − � + �2

2εk
)

= V gρ2

2
+ V g

2
[ρ1

2−σ 2−2ρ1σ ]+8V �5/2m3/2,

15π2

(28)

where the subtraction terms were introduced. Equations (26)–
(28) include a key parameter �, which may be found by the
physical solution (� � 0) of the following equation of MFT:

� = g(ρ0 + σ ) = g(ρ − ρ1 + σ ). (29)

This equation gives the following explicit expression for the
derivative of � with respect to a as

�′
a = �

a

1

[1 + 6πa(ρ1 − σ )/m�]
, (30)

which is needed for evaluation of dE/da by using Eqs. (2) and
(28). Therefore, in the HFB approach, we obtain the following
expressions for Tan’s contact:

Cn = (�m)2 = (cm)4, (31)

CE = Cclass(1 + WE ),

WE = nσ + �′
a

[ 2mn1
πρ

+ 3anσ

�

]
,

(32)

Cψ = Cclass(1 + Wψ ),

Wψ = 2(n1 + σ̃ − 2n1σ̃ ) − nσ ,

(33)

with nσ = n2
1 − σ̃ 2 − 2n1σ̃ . From Eq. (31), it is seen that

Tan’s contact Cn, calculated from the tail of density distribu-
tion, is related to the sound velocity c = √

�/m and may be
directly observed experimentally by sound velocity measure-
ments.

C. Bogoliubov approach

In the Bogoliubov approximation [27], the energy disper-
sion and the total energy are given as

Ek = √
εk

√
εk + 2gρ,

E (T = 0) = V gρ2

2
+ 1

2

∑
k

(Ek − εk − gρ + (gρ)2

2εk
)

= μ
2V πγ 2

ma5

[
1 + 128

√
γ

15
√

π

]
, (34)

and hence

CE = Cclass

[
1 + 64

√
γ

3
√

π

]
. (35)

Remarkably, the expression for the total energy in (34) coin-
cides with one obtained many years ago by Lee, Huang, and
Yang (LHY) [28] in a hard-core boson model, and Eq. (35) for
CE with the result by Schakel [29] derived in a similar way.

063306-4



TAN’S CONTACT AS AN INDICATOR OF COMPLETENESS … PHYSICAL REVIEW A 102, 063306 (2020)

0.001 0.002 0.003 0.004 0.005
0

20

40

60

80

100

C
C
C

C
(μ

m
-4
)

γ

Bogoliubov(a)

0.001 0.002 0.003 0.004 0.005
0

20

40

60

80

100

C
C
C

C
(μ

m
-4
)

γ

Gaussian
(b)

0.001 0.002 0.003 0.004 0.005
0

20

40

60

80

100

C
C
CC

(μ
m

)-4

γ

HFB(c)

0.0025 0.0050 0.0075 0.0100
0.00

0.05

0.10

0.15

0.20

0.25
n 1

γ

(d)

FIG. 1. Tan’s contact as a function of the gas parameter γ =
ρa3 in Bogoliubov (a), Gaussian (b), and HFB approximations (c).
Dashed, solid, and dotted lines are obtained with Eqs. (1), (2) and (4),
respectively. The corresponding condensate depletions, n1 = N1/N ,
are presented in Fig. 1(d).

A question arises: What is the difference between Gaus-
sian and Bogoliubov approximations? The main difference is
that in Gaussian approximation, one has to preliminary solve
Eq. (19) with respect to ρ0 for a given γ , while in Bogoliubov,
there is no need to solve any equation. This fact makes the
Bogoliubov approximation attractive and the most practical
one to make a fast estimation of a physical quantity in the
BEC regime.

Formally, Eqs. (34) may be derived from the HFB ap-
proach by setting � = gρ, ρ1

2 → 0 and σ → 0 explicitly in
Eqs. (26)–(28). So, particularly, one obtains

ρ1(T = 0) = 1

2V

∑
k

[
εk + gρ√

εk
√

εk + 2gρ
− 1

]

≡ 1

V

∑
k

nk = (gρm)3/2

3π2
,

n0 = 1 − ρ1

ρ
= 1 − 8

√
γ

3
√

π
,

Cn = Cψ = Cclass. (36)

From Eqs. (36), one may conclude that the Bogoliubov ap-
proximation takes into account the gas parameter up to first
order in the expansion by

√
γ in evaluation of the condensed

fraction. The net results of the present section are summarized
in Table I of Appendix B.

III. RESULTS AND DISCUSSIONS

Now we are in the position of studying three versions of
MFT for self-consistency in the spirit of the requirement in
Eq. (5). In Fig. 1, we present Tan’s contact obtained in Bo-
goliubov [Fig. 1(a)], Gaussian [Fig. 1(b)], and HFB [Fig. 1(c)]
approximations. Here dashed, solid, and dotted curves corre-
spond to Cn, CE , and Cψ defined by Eqs. (1), (2), and (4),
respectively. From Fig. 1(a), it is seen that the Bogoliubov
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FIG. 2. (a) The contact in natural units (μm)−4 versus scattering
length a computed in PIGS Monte Carlo method [31] (dashed curve)
and HFB approaximation (solid curve). Filled circles are experimen-
tal data of Wild et al. [18] obtained for 85Rb atomic condensate.
The scattering length a is given in units of the Bohr radius aB =
5.310−5μm, (b) Tan’s contact at large values of the gas parameter
ρa3 in HFB (solid line), and PIGS Monte Carlo (dashed line) [31]. In
both panels, the density is fixed in its typical value as ρ = 5.8μm−3.

approximation satisfies the first equality Cn = Cψ , but not the
second one, i.e., Cψ �= CE . As to the Gaussian (one-loop)
approximation, the difference between these three quantities
is rather notable [see Fig. 1(b)]. In this sense, the Bogoliubov
approximation seems more reliable than the Gaussian one.
This fact can explain popularity of Bogoliubov approxima-
tion, including LHY terms [28] in the literature [18,30]. From
Fig. 1(c), it is seen that the discrepancy between Cn, CE , and
Cψ is rather small for the variational Gaussian approximation.
Hence, one may conclude that the HFB approximation can be
regarded as the most complete and self-consistent one among
other existing MFT-based approaches. Nevertheless, strongly
speaking, HFB is also needed for corrections, especially for
γ > 0.002, arising from the higher order quantum fluctua-
tions. The intensity of such fluctuations is almost proportional
to the fraction of uncondensed particles n1. As seen from
Fig. 1(d), even at γ ∼ 0.005 the depletion is about 15%. Note
that, in superfluid helium 4He, n1 ≈ 90%.

On the other hand, one may judge about an appropriate-
ness of any theory just by comparing its predictions with
experimental measurements. In Fig. 2(a), we compare our pre-
dictions for Tan’s contact given by the HFB approach with the
experimental data on 85Rb atomic condensate at fixed density
ρ = 5.8 μm−3. It is seen that the HFB approximation is able
to describe C rather satisfactorily up to a/aB < 1200, which
corresponds to γ ≈ 0.0015. Moreover, HFB predictions for
the Tan’s contact is in a good agreement with path-integral
ground-state (PIGS) Monte Carlo calculations performed by
Rossi and Salasnich [31].

Unfortunately, presently, Tan’s contact for a Bose gas has
been measured at very small values of the gas parameter, γ �
0.002. To predict its behavior at larger γ , we calculated Tan’s
contact in the region 0 � γ � 0.25 and presented the results in
Fig. 2(b). It is seen that the PIGS Monte Carlo method predicts
a smooth increasing of C, while the latter remains practically
unchanged in the HFB approximation for γ > 0.05.

5For superfluid helium, γ ≈ 0.6
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IV. CONCLUSION

We have derived explicit expressions for Tan’s contact of
bosons at zero temperature within various approximations
based on MFT. Numerical analysis made with these equations
gave us an opportunity to study such approximations for com-
pleteness and self-consistency. We have shown that in this
concept, the HFB approximation, derived within optimized
Gaussian perturbation theory, satisfies the requirement Cn =
CE = Cψ better than one-loop or Bogoliubov approximations.

Moreover, HFB predictions are in a good agreement with
existing experimental data as well as with Monte Carlo cal-
culations for small values of the gas parameter. However,
for large values of γ , HFB needs serious corrections. These
could be performed by an extension of the present approach in
the spirit of post-Gaussian perturbative approximation, which
includes the second-order δ expansion [26]. It is expected that
such an extension could give rise to a desired logarithmic
term, which is used in the literature [29,31,32]. The work is
in progress.
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APPENDIX A: DERIVATION OF �

In this Appendix, we present the derivation of the free
energy � given in Eqs. (26). Inserting Eq. (9) into the action
Eq. (6), the latter can be divided into the following parts:

S = S0 + S1 + S2 + S3 + S4,

S0 =
∫ β

0
dτ

∫
d�r

{
−μρ0 + gρ2

0

2

}
,

S1 =
∫ β

0
dτ

∫
d�r

{[
gρ3/2

0 − μ
√

ρ0
]
ψ̃ + H.c.

}
,

S2 =
∫ β

0
dτ

∫
d�r

{
ψ̃†(∂τ − ∇2

2m
+ 2gρ0 − μ)ψ̃

+ gρ0

2
(ψ̃†2 + ψ̃2)

}
,

S3 = g
√

ρ0

∫ β

0
dτ

∫
d�r

{
ψ̃†ψ̃2 + ψ̃†2ψ̃

}
,

S4 = g

2

∫ β

0
dτ

∫
d�rψ̃†ψ̃†ψ̃ψ̃. (A1)

Now employing the δ-expansion method, we
add to the total action Eqs. (A1) the term (1 −
δ)

∫ β

0 dτ
∫

d�r[�n(ψ̃†ψ̃ ) + (1/2)�an(ψ̃†ψ̃† + ψ̃ψ̃ )] and
make replacement g → δg. Then, after presenting ψ̃ and ψ̃+
in Cartesian form as

ψ̃ = 1√
2

(ψ1 + iψ2),

ψ̃† = 1√
2

(ψ1 − iψ2), (A2)

the total action may be rewritten as follows [33]:

S = S0 + Sfree + Sint,

Sfree = 1

2

∫ β

0
dτ

∫
d�r{iεabψa∂τψb + ψ1

(
−∇2

2m
+ X1

)
ψ1

+ ψ2

(
−∇2

2m
+ X2

)
ψ2},

Sint = S(1)
int + S(2)

int + S(3)
int + S(4)

int ,

S(1)
int = δ

∫ β

0
dτ

∫
d�r

{
ψ1

√
2ρ0(−μ + gρ0)

}
,

S(2)
int = δ

2

∫ β

0
dτ

∫
d�r

{
β1ψ

2
1 + β2ψ

2
2

}
,

S(3)
int = δg

√
2ρ0

2

∫ β

0
dτ

∫
d�r

{
(ψ2

1 + ψ2
2 )ψ1

}
,

S(4)
int = δg

8

∫ β

0
dτ

∫
d�r

{
ψ4

1 + 2ψ2
1 ψ2

2 + ψ4
2

}
, (A3)

where

β1 = −μ − X1 + 3gρ0, β2 = −μ − X2 + gρ0, (A4)

and X1 and X2 are the variational parameters, related to the
normal �n and anomalous �an self-energies as X1 = �n +
�an − μ and X2 = �n − �an − μ. The free energy � can be
evaluated as

� = −T ln Z ( j1, j2)| j1=0, j2=0, (A5)

where the grand partition function is

Z ( j1, j2) = e−S0

∫
Dψ1Dψ2e− 1

2

∫
dx

∫
dx′ψa(x)G−1

ab (x,x′ )ψb(x′ )

× e−Sint e
∫

dx[ j1(x)ψ1(x)+ j2(x)ψ2(x)], (A6)

in which we introduced x = (τ, �r) and
∫

dx ≡ ∫ β

0 dτ
∫

d�r.
For a uniform system, the Green’s function is translationally
invariant,

Gab(�r, τ ; �r′, τ ′) = 1

V β

∑
n,k

eiωn (τ−τ ′ )ei�k(�r−�r′ )Gab(�k, ωn),

(A7)

with

G11(�k, ωn) = εk + X2

ω2
n + E2

k

,

G22(�k, ωn) = εk + X1

ω2
n + E2

k

,

G12(�k, ωn) = ωn

ω2
n + E2

k

,

G21(�k, ωn) = −G12(�k, ωn),

E2
k = (εk + X1)(εk + X2), (A8)

where ωn = 2πnT is the Matsubara frequency. In the path
integral formalism, the expectation value of an operator
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〈Ô(ψ̃+, ψ̃ )〉 is defined as

〈Ô〉 = 1

Z0

∫
Dψ̃†Dψ̃Ô(ψ̃†, ψ̃ )e−S(ψ̃†,ψ̃ ), (A9)

where Z0 = Z ( j1 = 0, j2 = 0, Sint = 0) is the noninteracting
partition function.

Particularly, using the well-known formula (12) and fol-
lowing identities:

ln Det[G−1] =
∑
n,k

ln(E2
k + ω2

n )

=
∑

k

[βEk + 2 ln(1 − e−βEk )],

×
n=∞∑

n=−∞

1

(ω2
n + E2

k )
= β

2Ek
coth(βEk/2),

(A10)

one may show that [34]

〈Ô(ψa(x)ψb(y))〉 = Ô
(

δ
δ ja (x) ,

δ
δ jb(y)

)
exp

[
1
2

∫
ja(x)Gab(x, y) jb(y)dxdy

]
,

〈ψa(x)〉 = 0, 〈ψa(x)ψb(x′)〉 = Gab(x, x′),

〈ψ1(x)ψ2(x)〉 = G12(0)

= 1
V β

∑
n G12(�k, ωn) = 1

V β

∑∞
n=−∞

ωn

ω2
n+E2

k
= 0,

〈ψ4
a (x)〉 = 3G2

aa(0),

〈ψ2
1 (x)ψ2

2 (x)〉 = G11(0)G22(0),

Gab(0) ≡ 1
V β

∑
k,n Gab(k, ωn),

〈ψa1 , ψa2 . . . ψan〉 = 0, n = 1, 3, 5 . . . .

(A11)

We now expand exp(−Sint ) in Eqs. (A3) in powers of δ:

e−Sint = 1 − S(1)
int − S(2)

int − S(3)
int − S(4)

int + O(δ2). (A12)

Expressing the “noninteracting” partition function as

Z0( j) =
∫

Dψ1Dψ2e− 1
2

∫
dxdx′ψa(x)G−1

ab (x,x′ )ψb(x′ )e
∫

dx ja (x)ψa(x)

= (
√

DetG) exp

[
1

2

∫
dxdx′ ja(x)Ḡab(x, x′) jb(x′)

]
,

(A13)

where Ḡab(x, y) = [Gab(x, y) + Gba(y, x)]/2, one may obtain

Z ( j) = e−S0
[
Z0( j) − 〈S(1)

int 〉 − 〈S(2)
int 〉 − 〈S(3)

int 〉 − 〈S(4)
int 〉

]
,

(A14)

where 〈Ô〉 = [
∫

Dψ1Dψ2e−Sfree Ô(ψ1, ψ2)]/Z0( j)|( j=0) and
Z0( j)|( j=0) = 1/

√
Det G−1. The expectation values in (A14)

can be easily calculated by using Eqs. (A11) as

〈S(1)
int 〉 = 0, 〈S(3)

int 〉 = 0,

〈S(2)
int 〉 = 1

2

∫
dx(β1G11(0) + β2G22(0)) = β

2 (β1B + β2A),

〈S(4)
int 〉 = gβ

8 [3G2
11(0) + 3G2

22(0) + 2G11(0)G22(0)]

= gβ
8 [3B2 + 3A2 + 2AB],

(A15)
where A = V (ρ1 − σ ), B = V (ρ1 + σ ). Thus, using the for-
mula ln(1 + x) ≈ x, we obtain

� = −T ln Z ( j)| j=0 = T S0 − T ln Z0 + T 〈S(2)
int 〉 + T 〈S(4)

int 〉,
(A16)

where we set δ = 1. Finally, using (A15) gives

� = �0 + �free + �2 + �4,

�0 = −μV ρ0 + gV ρ0
2

2 ,

�free = 1
2

∑
k (Ek − εk ) + T

∑
k ln(1 − e−βEk ),

�2 = 1
2 [β1B + β2A],

�4 = g
8V [3A2 + 3B2 + 2AB],

(A17)

In the above equations, X1 ≡ 2� can be found from equation
∂�/∂X1 = 0 which leads to MFA Eq. (29). As to X2 it should
be set to zero, X2 = 0, to make the dispersion similar to
the Bogoliubov one: Ek = √

εk
√

εk + 2� in accordance with
Hugenholtz-Pines theorem [35]. As a result, one obtains

X1 = 2g(ρ0 + σ ) = 2gρ + 2g(σ − ρ1),

μ = gρ + gρ1 − gσ.

(A18)

APPENDIX B: SUMMARY OF MAIN EQUATIONS
IN VARIOUS APPROACHES OF MFT

We present the total energy of a Bose system at T = 0 as

E = V ρ2g

2
(1 + Ẽ0) + 8V m3/2

15π2
Ẽfluc, (B1)

where Ẽ0 and Ẽfluc are shown on Table I (columns IV and V).
Tan’s contact, calculated from any of Eqs. (1)–(4), may be
simply presented as Cx = 16π2a2ρ2(1 + Wx ), (x = n, E , ψ)
where Wx are given in columns VI–VIII of Table I. The second
column of this table includes equations for the condensed
fraction ρ0 and for the reduced self-energy � = (�n + �an −
μ)/2. Note that ρ0 is fixed as ρ0 = n0ρ = ρ(1 − 8

√
γ /3

√
π )

in the Bogoliubov approximation, while it should be nu-
merically evaluated as solutions of MFT equations in other
approaches.
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TABLE I. MFT equations, the total energy, and Tan’s contact in MFT.

MFT app. ρ0 and MFT equations Dispersion Ẽ0 Ẽfluc Wn WE Wψ

HFB

ρ0 = ρ − ρ1

� = g(ρ0 + σ )
ρ1 = (�m)3/2/3π 2

σ = m3/2�
√

gρ0/π
2

Ek = √
εk

√
εk + 2� Ẽ0 = n2

1 − σ̃ 2 − 2n1σ̃ �5/2 (n1 − σ̃ )∗
(n1 − σ̃ − 2)

nσ + �′
a[ 2mn1

πρ
+ 3anσ

�
]

nσ = n2
1 − σ̃ 2 − 2n1σ̃

�′
a = �

a
1

[1+6πa(ρ1−σ )/m�]

2(n1 + σ̃−
2n1σ̃ ) − nσ

Gaussian
ñ0

3 + pñ0
2 − p = 0,

ñ0 = √
n0,

p = 3
√

π/8
√

γ

Ek = √
εk

√
εk + 2gρ0 0 (gρ0)5/2 n1(n1 − 2)

64n5/2
0

√
γ

3(
√

π+4
√

γ n0 )

64n3/2
0

√
γ

3
√

π

Bogoliubov n0 = 1 − 8
√

γ /3
√

π Ek = √
εk

√
εk + 2gρ 0 (gρ )5/2 1 64

√
γ

3
√

π

64
√

γ

3
√

π
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