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Quantum rotor atoms in light beams with orbital angular momentum:
Highly accurate rotation sensor
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Atoms trapped in a red-detuned retroreflected Laguerre-Gaussian beam undergo orbital motion within rings
whose centers are on the axis of the laser beam. We determine the wave functions, energies, and degeneracies of
such quantum rotors (QRs), and the microwave transitions between the energy levels. We then show how such
QR atoms can be used as highly accurate rotation sensors when the rings are singly occupied.
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I. INTRODUCTION

We demonstrate that quantum rotor (QR) atoms (atoms
whose motion is constrained to a circular ring [1]) form bound
motional states in light beams having orbital angular momen-
tum, and that they can be used as an extremely high-accuracy
rotation sensor. More precisely, QR atoms can be trapped
in a red-detuned linearly polarized retroreflected Laguerre-
Gaussian (LG) beam [2–7], and singly occupied rings can
be configured [8–10] (see Fig. 1) and used as a rotation
sensor. Single occupation and negligible tunneling between
rings [11] are important to suppress deleterious spin-exchange
collisions between QR atoms for sensor applications. The
accuracy estimate obtained here suggests that this may be the
highest-precision rotation sensor proposed to date.

Atoms trapped in light beams having orbital angular
momentum have been studied theoretically [2,12,13] and
experimentally [5,11,14]. Atoms trapped in two co- and
counterpropagating LG beams with opposite orbital angular
momentum, l and −l , were considered in Ref. [2]. In the
case of copropagating beams, the intensity of the light field
is proportional to cos2(lφ), where φ is the angle around the
beam axis, which is taken to be the z axis. This leads to
the appearance of 2l petal-like high-intensity regions around
the beam axis, and the trapped atoms move along the axis
of the LG beams [2]. In the counterpropagating case, the
light intensity is proportional to cos2(lφ − kz), where k is the
laser wave number, and the laser beams form helical optical
tubes. If the light is red detuned from atomic resonance,
atoms are trapped within the helical tubes that twist about the
axis of the beams [2]. The characteristics of atoms trapped
in red-detuned LG retroreflected beams, with light intensity
proportional to cos2(kz) (no φ dependence—see below), still
need to be studied. We calculate the motional eigenfunctions
and eigenenergies of such atoms, and show that such atoms
can be used as a highly accurate rotation sensor.

Atomic gyroscopes are studied in Refs. [15–18]. There
are two types of atomic gyroscopes: atomic interferometer

gyroscopes, which utilize the atomic interferometer to sense
rotation, and atomic spin gyroscopes, which utilize atomic
spin to sense rotation. The highest atomic gyro sensitivity
reported is for an atomic interferometer gyroscope. The sen-
sitivity reported was 10−7 rad s−1 Hz−1/2, and the stability 1
nrad/s after 104 s of integration time [15]. Here, we show that
an accuracy of QR rotation sensors can reach 4.8 × 10−10 s−1,
using N = 161 QRs of radius rl = 15.81 μm. This can be
improved by increasing rl and N .

The outline of this paper is as follows. LG beams with
orbital angular momentum, and in particular, retroreflected
LG beams, are described in Sec. II. Wave functions and ener-
gies of trapped atoms are calculated in Sec. III, and we show
that the trapped atoms are QRs. The Ramsey separated field
method [19] with microwave Raman pulses is developed in
Sec. IV. In Sec. V we show how the QRs can be used as
rotation sensors. Rabi oscillations in the rotating frame of ref-
erence are described in Sec. V A, and the accuracy of the QR
rotation sensor is estimated in Sec. V B. Section V C discusses
the measurement of the angular velocity in the case when
gravity is present. The results are summarized in Sec. VI.

II. RETROREFLECTED LAGUERRE-GAUSSIAN BEAMS

An LG beam propagating along the z axis with orbital
angular momentum l and polarization eα can be written in
terms of a slowly varying envelope ul,p(r, φ, z) of the electric
field as

Eα,l,p(r, t ) = ul,p(r, φ, z)ei(kz−kz0−ωt ) eα + c.c., (1)

where the field amplitude mode LGl
p(r) ≡ ul,p(r) in SI units

is [2–7]

ul,p(r, φ, z)

=
√

2p!

π (p + |l|)!
√

P0/(cε0)

w(z)

(
r
√

2

w(z)

)|l|
exp

(
− r2
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)
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FIG. 1. Two lenses (L) refract the LG beam (orange region). The
mirror (M) reflects the beam, and two counterpropagating beams
result. An almost uniform beam waist w0 exists between the lenses
[radii rl (z) of the rings depend only weakly on z]. The wave vectors
of the incident and reflected beams are ±k. A series of ring optical
potentials are stacked perpendicular to the beam axis. White and
orange denote potential minima and maxima of the light intensity,
respectively. ex , ey, and ez are unit vectors in the x, y, and z axes, and
[rl (z j ), z j] are minima of the potential energy.

× L|l|
p

(
2r2

w2(z)

)
exp

(
− ikr2z

2
(
z2 + z2

R

))
exp (−ilφ)

× exp
[
i(2p + |l| + 1)tan−1

( z

zR

)]
. (2)

Here, z is the longitudinal distance from the beam focus
located at z = 0, P0 is the laser beam power, ε0 is the vac-
uum permittivity, w0 is the beam waist at z = 0, w(z) =
w0[1 + (z/zR)2]1/2 is the radius at which the beam inten-
sity falls to 1/e of its axis value at z, and zR = πw2

0/λ is
the Rayleigh range for the laser with wavelength λ = 2π/k,
where k = ω/c is the wave number, 0 < z0 < λ/2 is a phase
parameter, L|l|

p (x) is the associated Laguerre polynomial, φ

is the azimuthal angle, and tan−1 (z/zR) is the Gouy phase.
Figure 1 is a schematic diagram of a retroreflected LG beam
propagating along the z axis. It shows the superposition of two
counterpropagating beams that form a standing wave along
the z axis. The electric field of the counterpropagating (cp)
standing wave has the form

Ecp
α,l,p(r, t ) = ul,p(r, φ, z)eα (ei(kz−kz0−ωt )

+ ei(−kz+kz0−ωt ) ) + c.c. (3)

This standing-wave configuration results in a series of ring-
shaped optical potentials (orange stripes in Fig. 1) stacked
perpendicular to the beam axis. Since our interest is in trap-
ping atoms in the light beam, the light frequency is red
detuned from atomic resonance. Atoms will be trapped in the
ring-shaped optical potentials.

III. QR BOUND STATES IN LG RINGS

Consider atoms trapped in the counterpropagating linearly
polarized LG beams of Eq. (3). The QR Hamiltonian operator
in cylindrical coordinates is

H = − h̄2

2M

(
∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂φ2
+ ∂2

∂z2

)
+ V (r), (4)

where the first term is the atom kinetic energy expressed in
polar coordinates and V (r) is the optical potential resulting
from the LG beams, which is calculated as a second-order ac
Stark shift [20] in the rotating-wave approximation [21,22]
and is given in terms of the ac polarizability α(ω) by V (r) =
−α(ω)|Ecp

α,l,p(r, t )|2. In the standing-wave configuration in
the nearly constant beam waist region between the lenses, the
optical potential can be taken to be two dimensional since the
widths of the rings are very small. For an LGl

0 mode (p = 0
and l �= 0), the potential is φ independent,

V (r, z) = −V0 cos2 [k(z − z0)]
ρ2|l|(z)

w2(z)
e−|l|[ρ2(z)−1], (5)

where ρ(z) = r/rl (z), w(z) = w(z)/w0, and V0 =
α(ω)P0

cw2
0

2l l

π l! e
−l . Potential (5) has minima at

z = z j ≡ π

k
j + z0, r = rl (z j ) ≡ w(z j )

√
|l|/2, (6)

where j is an integer, and the trapped atoms execute circular
motion around the z axis within the minima, i.e., they are QRs.
V [rl (z j ), z j] is given by V [rl (z j ), z j] = −V0[w0/w(z j )]2. For
z close to z j ,

V (r, z) ≈ Vl (r) + Wj (z), (7)

where

Vl (r) = V (r, z j ), Wj (z) = V0k2

w2(z j )
(z − z j )

2. (8)

Wj (z) is a harmonic potential in z − z j , and the corresponding
harmonic frequency and length are

ωz(z j ) = 2

w(z j )

√
E0V0

h̄
, bz(z j ) =

√
w(z j )

k

(
E0

V0

)1/4

, (9)

where E0 = h̄2k2/(2M ) is the recoil energy.
The optical potential (5) is invariant with respect to ro-

tations about the z axis, therefore the quantum states of the
QR in the harmonic approximation (7) are parametrized by
radial and vertical quantum numbers nr and nz describing ra-
dial and z motion (nr, nz = 0, 1, 2, . . .), the orbital momentum
quantum number m
, and the projection mF of the hyperfine
angular momentum F on the z axis. The ground state has
nz = nr = m
 = 0, and is 2F + 1-fold degenerate. Orbitally
excited states with m
 �= 0 are 2(2F + 1)-fold degenerate, and
have angular momentum ±m
. Radial and vertical excitations
have nr �= 0 and nz �= 0, respectively.

For simplicity, in this paragraph, let us consider an atom
trapped at the z0 site (i.e., near z j with j = 0). The QR wave
functions and eigenenergies satisfy the Schrödinger equation,[

− h̄2

2M
∇2 + V (r, z) − εn

]
�n(r) = 0, (10)

where n = (nz, nr, m
). The wave function can be written in
cylindrical coordinates r = (r, φ, z) as

�n(r) = 1√
2π

ηnz (z)ψnr ,m

(r)eimφ, (11)
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FIG. 2. Energies ε(nz, nr, m
) of a 6Li QR (relative to the
QR ground-state energy) trapped in an LG beam with λ = 1064
nm, w0 = 10 μm, l = 5, p = 0, and V0 = 10E0, where E0 = kB ×
1.406 12 μK is the recoil energy. This gives rl ≡ r(z = 0) equal to
15.81 μm. Energies with nr = 0 are shown as purple lines, nr = 1 as
blue lines, and nr = 2 as azure lines. The red lines show the levels
with m
 = 0, 25, 50, and 75, respectively. The inset shows ε(0, 0, m
)
with |m
| � 4. Quantum states with nz � 1 have high energies and
fall out of the scale of the figure, hence only nz = 0 are shown.

where ηnz (z) and ψnr ,m

(r) satisfy the equations[

− h̄2

2M

d2

dz2
+ W0(z) − εz(nz )

]
ηnz (z) = 0, (12)[

− h̄2

2Mr

d

dr

(
r

d

dr

)
+Vl (r)+m2


 C(r) − εr (nr, m
)

]
ψnr ,m


(r)

= 0. (13)

Vl (r) and Wj (z) are given by Eq. (8), and C(r) = h̄2

2Mr2 is
the rotational (centrifugal) energy of the QR around the z
axis. The eigenenergy of the trapped atom is ε(n) = εz(nz ) +
εr (nr, m
), and the QR vertical, radial, and orbital excita-
tion energies are εz = εz(1) − εz(0) ≈ h̄ωz, εr = εr (1, 0) −
εr (0, 0), ε
 = εr (0, 1) − εr (0, 0) ≈ C(rl ). We assume they
satisfy the inequalities

εz � εr � ε
, (14)

i.e., the orbital excitations are the lowest-energy excitations
and the radial and longitudinal modes have higher energies.

The Schrödinger equation (13) for the radial degree of
freedom of the trapped atoms contains the effective potential
Vl (r) + m2


C(r), where Vl (r) is given by Eq. (8), and m
 is an
integer. The potential Vl (r) has a minimum at r = rl given by
Eq. (6), and can be well approximated by a harmonic oscil-
lator near r = rl . The weak centrifugal energy C(r) slightly
changes the equilibrium position and harmonic frequency of
the radial motion.

The numerically calculated energy eigenvalues εr (nr, m
)
for 6Li QR atoms are shown in Fig. 2 for l = 5, w0 =
10 μm, rl = 15.81 μm, and V0 = 10E0 = kB × 14.0612 μK.
The excitation energies εr (0, m
) − εr (0, 0) with |m
| � 100

are approximated by

εr (0, m
) − εr (0, 0) = [
a2m2


 − a4m4



]
C(rl ), (15)

where a2 = 1.000 97 and a4 = 1.12 × 10−6. It is seen that
εr (0, m
) − εr (0, 0) ≈ m2


C(rl ). For example,

εr (0, 1) − εr (0, 0) = 1.0011C(rl )

= 0.1615 nK. (16)

The slight difference of εr (0, 1) − εr (0, 0) from m2

C(rl ) is

due to the finite thickness of the quantum rotor. Moreover, the
inequality

εr (0, m
) − εr (0, 0)

εr (0, 1) − εr (0, 0)
= m2




[
1 − a4

(
m2


 − 1
)

a2 − a4

]
� m2




indicates the small shift of the equilibrium position for the po-
tential Vl (r) + m2


C(r) with respect to the equilibrium position
rl for the potential Vl (r). The excitation energies εr (nr, 0) −
εr (0, 0) are

εr (1, 0) − εr (0, 0) = 1853C(rl ), (17)

εr (2, 0) − εr (0, 0) = 3692C(rl ).

The excitation energies εr (2, 0) − εr (0, 0) are very nearly
equal to 2[εr (1, 0) − εr (0, 0)]; the harmonic approximation
for the radial excitations is valid for relatively small nr .

The energies calculated from Eq. (12) are

εz(0) = 2.757 × 104 C(rl ), εz(1) = 8.271 × 104 C(rl ),

and the excitation energy is

εz(1) − εz(0) = 5.514 × 104 C(rl ). (18)

Equations (16)–(18) show that the inequality (14) is satisfied.

IV. RABI OSCILLATION METHOD WITH RAMAN PULSES

In order to measure the excitation energies of the QR
atoms with quantum numbers nr , m
, and mF , we propose
to subject the QRs to three pulses, as shown in Fig. 3(a).
We use pump and Stokes microwave-frequency pulses with
frequencies ωp � ωs that are detuned from the quantum tran-
sition between the hyperfine states of the ground state [see
Fig. 3(b)], and an LG pulse with frequency ωe far detuned
from the resonant frequency of the 2S1/2 → 2P3/2 electronic
transition [not explicitly shown in Fig. 3(b)]. The microwave-
frequency pump and Stokes light cannot change the orbital
quantum number m
, but the LG pulse allows transitions
|m
〉 → |m′


〉 between quantum states with different orbital
quantum numbers m
 and m′


 [as shown in Fig. 3(b)]. The
pump and Stokes pulses propagate parallel and antiparallel
to the x axis and are linearly polarized with magnetic field
polarization along the z axis. The pump and Stokes magnetic
fields are given by

Bμ(r, t ) = B(0)
μ cos(kμx − ωμt )�(t, τ − t )

≈ B(0)
μ cos(ωμt )�(t, τ − t ),

where μ = p, s and we assume square pulses, hence the pres-
ence of the � function which equals 1 for 0 < t < τ and is
0 elsewhere (i.e., both arguments must be positive for the
� function to be 1). Here, we take into account that the
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(a)

(b)

FIG. 3. (a) Pump and Stokes microwave-frequency pulses (red
and purple arrows) and optical rotational counterpropagating LG
rotational-kick pulses with le = 25 (along the z axis). The blue re-
gions indicate the depth of the rotational-kick LG pulse potential. ex ,
ey, and ez are unit vectors along the x, y, and z axes. (b) Quantum
transitions due to the pump, Stokes, and rotational-kick pulses (red,
purple, and blue arrows). The frequencies of the pump and Stokes
pulses are ωp and ωs, and their difference ωps = ωp − ωs is equal to
the transition frequency ω2L,0. Detuning of ωp from the resonant fre-
quency of the 2S1/2(F = 1/2) to 2S1/2(F = 3/2) quantum transition
is �hf .

wavelengths λμ are much longer than the radius rl of the
QR, hence Bμ depends on t , but not on r. Therefore these
pulses do not induce Raman transitions between the quantum
states |nr, m
〉 and |n′

r, m′

〉 and we can approximate Bμ(r, t )

by Bμ(t ) ≡ Bμ(0, t ). Hence, the dipole magnetic interaction
between the QR and the microwaves,

Hμ = −gμBs · Bμ(t ) (19)

(where μ = p, s for the pump and Stokes microwave pulses,
and s is a vector of the electronic spin- 1

2 operators), does not
depend on the position of the atom, r. Moreover, we assume
that B(0)

μ = B(0)
μ ez, thus

〈2S1/2(F ), nr, m
, mF |Hμ|2S1/2(F ′), n′
r, m′


, m′
F 〉

× ∝ δnr ,n′
r
δm
,m′



δmF ,m′

F
,

where |2S1/2(F ), nr, m
, mF 〉 describes the atom in the ground
2S1/2 state with hyperfine orbital angular momentum F , pro-
jection mF of F on the direction of B(0)

μ , and radial and orbital
quantum numbers of the QR nr and m
. For Raman tran-
sitions |2S1/2(F ), nr, m
, mF 〉 → |2S1/2(F ), nr, m′


, mF 〉 with
m
 �= m′


, an optical square pulse which breaks the cylindrical
symmetry of the QR is required. The electric field of the LG
pulse is

Ee(r, t ) = ey

2

[
ule,0(r) + u−le,0(r)

]
cos(kez)�(t, τ − t )e−iωet

+ c.c.,

where ke = ωe/c is the wave number of the LG pulse, le is
an orbital angular momentum of the LG pulse, and ule,0(r) is
given by Eq. (2). We choose the waist radii of the LG pulse we

and the LG beam waist w0, and their orbital angular momenta
le and l , such that we

√|le|/2 = w0
√|l|/2. Interaction of the

atoms with the LG pulse is given by the Hamiltonian

He = −p · Ee(r, t ), (20)

where p is the atomic electric dipole operator.
Let us derive the effective Hamiltonian describing Rabi

oscillations for the QR in the m
 and m′

 = m
 + 2le

states. For this purpose, we assume that the low-energy
states of the trapped atom are |2S1/2(1/2), nr, m
, mF 〉 and
|2S1/2(1/2), nr, m′


, mF 〉 states with the electronic configura-
tion 2S1/2(F = 1/2), magnetic quantum number mF = ±1/2,
and the motion of the center of mass parametrized by the
radial quantum number nr and the orbital quantum number
m
 and m′


. High-energy states are |2S1/2(3/2), nr, m
, mF 〉
and |2S1/2(3/2), nr, m′


, mF 〉 with electronic configuration
2S1/2(F = 3/2), mF = ±1/2, radial quantum number nr ,
and the orbital quantum number m
 and m′


, as well as
|2P3/2, nr, m′′


 , mF 〉 with electronic configuration 2P3/2, radial
quantum number nr , orbital quantum number m′′


 = m
 + le,
and mF = ±1/2. In this section, we use the following basis,

|0〉 = |2S1/2(1/2), nr, m
, mF 〉, (21a)

|1〉 = |2S1/2(1/2), nr, m
 + 2le, mF 〉, (21b)

|2〉 = eiωpt |2S1/2(3/2), nr, m
, mF 〉, (21c)

|3〉 = eiωpt |2S1/2(3/2), nr, m
 + 2le, mF 〉, (21d)

|4〉 = eiωet |2P3/2, nr, m
 + le, mF 〉. (21e)

The “nonperturbed” Hamiltonian of the trapped atom without
the pump, Stokes, and LG pulses is given by the matrix ele-
ments,

〈ν|H0|ν ′〉 = ενδν,ν ′ , (22)

where ν, ν ′ = 0, 1, 2, 3, 4, and

ε0 = εr (nr, m
), ε1 = εr (nr, m
 + 2le), ε2 = h̄�hf ,

ε3 = h̄�hf + εr (nr, m
 + 2le), ε4 = h̄�e. (23)

The energy of the QR, εr (nr, m
), is found from Eq. (13).
�hf = ωp − εhf/h̄ and �e = ωe − εe/h̄ are the detuning of the
pump and optical frequencies from the resonant frequencies
of the quantum transitions |0〉 → |3〉 and |0〉 → |4〉, respec-
tively.
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The nontrivial matrix elements of Hp, Hs, and He in
Eqs. (19) and (20) are

〈0|Hμ|2〉 = 〈1|Hμ|3〉
= gμBBμ〈2S1/2(1/2), mF |sy|2S1/2(3/2), mF 〉

=
√

2

3
gμBBμei(ωμ−ωp)t mF , (24a)

〈0|He|4〉 = 〈1|He|4〉 = 1

2
[ule,0(rl , 0, 0) + u−le,0(rl , 0, 0)]

×〈2S1/2, mF |py|2P3/2, mF 〉, (24b)

where |2S1/2(F ), mF 〉 are the wave functions of the ground
2S1/2 state atom, |2P1/2, mF 〉 are the state wave functions of
the excited 2P3/2 state atom, mF is the projection of F on the y
axis, and ule,0(r, φ, z) are given by Eq. (2).

A. Adiabatic elimination of the 2S1/2(F = 3/2) hyperfine state

As a first step, we apply the following unitary transforma-
tions,

|ψ0〉 = ub|0〉 − vb|2〉, |ψ1〉 = ub|1〉 − vb|3〉,
|ψ2〉 = v∗

b |0〉 + ub|2〉, |ψ3〉 = v∗
b |1〉 + vb|3〉,

and |ψ4〉 = |4〉, where

vb =
√

2

3

gμB(Bp + Bse−iωps )

h̄�hf
, ub =

√
1 − |vb|2, (25)

and ωps = ωp − ωs. We assume here that |vb| � 1 and keep
terms up to v2

b , and neglect vn
b with n � 3. This transformation

makes H0 + Hp + Hs diagonal,

〈ψn|H0 + Hp + Hs|ψn′ 〉 = ε̃nδn,n′ ,

where

ε̃0 = εr (nr, m
) − h̄�hf |vb|2,
ε̃1 = εr (nr, m
 + 2le) − h̄�hf |vb|2,
ε̃2 = h̄�hf (1 + |vb|2),

ε̃3 = h̄�hf (1 + |vb|2) + εr (nr, m
 + 2le),

ε̃4 = h̄�e.

The matrix elements of He are

he ≡ 〈ψ0|He|ψ4〉 = 〈ψ1|He|ψ4〉
= 1

2

[
ule,0(rl , 0, 0) + u−le,0(rl , 0, 0)

]
×〈2S1/2, mF |px|2P3/2, mF 〉

(
1 − |vb|2

2

)
, (26)

where ule,0(r, φ, z) is given by Eq. (2).

B. Adiabatic elimination of the 2P3/2 excited state

In a second step, we apply the following unitary transfor-
mations,

|ψ̃0〉 = ug|ψ0〉 − v2
e

2
|ψ1〉 − ve|ψ4〉,

|ψ̃1〉 = −v2
e

2
|ψ0〉 + ug|ψ1〉 − ve|ψ4〉,

|ψ̃4〉 = ve|ψ0〉 + ve|ψ1〉 + ue|ψ4〉,

where

ve = he

�e
, ug =

√
1 − |ve|2, ue =

√
1 − 2|ve|2.

We assume here that |ve| � 1 and keep terms up to v2
e and

neglect terms proportional to vn
e with n � 3. Then the trans-

formed Hamiltonian H = H0 + Hp + Hs + He is given by the
matrix elements,

〈ψ̃ν |H |ψ̃ν ′ 〉 = (εn − h̄�hf |vb|2)δν,ν ′ − 2|he|2
h̄�e

,

〈ψ̃4|H |ψ̃4〉 = h̄�e + 4|he|2
h̄�e

,

〈ψ̃ν |H |ψ̃4〉 = 0,

where ν, ν ′ = 0, 1 and εν are given by Eq. (23).
Omitting the high-energy state |ψ̃4〉, we get the two-level

effective HamiltonianH describing Rabi oscillations,

H =
(

εr (nr, m
) −2|he|2/(h̄�e)
−2|he|2/(h̄�e) εr (nr, m
 + 2le)

)
, (27)

where we shift the chemical potential by adding the term(
�hf |vb|2 + 2|he|2

�e

)(
1 0
0 1

)
.

Taking into account Eqs. (26) and (25), we get

2|he|2
h̄�e

= α(ωe)

2

∣∣ule,0(rl , 0, 0) + u−le,0(rl , 0, 0)
∣∣2

×
{

1 − 1

3

g2μ2
B

h̄2�2
hf

[
B2

p + B2
s + 2BpBs cos(ωpst )

]}
.

(28)

On the right-hand side of Eq. (28) there are time-independent
and time-dependent terms. The former can be considered
as weak perturbation which does not contribute to the Rabi
oscillations, whereas the second term gives rise to Rabi oscil-
lations. The off-diagonal part of the Hamiltonian (27) after
omitting the time-independent terms gives us the Rabi os-
cillations between the QR states |nr, m
〉 and |nr, m
 + 2le〉.
Combining all the initial QR states |nr, m
〉, we get the Rabi
oscillation Hamiltonian in the form

H (t ) =
∑
nr ,m


εr (nr, m
)|nr, m
〉〈nr, m
|

− 2V cos(ωpst )�(t, τ − t )

×
∑
nr ,m


(|nr, m
〉〈nr, m
 + 2le| + H.c.). (29)

Hereafter, we use the notations

|nr, m
〉 ≡ |2S1/2(1/2), nr, m
, mF 〉
for the QR wave functions. The couplingV is

V = VeVb

h̄�hf
,

where

Vb = g2μ2
BB(0)

p B(0)
s

3h̄�hf
, Ve = 4α(ωe)

π le!

Pelle
e e−le

w2
e c

.
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Pe and we are the power and the beam waist of the LG pulse,
and B(0)

p and B(0)
s are the magnetic field strengths of the pump

and Stokes microwave pulses. The subscript e indicates the
electric dipole interaction of the atom with the LG pulse, and
the subscript b indicates the magnetic dipole interaction of
the atoms with the pump and Stokes microwave pulses. The
detuning �hf of the pump pulse frequency from the 2S1/2(F =
1/2) → 2S1/2(F = 3/2) quantum transition frequency greatly
exceeds the frequency ωm
+2le,m


of the |m
〉 → |m
 + 2le〉
quantum transition, |�hf | � ωm
+2le , m
, hence we can as-
sume that ωp and ωs have the same detuning �hf from
resonance. Details of the Raman scattering used to measure
the energy differences of the QR states are presented in
Ref. [1].

C. Rabi oscillations in the inertial frame

With the QR initially in the ground state |nr = 0, m
 =
0〉, subject it to Raman pulses of duration τ and general-
ized Rabi frequency �R = 2

√
2V/h̄, such that �Rτ ≈ π . In

the rotating-wave approximation [21–24], the temporal evo-
lution of a single QR wave function is given by |�(τ )〉 =
e−iHRτ/h̄|0, 0〉, whereHR is the Hamiltonian [see Eq. (29)]

HR = h̄

⎛
⎝ 0 �R

√
2/4 �R

√
2/4

�R

√
2/4 −δ 0

�R

√
2/4 0 −δ

⎞
⎠, (30)

where the Rabi frequency is

�R = 2
√

2V
h̄

, (31)

δ = ωps − ω0,2le (0) is the detuning of ωps from the resonant
frequency ω0,2le , and the basis vectors are

|0, 0〉 =
⎛
⎝1

0
0

⎞
⎠, |0, 2le〉 =

⎛
⎝0

1
0

⎞
⎠, |0,−2le〉 =

⎛
⎝0

0
1

⎞
⎠.

The probability of finding the quantum rotor in the excited
state |0, 2le〉 or |0,−2le〉) is

P0(δ,�R) = |〈2le|�(τ )〉|2 + |〈−2le|�(τ )〉|2

= �2
R

�2
R + δ2

sin2
(τ

2

√
�2

R + δ2
)
. (32)

P0(δ,�R) has a peak, P0(0,�R) = 1 at δ = 0. The peak half
width at half maximum is 1.732 �R.

With N = 2 jmax + 1 atoms singly occupying the sites
with | j| � jmax, the detuning of ωps from the reso-
nant frequency of the jth quantum rotor is δ j = δ +
4L2 j2{ω0[rl (0)] − ω0[rl (z j )]}, where δ is the detuning of ωps

from the resonant frequency of the j = 0 QR, ω0[rl (z) =
h̄/[2Mr2

l (z j )] is the rotational frequency, and rl (z j ) is the
radius of the classical circular trajectory. As a result, the peak
in the probability to find a QR in the final state is shifted and
broadened. The probability to find a QR in the final state is

P(δ,�R) = 1

2 jmax + 1

jmax∑
j=− jmax

P0(δ j,�R). (33)

FIG. 4. The probability P in Eq. (33) for absorption of a
pump photon and stimulated reemission of a Stokes photon with
QRs quantum transition from state |nr = 0, m
 = 0〉 to (|0, 50〉 +
|0, −50〉)/

√
2 as a function of the difference ωps = ωp − ωs of the

pump and Stokes frequencies ωp and ωs (solid blue curve). The
dashed red curve shows the fit of P(δ,�R ) obtained as explained in
the text.

Figure 4 shows P(δ,�R) of Eq. (33) plotted as a function
of δ, for rotational frequency ω0 = 21.13 s−1, correspond-
ing to an LG beam with w0 = 10 μm and l = 5, Rabi
frequency �R = 3.142 s−1, pulse duration τ ≈ π/�R = 1 s,
jmax = 80, m
 = 0, and m′


 = 50. The solid blue curve shows
that P(δ,�R) has a peak, Pmax = P(δmax,�R) = 0.6989, at
δmax = −0.5374�R. The dashed red curve shows the fitting
of P(δ,�R) by the function P(δ,�R) ≈ AP0(δ − δ0, �̃R)
with A = 0.679 87 and P0 is given by Eq. (32) with δ0 =
−0.640 02 �R, �̃R = 1.4865 �R. Note that δmax �= δ0. This is
partly because the function P(δ,�R) is not symmetric with
respect to the inversion δ − δmax → −(δ − δmax), whereas the
function P0(δ,�R) = P0(−δ,�R) is symmetric.

In addition, different transition frequencies obtained from
the m
 → m′


 transition for different z j result in broadening of
the peak of P(δ,�R) in Eq. (33). For example, when the beam
waist w0 is 10 μm, �R = 3.142 s−1, and when the sites with
| j| � 80 are singly occupied and thus N = 161, the resulting
peak half width at half maximum is 1.732 �̃R = 2.575 �R

instead of 1.732 �R for a single QR (see Fig. 4).
We now show that trapped ground-state QRs in an LG

beam can be used as extremely accurate rotation sensors.

V. ROTATION SENSOR

Consider a QR in a noninertial frame rotating with angular
velocity � = � ez as illustrated in Fig. 5. Then, an additional
term is needed in the Hamiltonian,

H� = h̄�
z, (34)

where 
z = −i∂φ is the QR orbital momentum operator. The
Hamiltonian (34) lifts the symmetry under the transforma-
tion (x, y, z) → (−x, y, z) but not the rotational symmetry
about the z axis. As a result, m
, the eigenvalue of 
z, is a
good quantum number, and the energy levels εm


of the ro-
tational motion become εm


(�) = εm

+ h̄� m
. Hereafter we

use the inequalities (14) and restrict ourselves by considering
the quantum states with nz = nr = 0. Moreover, using the
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FIG. 5. QR (blue ellipse) subject to a rotation with angular ve-
locity � = �ez.

inequalities (14), we approximate the rotational energies as
εm


= m2

C(rl ), where rl is given by Eq. (6).

Let us consider the frequencies of the quantum transi-
tions between the quantum states |m
〉 and |m′


〉 with m
 =
0,±1 and m′


 = m
 ± 2le. We have six spectral lines with
frequencies ωm
,m
±2le (�) which are convenient to order as
follows: ω0,±2le (�), ω±1,±(1+2le )(�), and ω±1,±(1−2le )(�). The
frequencies of the quantum transitions between |0, ζm
〉 and
|0, ζm
 + 2ζ le〉 are

ωm
,m
+2ζ le (�) = 4le(le + m
)ω0 + 2ζ le�, (35)

where ζ = ±1, and the rotational frequency is ω0 = C(rl )/h̄.
Hence, when � = 0, ωm
,m
+2le (0) = ω−m
,−(m
+2le )(0). One
can measure the three spectral lines ω0,2le (0) = ω0,−2le (0),
ω1,1−2le (0) = ω−1,−1+2le (0), and ω1,1+2le (0) = ω−1,−1−2le (0).
When � �= 0, the degeneracy of the spectral lines is lifted and
the splitting is

�ωm
,m
+2le ≡ ωm
,m
+2le (�)−ω−m
,−m
−2le (�)=4le�. (36)

Equation (36) shows that measuring the splitting of the
spectral lines (35) can be used to determine �. The
frequency splitting (36) due to � distinguishes between
clockwise and counterclockwise rotations. All the spectral
lines have the same splittings. Hence, the frequencies sat-
isfy the periodic condition ωm
+m�,m
+m�+2le (� − 2m�ω0) =
ωm
,m
+2le (�), where m� is an integer.

A. Rabi oscillations in the rotating frame

We consider here Rabi oscillations of the QR in the frame
of reference rotating with the angular velocity �. In this case,
the frequencies of the quantum transitions |0, 0〉 → |0,±2le〉
are given by Eq. (35). The Hamiltonian in Eq. (30) for ωps =
ω0,2le (0) and �Rτ = π takes the form

HR(�) = h̄

⎛
⎝ 0 �R

√
2/4 �R

√
2/4

�R

√
2/4 �le/2 0

�R

√
2/4 0 −�le/2

⎞
⎠, (37)

where �le = 4le�, and the Rabi frequency �R is given by
Eq. (31). The probability of finding the quantum rotor in the

excited state |0, 2le〉 or |0,−2le〉) is

P(�,�R) = 4�2
R

�̃R
(
�le

) sin2

(
π

4

�R

�̃R
(
�le

))

×
[

1 − �2
R

�̃R
(
�le

) sin2

(
π

4

�R

�̃R
(
�le

))]
, (38)

where

�̃R
(
�le

) =
√

�2
R + �2

le
.

The probability P(�,�R) has its maximum, P(0,�R) = 1, at
� = 0, and for � �= 0, P(�,�R) < 1. Measuring P(�,�R)
and applying Eq. (38), one can find �.

B. Rotation measurement accuracy estimate

When QRs are placed in a noninertial frame rotating with
angular velocity � = �ez, they can be used as a highly ac-
curate rotation sensor to determine �. Here, we derive the
uncertainty in the angular velocity due to (1) the uncertainty
of the pump and Stokes frequencies, (2) the Rabi frequency
fluctuations, and (3) the shot noise in the pump and Stokes
pulses.

1. Uncertainty due to fluctuation of the
pump and Stokes frequencies

Note that Eq. (36) does not contain any information regard-
ing the optical potential, the laser frequency, or the intensity.
Therefore the uncertainty of �, δ�, is determined solely by
uncertainty δω of the pump and Stokes frequencies,

δ�ps = 1√
N

δω

4le
. (39)

Here, N = 2 jmax + 1 is the number of atoms singly occupying

the sites with | j| � jmax, δω =
√

δω2
p + δω2

s , and δωp and

δωs are the uncertainties of the pump and Stokes frequencies.
For 6Li atoms, we take ωp � ωs ≈ 1.43 × 109 s−1. The Al-
lan variance estimate of Ref. [25] for the pump and Stokes
pulses is δωp ≈ δωs ≈ 3 × 10−16ωp for an integration time
τ = 40 s. For a π pulse duration of 60 s, δω is calculated
to be δω = √

2 δωp ≈ 6.08 × 10−7 s−1. This pulse duration is
longer than the integration time 40 s in Ref. [25], but shorter
than the lifetime of 6Li atoms trapped in an optical lattice
which is reported in Ref. [26] to be more than 70 s. The
lifetime of Rb atoms trapped in an optical lattice is studied
in Ref. [10], which showed that there is an initial period of
20 s during which the atom loss is minimal, and then the
population decays exponentially with a 62 s time constant.

From Eq. (39) we see that the larger the orbital angular
momentum le of the LG pulse, the smaller is the δ�. When
le = 25 and jmax = 80,

δ� = 4.8 × 10−10 s−1. (40)

2. Uncertainty due to Rabi frequency fluctuation

Fluctuation in ωp and ωs results in fluctuations in �hf , and
as a result, in an uncertainty δ�R of the Rabi frequency in
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Eq. (31),

δ�R = �R

�hf
δωp, (41)

where we approximate δωs ≈ δωp. Consider a fluctuation of
P0(δ,�R) due to fluctuations of δ and �R,

P0(δ ± δωR,�R ± δ�R) = P0(δ,�R) − δω2

�2
R

− π2

4

δ�2
R

�2
R

.

(42)

The uncertainty δωR of δ = ωps − ω0,2le due to fluctuation of
�R is found from the equation

P0(±δωR,�R) = P0(0,�R ± δ�R).

Taking into account Eq. (42), we find

δω2
R

�2
R

= π2

4

δ�2
R

�2
R

,

which gives the solution

δωR = π

2
δ�R = π

2

�R

�hf
δωp, (43)

where we take into account Eq. (41).
Knowing δωR, we can calculate the uncertainty δ�ω of the

angular velocity due to fluctuation of the Rabi frequency,

δ�ω = π

2
√

N

�R

�hf

δωp

4le
, (44)

where N is the number of the quantum rotors. Comparing
Eqs. (40) and (44), one can see that

δ�ω

δ�ps
= π

2
√

2

�R

�hf
� 1.

When �R = 3.142 s−1 and �hf = 1.26 × 108 s−1, the ratio
δ�ω/δ�ps = 2.77 × 10−8 is really small.

3. Uncertainty due to shot noise in the pump and Stokes pulses

Another source of uncertainty arises from the shot noise
in the Stokes, pump, and kick pulses. Shot noise results in
fluctuations in the position and amplitude of the population
oscillations of the Ramsey fringes because of fluctuation of
the Rabi frequencies, and thus in the uncertainty in the phase
φR = �Rτπ ,

φR = π ± δφsn, (45)

where

δφsn ≈ π

(
1√
Np

+ 1√
Ns

)
,

and Np and Ns are the photon number in the pump and Stokes
pulses during the pulse time τπ = π/�R. Thus fluctuation in
the Rabi frequency �R due to the shot noise is

δ�R = �R

(
1√
Np

+ 1√
Ns

)
.

In order to find the uncertainty δ�sn in the angular velocity
due to the shot noise, we apply the technique developed in

FIG. 6. Elimination of the in-plane acceleration a by inclining
the QRs. Here, g = −gez is the acceleration due to gravity, � is the
angular velocity, and g′ = g − a is the total acceleration, where ex ,
ey, and ez are unit vectors parallel to the x, y, and z axes. �′ = �′e′

z,
where �′ = (� · e′

z ) and the unit vector e′
z is antiparallel to g′. The

angle between g and g′ is θa. The blue ellipse is the QR placed in the
plane perpendicular to g′.

Eqs. (42)–(44) and get

δ�sn = π

2
√

N

�R

4le

(
1√
Np

+ 1√
Ns

)
, (46)

where N is the number of the quantum rotors. Comparing
Eqs. (40) and (46), one can see that

δ�sn

δ�ps
= π

2
√

2

�R

δωp

(
1√
Np

+ 1√
Ns

)
� 1.

Indeed, when the numbers of photons in the pump and
Stokes pulses are Np ∼ Ns ∼ 1029, the Rabi frequency is
�R = 3.142 s−1, and the fluctuation of the pump frequency is
δωp = 4.29 × 10−7 s−1, the ratio δ�sn/δ�ps = 5.14 × 10−8

is really small.

C. Discriminating against in-plane acceleration

An additional term Hg = −Mg · r must be added into the
QR Hamiltonian to model the effects of a gravitational field
g [1]. This preserves the rotational symmetry in the plane
perpendicular to g (the x-y plane in Fig. 6), but lifts the rota-
tional symmetry in the x-z and y-z planes. As a result, the QRs
rotating in the x-y plane clockwise and counterclockwise with
the same quantum number |m
| have the same energy. When
the QRs are placed in the x-z or y-z plane (such that g is in
the plane of the QRs), the degeneracies of the quantum states
|m
〉 and | − m
〉 are split and the splitting depends on m
.
Hence, placing the QRs in the x-y plane, we obtain the energy
splitting of the levels caused just by �z, the z component of
the angular velocity �.

If an additional acceleration a in the x-y plane is present,
there is an additional splitting of the degenerate QR ground
state, and the frequency splitting in Eq. (36) becomes de-
pendent on m
. Hence, turn the plane of the QRs to be
perpendicular to g′ = g − a so that the frequency splitting
(36) is independent on m
, and obtain the energy splitting
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of the levels caused just by �′ = � · e′
z, where e′

z is the unit
vector along −g′, as illustrated in Fig. 6.

VI. SUMMARY AND CONCLUSION

Cold atoms trapped in a Laguerre-Gauss optical potential
(5) are confined to circular rings (doughnuts) of radius rl with
centers on the axis of the Laguerre-Gauss beam, i.e., they are
quantum rotors. Rings with one atom per site (to suppress
spin-exchange collisions) can be used as highly accurate ro-
tation sensors. We estimate the accuracy of the rotation sensor
due to the fluctuations of the pump and Stokes frequencies
and intensities (Rabi frequencies), and the shot noise of the

Stokes and pump pulses. We show that the main contribution
to the rotation frequency uncertainty is due to the fluctuations
of the pump and Stokes frequencies. When rl = 15.81 μm,
the accuracy obtained with N = 161 atoms singly occupying
the sites with | j| � 80 is δ� = 4.8 × 10−10 s−1. This is some-
what better than the accuracy δ� = 6.4 × 10−10 s−1 reported
in Ref. [1]. Moreover, our rotation sensor accuracy is also
better than δ�NIST = 1 nrad s−1 reported in Ref. [15].
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