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Analytic description of the above-threshold detachment in the adiabatic limit
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Strong-field above-threshold detachment (ATD) is analyzed in the low-frequency (or adiabatic) limit. The
explicit form of ATD amplitude is obtained within a developed low-frequency approximation. We show that in
the low-frequency limit, the atomic structure effects are introduced in the ATD amplitude through the T matrix,
which in the limiting case coincides with the amplitude of elastic electron scattering. The rescattering part of
ATD amplitude is evaluated in terms of the closed real classical electron trajectories. We further discuss the
behavior of ATD amplitude near the caustic rescattering energies (classical energies for which two trajectories
merge into a single one) of photoelectrons. Comparison of developed analytic theory with the numerical solution
of time-dependent Schrödinger equation is presented for linearly polarized and time-delayed bicircular fields.
Based on the analytical description, we predict an enhancement of ATD yield for time-delayed bicircular fields,
which is similar to previous findings for the high harmonic yield [M.V. Frolov et al., Phys. Rev. Lett. 120, 263203
(2018)].

DOI: 10.1103/PhysRevA.102.063119

I. INTRODUCTION

Above-threshold ionization/detachment (ATI/ATD) is a
fundamental process in an intense laser field, which has at-
tracted a steady interest for more than 50 years. For a long
laser pulse, ATI/ATD is understood as absorption of more
laser photons than that needed for ionization with subsequent
production of photoelectrons with equidistant energies sep-
arated by one photon energy [1–3]. For a short (few-cycle)
pulse, this photoelectron energy comb is smeared out [4]
and more specific short-pulse-related effects are shown up in
ATI/ATD spectra [5]. Although physical channels of nonlin-
ear ionization were established more than 50 years ago [6–8],
up to now new theoretical models and approaches have been
suggested to describe new effects in the spectra of ATI/ATD.
The main cornerstone of any new approaches or models is
to take into account on equal footing both the nonperturba-
tive electron-laser interaction and atomic dynamics (including
effects of the long-range Coulomb field), which may be mod-
ified by a laser field. The quality of suggested theoretical
models and approaches is mostly tested by comparison with
the numerical solution of time-dependent Schrödinger equa-
tion (TDSE), which takes into account laser-atom interaction
and atomic structure effects, possibly better, than any analyt-
ical model or other approaches. Although numerical TDSE
solution provides ab inito results, its ability is quite restricted
by the intensity, wavelength, and wave form of a laser pulse
and it presents a time-consuming task for an intense tai-
lored laser pulse having carrier frequencies in the midinfrared

(mid-IR) range (2 μm < λ < 50 μm) and intensities �1014

W/cm2. We note, that numerical TDSE results cannot provide
a fundamental insight into physical problem, since they are
obtained for particular values of parameters. Moreover, some
applications in physics require a robust analytical expression
for probability of a fundamental process in an intense laser
field with accuracy comparable with time-consuming numer-
ical ab initio results. Such analytical expressions significantly
speed up the efficiency of existing heavy codes in plasma
physics, e.g., particle-in-cell codes. The robust analytical ex-
pressions can be obtained within analytical methods, whose
implementation in physical problems is extremely important.
The nonlinear interaction of an intense mid-IR field with an
atomic or molecular target is a perfect example, for which
analytical methods can be applied. Indeed, parameters of the
intense mid-IR laser field are perfect for the quasiclassical
treatment of nonlinear ionization, which is ensured by in-
equalities: h̄ω � Ip and S � h̄, where ω, Ip, and S represent
the typical carrier frequency, ionization potential, and classi-
cal action of the photoelectron in the laser field, respectively.

Most of theoretical approaches are based on the S-matrix
formalism [3,5,9,10]. Expansion of S-matrix element in a for-
mal series in an atomic potential leads to a Born-like form for
the ionization amplitude, so that each term of this expansion
is determined by the transition between a field-free bound
state and the continuum plane-wave Volkov state. Further
simplification is achieved by estimating spatial and temporal
integrals for each constituent of a total transition amplitude
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within the saddle-point method [11]. The corresponding equa-
tions for saddle points present specific conditions for adiabatic
transitions [12], i.e., each quantum transition is realized at
the instants of time (in general, complex) for which energies
of “initial” and “final” states are the same. Due to the Born
expansion of transition amplitudes (i.e., matrix elements are
presented in terms of the Green’s function and wave function
of a free electron in a laser field), these conditions involve
the energy of a free electron in a laser field. The correspond-
ing instants of adiabatic transitions may be also interpreted
as starting and ending times of electron moving along tra-
jectories, which formally obey Newton equations, and each
constituent of the transition amplitude can be presented as a
coherent sum of partial amplitudes associated with the corre-
sponding (closed or unclosed) classical trajectories [3,9,13].

The dynamics of an atomic system in an intense low-
frequency field is also considered successfully in the adiabatic
approximation. The general idea of this approximation con-
sists in the utilization of smallness of carrier frequency
for quasistatic expansion of the laser-distorted wave func-
tion [14–18]. In these publications, the low energy part of
ATI/ATD spectra or either total ionization/detachment rate
are considered for an atomic system subjected to a peri-
odic linearly polarized field. In Refs. [19–21], one can find
the further development of the adiabatic theory consisting
of the calculation of the rescattering part of the wave func-
tion on the adiabatic basis. Within the adiabatic approach,
both low-energy and high-energy (or rescattering) parts of
photoelectron spectra have been calculated. Adiabatic ap-
proximation also is used in the model calculations [22–24].
In the latter case, the adiabatic solution of model-dependent
equations is suggested together with the evaluation of cor-
responding matrix elements based on the smallness of the
underbarrier time with respect to the period of a laser field (see
also Ref. [25]). It should be noted that results of Refs. [22–24]
are obtained within the analytical time-dependent effective
range (TDER) model [26,27], which supports only a finite
number of scattering phases, so that the extension of model
TDER results to the real systems has been made heuristically.

In this work, we present an alternative to the existing
theoretical approaches. Our approach is based on the anal-
ysis of integral equation for the quasistationary quasienergy
state (QQES) in a periodic laser field for an arbitrary short-
range potential [28–31]. We show that the integral equation
for QQES can be transformed to a form similar to that for
the TDER model [22,24], however, in contrast to the TDER
model, this equation involves explicitly the Fourier-transform
of a short-range potential [see Eq. (10)]. This result allows one
to develop a low-frequency approximation for the detachment
amplitude. Based on the developed approach, we show that
the rescattering part of the ATD amplitude is expressed in
terms of the T matrix for collision problems [32], which de-
termines the amplitude of the elastic electron scattering. This
result provides fundamental corrections to the dependence of
ATD amplitude on the atomic potential, e.g., the factorization
of ATI/ATD amplitude in terms of the electron scattering
cross section [19,21,22,24,33–39] and its validation for short
pulses [23]. It should be noted, that in Ref. [37] the ATD
amplitude also was expressed in terms of T matrix, however,
the mathematical rigor of the methods used in Ref. [37] is

questionable and additional justification is needed (see Ref.
[22] in Ref. [40]). We also extend our recently developed
approach for high harmonic generation [41,42] to the case of
ATD and express the detachment amplitude in terms of partial
amplitudes associated with closed real electron trajectories.
These closed real trajectories can be parametrized in terms of
corresponding real starting and finishing times, which are key
ingredients of our theory.

The paper is organized as follows: in Sec. II we discuss
the general theoretical background for ATD; in Sec. III we
analyze ATD amplitude in the low-frequency approximation;
in Sec. IV we present a comparison of our analytical ap-
proach with the numerical solution of TDSE and discuss the
enhancement in the ATD yield for bicircular field; in Sec. V
we summarize our results. All necessary mathematical details
are given in Appendixes A–C, as well as details of the nu-
merical solution of TDSE presented in Appendix D. Atomic
units (a.u.) are used throughout this paper unless specified
otherwise.

II. THEORETICAL BACKGROUND

We shall analyze the strong-field detachment of a weakly
bound electron, which interacts with a periodic laser field. The
electron-laser interaction V (r, t ) is considered in the dipole
approximation (the length gauge is used):

V (r, t ) = r · F(t ), F(t + T ) = F(t ),

where F(t ) is the electric component of a periodic laser
field with period T . In order to describe self-consistently the
detachment process in a strong periodic laser field, we use
the QQES approach [28,29,31]. In the frame of the QQES
approach, the exact wave function, �ε (r, t ), has the form

�ε (r, t ) = e−iεt�ε (r, t ), �ε (r, t ) = �ε (r, t + T ),

whose periodic part �ε (r, t ) obeys the “stationary”
Schrödinger equation:[

−∇2

2
+ U (r) + V (r, t ) − i

∂

∂t

]
�ε (r, t ) = ε�ε (r, t ), (1)

where U (r) is a short-range potential. Equation (1) is supple-
mented by the spherical outgoing wave boundary condition at
large distances, which ensures the complexity of quasienergy
ε [28–31]. The eigenvalue problem (1) can be also formulated
in terms of the homogeneous integral equation:

�ε (r, t ) =
∫ t

−∞
dt ′

∫
dr′eiε(t−t ′ )G(r, t ; r′, t ′)

×U (r′)�ε (r′, t ′), (2)

where G(r, t ; r′, t ′) is the retarded nonstationary Green’s func-
tion of the free electron in a laser field (see, e.g., Appendix
B in Ref. [30]).1 As can be shown, at large distances from
Eq. (2) follows an expansion of QQES wave function in terms

1One should notice that in the QQES approach, all integrals are
considered in the sense of analytic continuation in ε (see discussions
in Ref. [30]).
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of outgoing spherical waves (see Ref. [17] and Appendix A
for details):

�ε (r, t )
∣∣
r→∞ ∝

∑
n

A(pn)
eipn|R(r,t )|−inωτ t

|R(r, t )| ,

R(r, t ) = r −
∫ t

A(ξ )dξ,

p2
n/2 = ε − up + nωτ , ωτ = 2π/T ,

up = 1

2T

∫ T /2

−T /2
A2(ξ )dξ, F(t ) = −∂A(t )

∂t
,

(3)

where A(t ) is the vector potential of a laser field, A(pn) is
the detachment amplitude, and pn is the momentum of the de-
tached electron after the absorption of n photons with energy
ωτ . The detachment amplitude, A(pn), can be presented in the
form:

A(pn) = − 1

2πT

∫ T /2

−T /2
dteinωτ t

×
∫

dr χ∗
pn

(r, t )U (r)�ε (r, t ), (4)

where

χp(r, t ) = ei{P(t )·r−∫ t [p·A(τ )+A2(τ )/2]dτ−upt},

P(t ) = p + A(t ). (5)

For our further analysis, we present the QQES wave func-
tion in the momentum representation:

�ε (r, t ) =
∫

eiK(t )·rϕε (k, t )dk, K(t ) = k + A(t ). (6)

Substituting expansion (6) into Eq. (2) and taking into account
the expansion of the Green’s function

G(r, t ; r′, t ′) = −i(2π )−3
∫

χ∗
q (r′, t ′)

×χq(r, t )e−i( q2

2 +up)(t−t ′ )dq, (7)

we obtain the equation for ϕε (k, t ):

ϕε (k, t ) = −i
∫ t

−∞
dt ′ eiSε (k;t,t ′ )

×
∫

dk′u(k − k′)ϕε (k′, t ′), (8)

where

Sε (k; t, t ′) = ε(t − t ′) − 1

2

∫ t

t ′
K2(τ )dτ, (9a)

u(k) = u(|k|) = 1

(2π )3

∫
e−ik·r U (r)dr. (9b)

Multiplying both sides of Eq. (8) with u(p − k) and inte-
grating in k, we obtain the homogeneous integral equation

fε (p, t ) = −i
∫ t

−∞
dt ′

∫
dkeiSε (k;t,t ′ )u(p − k) fε (k, t ′),

(10)

where

fε (p, t ) =
∫

u(p − k)ϕε (k, t )dk. (11)

In terms of the function fε (p, t ), the ATD amplitude (4) takes
the form

A(pn) = −4π2

T

∫ T /2

−T /2
eiSpn (t ) fε (pn, t )dt,

(12)

Spn
(t ) =

∫ t P2
n(τ )

2
dτ − εt, Pn(t ) = pn + A(t ).

We notice that Eqs. (10) and (12) are similar to those ob-
tained in the framework of the TDER theory [c.f., Eq. (29)
from Ref. [43] with Eq. (10) and Eq. (26) from Ref. [24]
with Eq. (12)], however, in contrast to the TDER theory, the
solution of Eq. (10) is sensitive to the shape of an atomic
potential U (r).

III. LOW-FREQUENCY APPROXIMATION

In this section, we analyze the integral equation (10) and
the ATD amplitude (12) in the low-frequency (or adiabatic)
limit, whose validity is ensured by inequalities: F 2/ω3 � 1
and Ip/ω � 1, where F and ω give the order of magnitude
for strength and carrier frequency of a strong low-frequency
laser field and Ip is the detachment threshold. These inequal-
ities ensure the application of quasiclassical approximation,
whose mathematical background is based on the evaluation of
ionization amplitude by the saddle-point method [5–9,13].

A. Low-frequency approximation for fε(p, t )

In the low-frequency limit, we separate fε (p, t ) into two
parts:

fε (p, t ) = f (s)
ε (p, t ) + f (r)

ε (p, t ), (13)

where f (s)
ε (p, t ) is a slowly varying function and f (r)

ε (p, t ) is
a rapidly oscillating function in time:

1

T

∫ T /2

−T /2
f (s)
ε (p, t ) f (r)

ε (p, t )dt � 1.

We substitute expansion (13) into Eq. (10) and arrive at

f (s)
ε (p, t ) + f (r)

ε (p, t )

= −i
∫ t

−∞
dt ′

∫
dk eiSε (k;t,t ′ )u(p − k) f (s)

ε (k, t ′)

− i
∫ t

−∞
dt ′

∫
dk eiSε (k;t,t ′ )u(p − k) f (r)

ε (k, t ′). (14)

The temporal integral in the second line of Eq. (14) can be
analytically estimated since fast and slow parts of integrand
are explicitly separated. There are two contributions in this
temporal integral (see, e.g., Ref. [11]): (i) contribution from
the vicinity of the upper limit; (ii) contribution from saddle
points [see Eq. (17)]. The first integral in Eq. (14) takes the
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form

−i
∫ t

−∞
dt ′

∫
dk eiSε (k;t,t ′ )u(p − k) f (s)

ε (k, t ′)

≈
∫

u(p − k) f (s)
ε (k, t )

ε − K2(t )/2 + i0
dk + cε (p, t ), (15)

where cε (p, t ) represents the saddle-point contribution,

cε (p, t ) = 2π
∑

s

∫
eiSε (k;t,t ′

s )

√
2π iαs

× u(p − k) f (s)
ε (k, t ′

s )dk,

αs ≡ αs(k) = ∂2

∂t ′2 Sε (k; t, t ′)
∣∣∣
t ′=t ′

s

= K(t ′
s ) · F(t ′

s ).

(16)

In Eq. (16), saddle points t ′
s ≡ t ′

s(k) obey the equation

K2(t ′
s ) = 2ε, (17)

and a summation is taken for all appropriate saddle points.
The first term in Eq. (15) slowly varies in time, while the

second one changes rapidly. Using Eq. (15), we separate from
Eq. (14) equations for “slow” and “fast” parts of the function
fε (p, t ):

f (s)
ε (p, t ) =

∫
u(p − k) f (s)

ε (k, t )

ε − K2(t )/2 + i0
dk, (18a)

f (r)
ε (p, t ) = cε (p, t ) − i

∫ t

−∞
dt ′′

∫
d k̃ eiSε (k̃;t,t ′′ )

× u(p − k̃) f (r)
ε (k̃, t ′′), (18b)

where Eq. (18a) is for the slowly varying part, f (s)
ε (p, t ), and

Eq. (18b) is for the rapidly varying part, f (r)
ε (p, t ) [in the

integral term of Eq. (18b) we renamed t ′ → t ′′ and k → k̃ for
further convenience].

The solution of Eq. (18a) can be expressed in terms of the
field-free solution. Indeed, for the field-free case, fε (p, t ) does
not depend on the time and Eq. (10) is simplified:

f (0)
E0

(p) = −i
∫ t

−∞
dt ′

∫
dk ei(E0−k2/2)(t−t ′ )

× u(p − k) f (0)
E0

(k)

=
∫

u(p − k) f (0)
E0

(k)

E0 − k2/2 + i0
dk, (19)

where E0 = −Ip is the energy of an initial bound state and
f (0)
E0

(p) is given by the Fourier-transform of an initial state [see
Eqs. (8), (9a), and (11) for field-free case]:

ϕ0(k) = f (0)
E0

(k)

E0 − k2/2 + i0
. (20)

Although the function f (0)
E0

(k) determines the field-free dy-
namics of initially bound electron in the whole momentum
space, the contribution of this function to the amplitude of the
strong field ionization is given by the vicinity of k = √

2E0 =
iκ (see, e.g., Sec. 4 in Ref. [7]). It should be emphasized
that f (0)

E0
(iκ k̂) can be expressed in terms of the asymptotic

coefficient Cκl , which defines behavior of the initial state,
ψE0 (r), at large distances:

ψE0 (r)|κr�1  Cκl
e−κr

r
Ylm(r̂), (21)

where Ylm(r̂) is the spherical harmonic, l and m are the angular
momentum and magnetic quantum numbers of the bound
electron in the initial state. Indeed, the asymptotic behav-
ior (21) of the wave function ψE0 (r) in coordinate space is
determined by the pole k = iκ in Eq. (20) for ϕ0(k) in the
momentum space. Thus, evaluating the Fourier transform of
Eq. (21) and comparing with Eq. (20), we obtain [cf. Eq. (50)
in [7]]:

f (0)
E0

(iκ k̂) = − 1

4π2
CκlYlm(k̂). (22)

By taking into account Eq. (19) and equality P(t ) − K(t ) =
p − k, where P(t ) = p + A(t ), it can be explicitly checked
that

f (s)
ε (p, t ) = f (0)

E0
(P(t )), ε = E0, (23)

are solutions of Eq. (18a).
The solution of nonhomogeneous Eq. (18b) can be found

in a form similar to the form of the inhomogeneity cε (p, t ), so
that we present f (r)

ε (p, t ) in the form

f (r)
ε (p, t ) = 2π

∑
s

∫
eiSε (k;t,t ′

s )

√
2π iαs

τ (p, k, t ) f (s)
ε (k, t ′

s )dk, (24)

where τ (p, k; t ) is a smooth function, whose form should be
found. It should be noticed, that the form of function (24)
is found in agreement with the conception of low-frequency
(or adiabatic) approximation. Indeed, the low-frequency ap-
proximation assumes that the exponential eiSε (k;t,t ′

s ) is a rapidly
oscillating function, while the functions associated with an
atomic potential are considered as smooth functions of their
variables. The function τ (p, k, t ) can be related with an
atomic potential [see Eqs. (26)–(28) below] and be considered
as a smooth function.

With known f (r)
ε (k̃, t ′′), we estimate the integral over time

in Eq. (18b) by taking into account the contribution from the
vicinity of the upper limit (t ′′ = t):2

−i
∫ t

−∞
eiSε (k̃;t,t ′′ ) f (r)

ε (k, t ′′)dt ′′

≈ 4π
∑

s

∫
eiSε (k;t,t ′ )
√

2π iαs
f (s)
ε (k, t ′)

τ (k̃, k; t )

K2(t ) − K̃
2
(t ) + i0

dk,

(25)

where K̃(t ) = k̃ + A(t ). In obtaining Eq. (25), the following
two-term expansion near t ′′ = t is taken into account:

Sε (k̃; t, t ′′) + Sε (k; t ′′, t ′
s )

≈ Sε (k; t, t ′
s ) + t − t ′′

2
[K2(t ) − K̃

2
(t ) + i0],

2The contribution from corresponding saddle points of the in-
tegrand in Eq. (18b) is negligible, since it is suppressed by the
contribution of saddle points of f (r)

ε (k̃, t ′′).
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and an infinitesimal is added to ensure convergence at the
lower limit.

Substituting f (r)
ε (p, t ) in the form (24) into Eq. (18b) and

taking into account Eq. (25), we obtain the integral equation
for function τ (p, k; t ):

τ (p, k; t ) = u(p − k) + 2
∫

u(p − k̃)τ (k̃, k; t )

K2(t ) − K̃
2
(t ) + i0

d k̃. (26)

It is easy to check that Eq. (26) coincides with the equation
for half-shell T matrix T (p, k) ≡ T (p, k; k2/2) [32] with mo-
menta p and k replaced by the instantaneous field-induced
momenta,

τ (p, k; t ) = T (P(t ), K(t )). (27)

Indeed, the equation for the off-shell T matrix T (p, k; ε),
defined for arbitrary ε [32],

T (p, k; ε) = u(p − k) +
∫

u(p − k̃)T (k̃, k; ε)

ε − k̃
2
/2 + i0

d k̃, (28)

turns to Eq. (26) for ε = K2(t )/2, k = K(t ), and p = P(t ). For
ε = p2/2 = k2/2, the on-shell T -matrix determines the elec-
tron elastic scattering amplitude: A(p, k) = −4π2T (p, k; ε).

Taking into account Eqs. (23), (27), and (24), we obtain the
final result for f (r)

ε (p, t ):

f (r)
ε (p, t ) = 2π

∑
s

∫
eiSE0 (k;t,t ′

s )

√
2π i αs

× T (P(t ), K(t )) f (0)
E0

(K(t ′
s ))dk. (29)

From Eq. (29) is clearly seen that the effects of electron-
core interaction are described by two factors: the function
f (0)
E0

(K(t ′
s )) is the laser-modified atomic bound state, taken

at some time t ′
s, and the T matrix T (P(t ), K(t )) describes

the electron scattering on the atomic potential with the mo-
mentum exchange from K(t ) to P(t ) at the time t . Thus, the
function f (r)

ε (p, t ) represents the “rescattering” approximation
for fε (p, t ) and plays a key role for the description of rescat-
tering effects in the amplitudes of laser-induced processes.

B. Low-frequency approximation for the detachment amplitude

Taking into account the low-frequency result for the func-
tion fε (p, t ) [see Eqs. (13), (23), and (29)], we present the
detachment amplitude (12) as the sum of two terms:

A(pn) = A(s)(pn) + A(r)(pn), (30)

where

A(s)(pn) = −4π2

T

∫ T /2

−T /2
dteiSpn (t ) f (0)

E0
(Pn(t )), (31a)

A(r)(pn) = − (2π )3

T
∑

s

∫ T /2

−T /2
dteiSpn (t )

∫
dk

eiSE0 (k,t,t ′
s )

√
2π iαs

× f (0)
E0

(K(t ′
s ))T (Pn(t ), K(t )). (31b)

Amplitude (31a) is used for the description of low-energy
photoelectrons and known as the Keldysh amplitude [6–8]
or the strong field approximation (SFA) amplitude [44,45],
which has been an attractive subject of research for more than

50 years (see, e.g., Refs. [46–49]). High-energy (or rescatter-
ing [50]) electrons are described by the amplitude (31b). This
part of detachment amplitude is usually considered within
the improved SFA [51,52] (see also Refs. [3,5,9]), which
takes into account atomic potential effects perturbatively. In
the low-frequency approximation, we show that all dynamic
atomic potential effects can be combined into the T matrix
element (see also Ref. [37]).

In the low-frequency approximation, amplitudes (31a) and
(31b) can be estimated within the saddle-point method. We
shall focus our further analysis on the rescattering amplitude
(31b). The saddle-point integration in Eq. (31b) over k gives
the amplitude A(r)(pn) in the form

A(r)(pn) = (2π )4

T
∑

s

∫ T /2

−T /2

eiS(pn;t,t ′
s )√

α(t, t ′
s )(t − t ′

s )3/2

× f (0)
E0

(K ′(t, t ′
s ))T (Pn(t ), K(t, t ′

s ))dt, (32)

where

S (pn; t, t ′) = 1

2

∫ t

P2
n(ξ )dξ − E0t ′

− 1

2

∫ t

t ′

(
A(ξ ) − 1

t − t ′

∫ t

t ′
A(τ )dτ

)2

dξ,

(33a)

α(t, t ′) = K ′(t, t ′) · F(t ′), (33b)

K ′(t, t ′) = A(t ′) − 1

t − t ′

∫ t

t ′
A(τ )dτ, (33c)

K(t, t ′) = A(t ) − 1

t − t ′

∫ t

t ′
A(τ )dτ, (33d)

and t ′
s obeys the equation [see Eq. (17) with ε = E0 and k =

− ∫ t
t ′
s
A(ξ )dξ/(t − t ′

s )]:

K ′2(t, t ′
s ) = 2E0, t ′

s ≡ t ′
s(t ). (34)

The temporal integral in Eq. (32) can be estimated within
the method suggested in Refs. [25,42], which is based on the
assumptions that the condition of adiabaticity is fulfilled, i.e.,
Im ωt ′

s � 1, and the dynamics of the electron in the contin-
uum is governed by classical laws, thereby allowing one to
consider time t as a real one at the evaluation of integral.
Details of derivations are presented in Appendix B and we
proceed with the final result.

Our final result for the ATD amplitude is expressed in terms
of real ionization time t ′

j and rescattering time t j , which obey
the system of transcendental equations:

K ′
j · K̇

′
j = 0, (35a)

P2
n(t j )

2
− K2

j

2
− �E j = 0, (35b)

�E j = −
(
κ2 + K ′2

j

)
(t j − t ′

j )F2
j

[
K j · K ′

j

t j − t ′
j

− F ′
j · (K j − K ′

j )

2

]
, (35c)
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where κ = √
2|E0| and

K ′
j = K ′(t j, t ′

j ), K̇
′
j = ∂K ′(t j, t ′

j )

∂t ′
j

, K j = K(t j, t ′
j ),

F j =
√

F ′
j
2 − K ′

j · Ḟ
′
j, F ′

j = F(t ′
j ), Ḟ

′
j = ∂F(t ′

j )

∂t ′
j

.

Equation (35a) shows that the electron liberates into the con-
tinuum at the moment, which ensures the minima of electron
energy at the time t ′

j . Equation (35b) shows the condition at
which the variation of action (33a) in time t equals zero. If
correction �E j is neglected in Eq. (35b), this equation shows
the conservation law for kinetic energies of incoming and
rescattering electrons, however, this correction (although it
is small) is nonzero due to (i) correlation between ionization
and rescattering times assigned by Eq. (35a) and (ii) nonzero
binding energy Ip and kinetic energy of the electron at the
moment t ′

j .

With the set of times t j and t ′
s, the amplitude A(r)(pn) can

be presented as a sum of partial amplitudes, a(r)
j (pn), (see

details in Appendix B):

A(r)(pn) = −4π2

T
∑

j

a(r)
j (pn), (36)

a(r)
j (pn) = a(tun)

j a(prop)
j T (Pn(t j ), K j ), (37)

where each term will be discussed in turn.
Tunneling factor, a(tun)

j , is given by the Keldysh-like de-
tachment amplitude in the adiabatic approximation [53,54]:

a(tun)
j = 2πCκl

e
− κ

3
j

3F j√
κ jF j

Ylm(e j ), (38)

where κ j =
√

κ2 + K ′
j
2, e j = (K ′

j + iK̇
′
j� j )/κ is the unit (up

to the order of �2
j ) complex vector, and � j = κ j/F j .

Propagation factor, a(prop)
j , describes the dynamics of the

electron in the continuum and is given by the expression

a(prop)
j = eiS(pn;t j ,t ′

j )

(t j − t ′
j )

3/2
√

2π iβ j

, (39)

where the action S (pn; t j, t ′
j ) is determined by Eq. (33a) and

β j = F j · [K j − Pn(t j )] + K2
j

t j − t ′
j

, F j = F(t j ). (40)

We should emphasize that for those energies, which ensure
zeros of β j (the caustic point [56–59]), the presented approach
is not applicable and special treatment should be applied at the
caustic points [see Eq. (41) below].

The last factor in Eq. (37) is given by the correspond-
ing T -matrix element for two continuum states with initial
momentum K j and final momentum Pn(t j ). Although the
energies of these two states differ by the amount �E j [see
Eq. (35c)], due to its smallness, for the most practical cases

the half-shell T -matrix element can be replaced by the on-
shell one, determining the elastic scattering amplitude, A, i.e.,
approximating

K j ≈ K j ≡ |Pn(t j )| K j

|K j | ,

T (Pn(t j ), K j ) ≈ − 1

4π2
A(Pn(t j ),K j ).

Since �E j is of the order of κ2 and Pn(t j )2 ∝ F 2/ω2, K2
j ∝

F 2/ω2, the inaccuracy in the aforementioned replacement
is of the order of a squared Keldysh parameter, which for
the adiabatic case is much less than unity: �E j/P2

n(t j ) ∝
ω2κ2/F 2 � 1.

The analytical result, Eq. (37), for partial detachment
amplitude is found in agreement with suggested three-step
scenario (ionzation, propagation, and scattering) for the
forming of high energy electrons [50]. Moreover, this re-
sult explicitly shows how the many-electron effects can be
implemented into the detachment amplitude: through the
asymptotic coefficient Cκl in the tunneling factor (38) and the
T -matrix element. Also, besides many-electron calculations
of Cκl , this coefficient can be also calculated by match-
ing the inner part of initial state (for instance, calculating
within Slater-type orbitals) with the asymptotics (21) (see,
e.g., Ref. [55]).

The result, Eq. (39), for the propagation factor is valid for
those values of photoelectron momentum pn, which ensure a
real solution of the system (35). However, there is a set of
photoelectron momenta directed along pn, p0 = p0 p̂n, whose
infinitesimal shift may change a number of real solutions of
the system (35). These momenta define positions of caustics in
the momentum distribution of photoelectrons. Therefore, the
propagation factor (39) depends on a number of suitable real
solutions, whose sudden changes lead to unphysical steplike
(or discontinuity) behavior in the momentum distributions or
ATD spectra. This unphysical behavior can be excluded by
considering more precisely the partial amplitudes, a(r)

j (pn),
near the caustic. As our analysis shows, these amplitudes
exponentially decrease behind the caustic (see Appendix C)
and the smooth transition between two regions (before and
beyond the caustic) is analytically described by the Airy func-
tion [23,24,39]. To take into account the exponential tails of
“classically forbidden” partial amplitudes (it means that they
cannot be described in terms of real trajectories) in the total
amplitude, we should extract from the sum (36) a pair of
partial amplitudes, which corresponds to two almost merged
trajectories, and replace this pair by a “transient” amplitude,
ã(r)

j (see Appendix C). The amplitude ã(r)
j has the same ana-

lytic structure as a(r)
j (see Appendix C) and may be obtained as

follows: (i) by substituting t ′
j → t ′

0, t j → t0 in the expression
for the tunneling factor and the T matrix, where t ′

0 and t0
are ionization and rescattering times for an extreme classical
trajectory corresponding to a given caustic; (ii) by replacing
the propagation factor (39) by

ã(prop)
j = eiS(p0;t0,t ′

0 )

(t0 − t ′
0)3/2

(
2

γ0

)1/3

Ai

[
−D

4

(
2

γ0

)4/3]
, (41)
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where Ai(x) is the Airy function. For a given direction of the
photoelectron momentum, p0 = p0 p̂n, the magnitudes of p0,
t0, and t ′

0 can be found from the system (35) (with substitution
pn → p0) supplemented by the additional equation:

β j = 0. (42)

With the obtained p0, t0, and t ′
0, the parameters D and γ0 in

the argument of the Airy function in Eq. (41) are found in
accordance with Eqs. (C6b), (C12) from Appendix C.

To take into account depletion effects of an initial state, we
introduce coefficient P j , which effectively accounts depletion
effects in the adiabatic limit [21]:

A(r)(pn) = 1

2πT
∑

j

P ja
(r)
j (pn), (43)

P j ≡ P (t ′
j ), P (t ) = exp

[
−1

2

∫ t

−∞
�(F(τ ))dτ

]
, (44)

where �(F ) is the detachment rate3 for an initial bound state
in a DC field with strength F = |F(τ )|. Since �(F ) is a
positive function, P (t ) is a decreasing function of time and
thus partial amplitudes a(r)

j (pn) are suppressed for those j,
which correspond to P j � 1 (or max[�(|F(t )|)]T � 1). This
suppression destroys the comblike structure in ATD spectra,
which results from coherent interference of partial amplitudes.
In the oppositive case of max[�(|F(t )|)]T � 1, this factor
is not important and can be neglected, so that the comblike
structure of ATD spectrum shows up.

The extension to the case of short pulses can be fulfilled
with the procedure suggested in Refs. [24,43]. This proce-
dure results in the formal replacements in the ATD amplitude
(36) and supplemented equations: pn → p, where p is the
momentum of an ionized electron with energy Ep = p2/2;
factor 1/(2πT ) → 1/(2π )2. As a result, we obtain the double
differential probability, P (r)(p), for photoelectrons:

P (r)(p) = d3W

dEpd�p
= p

(2π )3

∣∣∣∣∑
j

P ja
(r)
j (p)

∣∣∣∣2

, (45)

where �p is the solid angle of a detached electron, W is the de-
tachment probability. [Note that the momentum distribution,
d3W/d3 p, follows from Eq. (45) by dividing d3W/dEpd�p

by the factor p.]

IV. NUMERICAL RESULTS

A. Comparison with TDSE results

We check the accuracy of our analytical result (45) by
comparison with the numerical solution of TDSE (see details
in Appendix D). The TDSE is solved for a Yukawa potential

U (r) = −U0
e−αr

r
, (46)

where U0 = 1.908, α = 1. The potential (46) supports a single
bound s-state with the binding energy Ip = 0.5 a.u. and the

3For practical calculations we use the standard tunneling formula
for the detachment rate [see, e.g., Eq. (4) in Ref. [7]].

FIG. 1. Energy dependence of the electron scattering cross sec-
tion (upper panels) and the phase of the scattering amplitude (bottom
pannels) for Yukawa [see Eq. (46)] (black solid lines) and Coulomb,
−U0/r, (red dashed lines) potentials. Scattering angles are marked in
the figure.

asymptotic coefficient in Eq. (21) is Cκl=0 = 2.73. In Fig. 1,
we compare the elastic electron scattering cross section and
the phase of the scattering amplitude for the potential (46)
with their counterparts for the Coulomb potential −U0/r. For
backscattering (scattering angle more than 90◦), cross sec-
tions for the Yukawa and the Coulomb potentials are close
to each other for larger energies, since for these energies
the most contribution is given by small distances, where
two potentials are close to each other. However, the phases
of scattering amplitude as a function of the electron energy
show significant difference between Yukawa and Coulomb
potentials (see bottom panels in Fig. 1). This difference may
cause changes in the interference of partial amplitudes (37)
for the Coulomb field, so that Coulomb effects crucially
modify the interference pattern in the momentum distribution
of ionized electrons, and these effects will be considered
elsewhere.

In the first numerical example for ATD, we consider
a linearly polarized pulse with cos2 shape for the vector
potential:

A(t ) = −ẑ
F

ω
cos2

(
πt

τ

)
sin(ωt + φ), (47)

where F is the peak strength, τ is the total duration of the
laser pulse, ω and φ are the carrier frequency and phase.
In Fig. 2, we present the angle-energy resolved distribution
of photoelectrons for a laser pulse with peak intensity I =
cF 2/(8π ) = 1.5 × 1014 W/cm2, λ = 2πc/ω = 1.3 μm, φ =
π/2, and total duration τ = 26 fs (six laser cycles for the
total duration). Since for the linearly polarized laser pulse the
angular distribution is symmetric with respect to the polariza-
tion axis (i.e., the ATD yields are the same for angles θ and
2π − θ , where 0 < θ < π ), we present the numerical TDSE
results in the upper part of the figure, while the lower part
corresponds to the analytical result (45).

In Fig. 3, we present ATD spectra extracted from Fig. 2
at six different angles. The sharp spikes (see dotted lines
in Fig. 3) correspond to caustic energies, E (c)

i , [56,60], at
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FIG. 2. Color-coded angle-energy distribution of photoelectrons
for the potential (46) and a laser pulse (47) with peak intensity I =
cF 2/(8π ) = 1.5 × 1014 W/cm2, wavelength λ = 1.3 μm, φ = π/2,
and total duration τ = 26 fs. The upper part of the figure presents
TDSE results, the lower part of the figure is calculated with the
analytical result (45). Solid black lines show the dependence of the
caustic energy on the angle θ .

which the second (or higher order) derivative of classical
action is zero. For ATD, these caustic energies depend on
the angle between momentum p and polarization vector ẑ
(see solid black lines in Fig. 2). As we pointed out in
Sec. III B, near caustic energies a special theoretical treatment
for ATD amplitude is necessary [23,24,39,60], since such en-
ergies determine thresholds at which some classically allowed

FIG. 3. ATD spectra for the potential (46) and six angles θ (extracted from Fig. 2), where θ is the angle between momentum of
photoelectron p and polarization vector ẑ. Vertical dashed lines mark caustic positions for the given angles θ . Solid black lines: TDSE results;
solid red lines: the analytical result (45) [with appropriate behavior of the propagation factor near the caustic]; dotted red lines: the asymptotic
behavior of ATD yield near the caustic [see Eq. (C14b) for the propagation factor near the caustic].

(i.e., real) closed trajectories disappear.4 For example, for
E > E (c)

1 (θ ) (see Fig. 3), there are no closed classically-
allowed trajectories and the corresponding ATD amplitude
is determined by an exponentially decreasing behavior [see
Eq. (C14b) in Appendix C]. However, for E (c)

2 (θ ) < E <

E (c)
1 (θ ) one pair of trajectories (long and short) is allowed

and leads to large-scale oscillations [61,62] [see Figs. 3(a)–
3(c)]. Extra pairs of classical trajectories contribute to the
ATD amplitude as the photoelectron energy decreases and
crosses caustic energies. Extra trajectories [or extra roots
of Eq. (35)] modify large-scale oscillations by superposing
fine-scale oscillations on the large-scale structures [see, e.g.,
Figs. 3(d)–3(f)] [24,63]. It should be noted that exponentially
decreasing partial amplitude may interfere with other oscil-
latory behaved amplitudes leading to an oscillatory pattern
on the slope of the ATD amplitude (see, e.g., the black line
in Fig. 3(b) for 5.25 a.u. < Ep < 6 a.u.). The angle-energy
distribution in Fig. 2 shows the remarkable left-right asym-
metry, which is well understood within the rescattering model
for a short laser pulse [4,5]. According to this model, (i) the
electron is ejected by a laser field from the atom at the moment
ti, (ii) the field returns the electron back to the atomic core
at the moment t f , and (iii) the electron get backscattered.
The two last steps are happened near the maximum of the
vector potential, while the first one appears near the maximum
of the electric field. For a monochromatic field, all these
events repeat periodically every half cycle, thereby forming
a symmetric distribution of the ionized electrons (we note, the

4Mathematically this means that the number of roots of system (35)
differs above and below a caustic energy.
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FIG. 4. Momentum distribution of photoelectrons for the po-
tential (46) in the bicircular field (48) with I = cF 2/(8π ) =
1014 W/cm2, ω = 1.55 eV, N1 = 2, N2 = 4, Td = −0.5Td (a), (b),
Td = 0 (c), (d), Td = 0.5T (e), (f). Left panels: TDSE results; right
panels: presented analytical result. Gray lines divide momentum
distribution into three sectors (see text for details).

electrons ionized on the “positive” half cycle contribute to the
right hemisphere, while the electrons produced by “negative”
half cycle contribute to the left hemisphere). For a short laser
pulse having an envelope f (t ), this periodicity is breaking
down, thus the distribution does not hold the left-right symme-
try. This rescattering mechanism also leads to the asymmetric
positions of caustics for two π -connected ATD spectra [cf.
panels (a) and (d), (b) and (e), and (c) and (f) in Fig. 3].

We present the further comparison with numerical TDSE
results for the time-delayed few-cycle bicircular field, whose
electric component is parametrized in the form:

F(t ) = −∂A(t )

∂t
= −∂2R(t )

∂t2
, (48a)

R(t ) = R1(t ) + R2(t − Td ), (48b)

Ri(t ) = F

ω2
i

fi(t )(ex cos ωit + ηiey sin ωit ), (48c)

fi(t ) = e−2 ln 2 t2/τ 2
i , (48d)

where each component i = 1, 2 of the field F(t ) has the
strength F , carrier frequency ωi (ω1 = ω2/2 = ω), ellipticity
ηi (η1 = −η2 = 1), duration τi = 2πNi/ω (full width at half
maximum of the intensity), number of cycles Ni, and Td is the
time delay between the two components (if Td is negative, the
2ω-pulse precedes the ω pulse). We perform calculations for
I = cF 2/(8π ) = 1014 W/cm2, ω = 1.55 eV, N1 = 2, N2 = 4,
Td = −0.5T , where T = 2π/ω [see Figs. 4(a) and 4(b)], Td =
0 [see Figs. 4(c) and 4(d)], Td = 0.5T [see Figs. 4(e) and 4(f)],

and potential (46). In Figs. 4 and 5, we present comparisons
for the bicircular field, which show perfect agreement between
TDSE and analytic results. Discrepancies at small energies
are caused by contribution of the Keldysh part of detachment
amplitude [see Eq. (31a)] omitted in this work.

B. Enhancement of ATD yield with time-delayed laser pulses

We analyze below the modification of ATD spectra by
changing the time delay between two circularly polarized
pulses. If components with carrier frequencies ω and 2ω in
Eq. (48) are monochromatic, the time delay may be related
to the relative phase between ω and 2ω components. In this
case, the momentum distribution of photoelectrons in the po-
larization plane is given by a perfect three-lobe distribution
[64–67] and changing the relative phase leads to the kinematic
rotation of the whole momentum distribution on the angle
�ϕ = 2Tdω/3 [66]. Therefore, the time delay (or relative
phase) between two components does not affect dynamically
the momentum distribution of photoelectrons for the case of
monochromatic components of a bicircular field.

For the time-delayed pulsed bicircular field, the above-
discussed symmetry in the momentum distribution does not
hold and a variation of the time delay between two circularly
polarized pulses leads to dynamical changes in the momentum
distribution of photoelectrons. To demonstrate these changes
we introduce the integrated ATD yield:

Y =
∫ ϕmax

ϕmin

dϕ

∫ Emax

Emin

dEpP (r)(p), (49)

where the vector p has zero projection on the z axis [p =
(p cos ϕ, p sin ϕ, 0)] and ϕ is the angle between vectors ex and
p. In our calculations for laser parameters as those in Fig. 4,
we set Emin = 2.0 a.u. and Emax = 6.0 a.u., while angles ϕmin

and ϕmax divide the polarization plane into three equal sectors
of angle 2π/3: for the first sector ϕmin = −85◦ + �ϕ and
ϕmax = 35◦ + �ϕ (we mark this yield as Y1); for second sec-
tor ϕmin = 35◦ + �ϕ and ϕmax = 155◦ + �ϕ (we mark this
yield as Y2); for third sector ϕmin = 155◦ + �ϕ and ϕmax =
275◦ + �ϕ (we mark this yield as Y3). We notice, that in order
to take into account the kinematic rotation of the momentum
distribution, edge angles ϕmin and ϕmax are defined with an
extra term �ϕ [see Figs. (4)]. In Fig. 6, we present the time-
delay dependence of Yi [see Fig. 6(a)] and the total yield [see
Fig. 6(b)]:

Ytot =
3∑

i=1

Yi. (50)

For the time delays, which do not provide a significant
overlap of two circularly polarized pulses (c.f., |Td | > 1.5T
in Fig. 6), the corresponding yields Yi gradually decrease
with increasing |Td | due to the suppression of the rescatter-
ing mechanism in producing high-energy electrons. For small
time delays, it would be intuitively expected that yields Yi

should be a smooth function of time delay, which is maxi-
mized at Td = 0, i.e., at a complete overlapping of two pulses.
However, our calculations show: (i) yields Yi demonstrate
oscillatory behavior for the time delays, which ensure well
overlapping of two circularly polarized pulses (see the range
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FIG. 5. Comparison of ATD spectra for given detachment angles. TDSE and analytical results are extracted from Fig. 4. Solid black lines:
TDSE results; solid red lines: present analytic result (45). Laser parameters are the same as in Fig. 4.

|Td | < 1.5T in Fig. 6); (ii) yields Yi are maximized not for
Td = 0. Similar results have been observed previously for high
harmonic generation yield in the time-delayed bicircular field
[41,42]. Although oscillation patterns are similar for all three
integrated yields, nevertheless, the magnitude of correspond-
ing oscillations is different (note that for the bicircular field
with monochromatic components Y1 = Y2 = Y3 = const).

All these counterintuitive effects can be attributed to the
differences between the subcycle dynamics for a bicircular
field with monochromatic components and a time-delayed
bicircular pulse. In contrast to the latter case, the dynamics
of an electron in the bicircular field with monochromatic

FIG. 6. The time-delay dependence of integrated ATD yields Yi

(i = 1, 2, 3) and Ytot [see Eqs. (49), (50) and text for details] and
integrated tunneling factor Itun [see Eq. (51)]. (a) Black thick dash-
dotted line: Y1, N1 = 2, N2 = 4; red thick dashed line: Y2, N1 = 2,
N2 = 4; blue thick solid line: Y3, N1 = 2, N2 = 4; black thin dash-
dotted line: Y1, N1 = 4, N2 = 8; red thin dashed line: Y2, N1 = 4,
N2 = 8; blue thin solid line: Y3, N1 = 4, N2 = 8. (b) Black thick solid
line: Ytot , N1 = 2, N2 = 4; black thin solid line: Ytot , N1 = 4, N2 = 8;
red thick dashed line: Itun, N1 = 2, N2 = 4; red thin dashed line: Itun,
N1 = 4, N2 = 8. The laser intensity and frequencies are the same as
in Fig. 4. Laser field is parameterized by Eq. (48).

components is the same every one-third of the laser period
T = 2π/ω, thereby forming the threefold symmetric momen-
tum distribution [64–66]. The momentum distribution for the
2π/3 sector is mostly formed by those electrons, for which
the process of rescattering5 is realized during the one-third of
the laser period and repeated through the period T . However,
for the short time-delayed bicircular pulse, each rescattering
event is individual due to the absence of periodicity in the
pulsed field, so that magnitudes and phases of contributing
partial amplitudes differ significantly from their counterparts
for the bicircular field with monochromatic components. This
subcycle difference in rescattering events leads to the os-
cillation pattern observed in Fig. 6. (Detailed analysis of
the modification of the observed oscillation pattern in the
integrated yield by the long-range Coulomb potential will
be discussed somewhere else.) We notice, that for bicircular
field with monochromatic components, interference of partial
amplitudes can be reduced to the product of ATD rate and a
comblike function with peaks separated by the photon energy.

To show that the ionization factor also depends on the time
delay, in Fig. 6 we present the integrated tunneling factor, Itun,
as a function of the time delay:

Itun =
∑

j

∫ 2π

0
dϕ

∫ E2

E1

dEp

∣∣P ja
(tun)
j

∣∣2
, (51)

where j is the index of contributing trajectory. Similarly to
the ATD yield (50), the dependence of Itun on the time delay is
mostly determined by the degree of overlapping of two pulses.
For long pulses, the ionization factor becomes more sloppy
and its dependence is mostly given by the depletion factors,
which lead to a smooth decreasing of Itun in the range of well
overlapping of two pulses. Our result for integrated ionization

5Rescattering consists of the releasing of an atomic electron from
the target near the maximum of the electric field lobe and its returning
to the atomic core with subsequent scattering near the minimum of
the electric field at the neighboring lobe.
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factor explicitly shows that interference patterns in Fig. 6 are
the result of a mutual interference between different partial
ATD amplitudes and cannot be caused by the appearance (or
disappearance) of closed classical trajectories.

V. SUMMARY AND OUTLOOK

In this work, we have analyzed ATD in the low-frequency
limit for a laser field with an arbitrary waveform. The de-
veloped low-frequency approximation is based on the QQES
approach, which properly treats the dynamics of a valence
electron in both a short-range binding potential and an intense
periodic laser field. In the low-frequency limit, we have shown
explicitly that the detachment amplitude can be expressed in
terms of the T matrix for collision problems, thereby pro-
viding a rigorous mathematical justification of heuristically
suggested parametrization for ATD amplitude [37] (see also
Ref. [22] in [40]). We have presented the rescattering part
of the ATD amplitude in terms of partial amplitudes, which
can be associated with closed classical electron trajectories.
Such a trajectory corresponds to the gained particular electron
energy at the rescattering, which ensures a given final energy
of photoelectron. For a given momentum of photoelectron,
this closed trajectory may be parametrized within the real
starting (or ionization) and finishing (or rescattering) time.
In terms of these times, the partial ATD amplitudes can be
factorized in three terms corresponding to the three steps in
forming of high-energy photoelectron spectrum: the tunneling
term describes ionization step; the propagation term describes
a quasiclassical motion along a closed trajectory, and the
T matrix (or the amplitude of elastic electron scattering)
describes interaction of a continuum electron with binding
potential. Our analysis shows that each partial ATD amplitude
can be associated with the classical trajectories only inside of
some surface in p space, which separates classically allowed
and classically forbidden regions. This surface (caustic sur-
face) determines those momenta of photoelectrons, for which
two closed classical trajectories merge into a single extreme
trajectory. We have shown that near this surface, the partial
amplitude can be approximately described in terms of the
Airy function and ionization and rescattering times for the
extreme trajectory. We note that this “transient” asymptotics
of ATD amplitude in terms of the Airy function smoothly sews
together the oscillating asymptotic in the classically allowed
region with exponentially decreasing behavior in the classi-
cally forbidden region.

We have checked the accuracy of the developed low-
frequency approximation for rescattering ATD amplitude by
comparison with the numerical solution of TDSE for the
Yukawa potential supporting a single bound state. Calcula-
tions have been performed for linearly polarized pulse and
the time-delayed bicircular field. In both cases, excellent
agreement between low-frequency approximation and TDSE
results is observed. This agreement is achieved by applying
the “transient” asymptotics for partial ATD amplitudes, which
allows us to avoid the nonphysical singularity in the ATD
yield near the caustic surface.

The analytical treatment of ATD has been used to study
the dependence of ATD yield on the time delay between two
components of the bicircular field. We have shown that (i)

the ATD yield may be maximized by changing the time delay
between the two few-cycle circularly polarized pulses; (ii) the
maximum of ATD yield for the case of two short pulses is
achieved for nonzero time delay, which corresponds to partial
overlapping of two pulses; (iii) the dependence of ATD yield
is not a smooth function of a time delay and exhibits a regular
oscillation pattern. All these effects originate from the devia-
tion of the electric field of the bicircular pulse from the perfect
three-lobe structure (realized for the case of monochromatic
components of the bicircular field) and disappear as the dura-
tion of each component increases.

Finally, we note that above-discussed effects may be sig-
nificantly modified by the long-range Coulomb field, so that
a special treatment is necessary for the inclusion of Coulomb
effects at the analysis of ionization of neutral atoms or pos-
itive ions. Indeed, the previous study shows that Coulomb
effects may lead, e.g., to a rotation of the momentum distri-
bution [68,69]. Moreover, the Coulomb field may affect on
the interference of different partial amplitudes due to inducing
a specific additional phase to these amplitudes and change
the dependence of ionization yield on the time delay. The
extension of results of this paper with inclusion of Coulomb
field effects can be performed within quasiclassical (or phase)
perturbation theory (see, e.g., Refs. [70–72]) and will be pub-
lished elsewhere.
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APPENDIX A: ASYMPTOTIC BEHAVIOR OF THE QQES
WAVE FUNCTION

In this Appendix, we present details of derivation of the
asymptotic behavior of QQES wave function at large dis-
tances. For this purpose, the quasienergy state wave function
(5) of the free electron in a laser field is convenient to repre-
sent in the form

χp(r, t ) = eip·R(r,t )+iα(r,t ), (A1)

where

R(r, t ) = r −
∫ t

A(τ )dτ, (A2a)

α(r, t ) = r · A(t ) −
∫ t

[A2(τ )/2 − up]dτ. (A2b)

Substituting Eq. (A1) into Eq. (7) and integrating in direc-
tions of momentum q, we obtain the Green’s function in the
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form

G(r, t ; r′, t ′) = − 1

(2π )2

ei(α−α′ )

|R − R′|

×
∫ ∞

−∞
dq q eiq|R−R′|−i(q2/2+up)(t−t ′ ), (A3)

where R ≡ R(r, t ), R′ ≡ R(r′, t ′), α ≡ α(r, t ), α′ ≡ α(r′, t ′).
Substituting Eq. (A3) into Eq. (2) and taking into account the
equality

1

2π

ei(α−α′ )+iq|R−R′|U (r′)�ε (r′, t ′)
|R − R′|

= eiα
∑

n

e−inωτ t ′ 1

2πT

∫ T /2

−T /2

e−iα′′+iq|R−R′′ |

|R − R′′|
×U (r′)�ε (r′, t ′′)einωτ t ′′

dt ′′,

α′′ ≡ α(r′, t ′′), R′′ ≡ R(r′, t ′′),

we rewrite Eq. (2) as

�ε (r, t ) = eiα

2π

∫ t

−∞
dt ′

∫ ∞

−∞
dq q e−i(q2/2+up−ε)(t−t ′ )

×
∑

n

Cn(q; r, t )e−inωτ t ′
, (A4)

where

Cn(q; r, t ) = − 1

2πT

∫ T /2

−T /2
einωτ t ′′

dt ′′
∫

dr′

× eiq|R−R′′|−iα′′

|R − R′′| U (r′)�ε (r′, t ′′). (A5)

The functions Cn(q; r, t ) exponentially decrease with increas-
ing |q| in the complex plane of q for Im q > 0, so that the
integration in Eq. (A4) can be carried out first in time t ′ and
then in q by using the residue integration method∫ ∞

−∞
dq qCn(q; r, t )

∫ t

−∞
dt ′e−i(q2−p2

n )(t−t ′ )/2

= −2i
∫ ∞

−∞
dq

qCn(q; r, t )

q2 − p2
n − i0

= 2πCn(pn; r, t ), (A6)

where pn = √
2(ε + nωτ − up). As a result, we obtain the

following representation for the QQES wave function:

�ε (r, t ) = eiα(r,t )
∑

n

Cn(pn; r, t )e−inωτ t . (A7)

To consider the limit of large distances in Eq. (A7), we use in
Eq. (A5) the well-known asymptotics for |R| � |R′|,

eipn|R−R′|

|R − R′| ≈ eipn|R|−ipn·R′

|R| , pn = pnR/|R|,

and obtain the expression for the QQES wave function in the
form of outgoing spherical waves at large distances:

�ε (r, t )|r→∞  eiα(r,t )
∑

n

An(pn)
eipn|R(r,t )|−inωτ t

|R(r, t )| , (A8)

where the coefficients An(pn) for n � [(up − ε)/ωτ ] are the
ATD amplitudes:

An(pn) = − 1

2πT

∫ T /2

−T /2
dt einωτ t

×
∫

dr χ∗
pn

(r, t )U (r)�ε (r, t ). (A9)

APPENDIX B: EVALUATION OF THE AMPLITUDE (32)

The temporal integral in Eq. (32) can be estimated analyt-
ically under two assumptions: (i) the imaginary part of time
t ′
s is essentially smaller than the characteristic period of a

laser pulse, T = 2π/ω, i.e., Im t ′
s/T � 1 (or ωIm t ′

s � 1); (ii)
the integration in t can be carried out over the real axis, i.e.,
quantum effects negligibly contribute to the electron dynam-
ics into the continuum. Within these assumptions, t ′

s can be
presented as t ′

s = t ′
s + i�s, where t ′

s and �s are real. Owing to
the smallness of �s, Eqs. (34) and scalars S (pn; t, t ′

s ), α(t j, t ′
s )

[see Eq. (33)] can be expanded in the formal series in �s (see,
e.g., Ref. [25]) and expressed in terms of real times t ′

s:

S (pn; t, t ′
s ) ≈ S (pn; t, t ′

s ) + i
κ

3(t, t ′
s )

3F (t, t ′
s )

, (B1a)

α(t, t ′
s ) ≈ κ(t, t ′

s )F (t, t ′
s ), (B1b)

κ(t, t ′
s ) =

√
κ2 + K ′(t, t ′

s )
2
, (B1c)

F (t, t ′
s ) =

√
F2(t ′

s ) − K ′(t, t ′
s ) · Ḟ(t ′

s ), (B1d)

T (Pn(t ), K(t, t ′
s )) ≈ T (Pn(t ), K(t, t ′

s ))

+ i�(t, t ′
s )

K ′(t, t ′
s )

t − t ′
s

·∂T (Pn(t ), K )

∂K

∣∣∣∣
K=K(t,t ′

s )

, (B1e)

Ḟ(t ) = ∂F(t )

∂t
, �(t, t ′

s ) = κ(t, t ′
s )

F (t, t ′
s )

, (B1f)

where t ′
s is found from equation (see details in Ref. [25]):

K ′(t, t ′
s ) · K̇

′
(t, t ′

s ) = 0,

K̇
′
(t, t ′

s ) = ∂K ′(t, t ′
s )

∂t ′
s

= −F(t ′
s ) + K ′(t, t ′

s )

t − t ′
s

. (B2)

We should emphasize that t ′
s and �s are single-valued

functions of t , so that κ, F , S (pn; t, t ′
s ) are well-defined

single-valued functions. Substituting approximate expressions
from Eq. (B1) into Eq. (32) and applying saddle-point esti-
mate for the temporal integral, we obtain

A(r)(pn) = 1

2πT
∑

j

a(tun)
j a(prop)

j T (Pn(t j ), K j ), (B3)

where

a(tun)
j = 1√

2π i

e
− κ

3
j

3F j√
κ jF j

f (0)
E0

(K ′
j + i� jK̇

′
j ), (B4a)
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κ j = κ(t j, t ′
j ), F j = F (t j, t ′

j ),

a(prop)
j = eiS(pn;t j ,t ′

j )

(t j − t ′
j )

3/2
√

β j

, (B4b)

β j = F j · [K j − Pn(t j )] + K2
j

t j − t ′
j

, (B4c)

K ′
j = K ′(t j, t ′

j ), K̇
′
j = K̇

′
(t j, t ′

j ), (B4d)

K j = K(t j, t ′
j ), F j = F(t j ), (B4e)

and the pair of times t j and t ′
j is found from system of the

transcendental equations:

K ′
j · K̇

′
j = 0, (B5a)

P2
n(t j )

2
− K2

j

2
= �E j, (B5b)

�E j = −
(
κ2 + K ′2

j

)
(t j − t ′

j )F2
j

[
K j · K ′

j

t j − t ′
j

− F ′
j · (K j − K ′

j )

2

]
, F ′

j = F(t ′
j ).

(B5c)

We emphasize that roots of the system (B5) should be sep-
arated into two groups (corresponding to conditions β j > 0
and β j < 0) and applied separately for calculation of pho-
toelectron spectra with particular geometry of the detached
electron: for instance, for linear polarization these conditions
correspond to detachment (ionization) in the right (β j > 0) or
the left (β j < 0) hemisphere.

APPENDIX C: EVALUATION OF AN INTEGRAL NEAR
THE CAUSTIC

Let us consider an integral

I (α) =
∫ ∞

−∞
g(t ) exp [i�(α, t )]dt, (C1)

where g(t ), �(α, t ) are smooth functions and α is a parameter.
The saddle points of the integrand in Eq. (C1) are given by
solution of the equation

�′
t (α, t ) = 0, �′

t (α, t ) = ∂�(α, t )

∂t
, (C2)

and the integral (C1) within the saddle-point approximation
takes the form:

I (α) =
∑

tsp

g(tsp)

√
2π i

�′′
tt (α, tsp)

exp [i�(α, tsp)]. (C3)

Our goal is to evaluate the integral (C1) near the caustic

�′
t (α0, t0) = 0, �′′

tt (α0, t0) = 0, (C4)

where �′′
tt = ∂2�(α, t )/∂t2, α0 is the caustic value of α, t0

is the saddle point at the caustic. First, we expand function

�′
t (α, t ) near the caustic in series over α and t :

�′
t (α, t ) ≈ γ0

(t − t0)2

2
+ β0(α − α0)(t − t0) + �0

= γ0

2

[
t − t0 + β0

γ0
(α − α0)

]2

+�0 − β2
0 (α − α0)2

2γ0
, (C5)

where

γ0 = ∂3�(α, t )

∂t3

∣∣∣∣ t=t0
α=α0

, β0 = ∂3�(α, t )

∂α∂t2

∣∣∣∣ t=t0
α=α0

,

�0 = δ1(α − α0) + δ2
(α − α0)2

2
,

δ1 = ∂2�(α, t )

∂α∂t

∣∣∣∣ t=t0
α=α0

, δ2 = ∂3�(α, t )

∂α2∂t

∣∣∣∣ t=t0
α=α0

.

We notice that terms �′
t (α0, t0) and �′′

tt (α0, t0) fall out from
expansion (C5), because of Eq. (C4). Using Eq. (C5), we
obtain the expansion of the saddle point tsp and �(α, tsp) near
the caustic

tsp ≈ t0 + δtsp, δtsp = −β0

γ0
δα ±

√
D

γ0
, (C6a)

D = β2
0δα2 − 2γ0�0, δα = α − α0, (C6b)

�′′
tt (α, tsp) ≈ ±

√
D, (C6c)

�(α, tsp) = �(α0 + δα, t0 + δtsp)

≈ �(α, t0) ∓ D3/2

3γ 2
0

. (C6d)

With the expansion (C6), the integral (C1) near the caustic
takes the form

I (α) = C

⎧⎨⎩e
i π

4 −i D
3/2

3γ 2
0 + e

−i π
4 +i D

3/2

3γ 2
0 D > 0

e
− |D|3/2

3γ 2
0 D < 0

, (C7)

C =
√

2πg(t0)ei�(α,t0 )|D|−1/4. (C8)

The expression (C7) represents two asymptotics of the Airy
function, so that J (α) may be approximated by an analytic
function at any D:

I (α) = 2
√

πg(t0)

(
2

γ0

)1/3

Ai

[
−D

4

(
2

γ0

)4/3]
ei�(α,t0 ). (C9)

We notice that in Eq. (C7) only terms of the lowest order in√
δα for δtsp have been taken into account. The result (C9)

can be also derived straightforwardly from the integral (C1)
approximating the function �(t ) by a cubic polynomial (see
details in the Appendix of Ref. [24]).

The result (C7) allows one to estimate the partial detach-
ment amplitude a(r)

j [see Eq. (37)] near the caustic energy. In
this case, the function �(α, t ) is given by the classical action
S (pn; t, t ′(t )) in Eq. (33a), in which the t-dependence of t ′(t )
is implicitly determined by Eq. (35a) and the parameter α

is given by pn. Thereby the system of three transcendental
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equations, Eq. (35a) and Eqs. (C4), for the “caustic” ionization
time, t ′

0, rescattering time, t0, and pn is

K ′
0 · K̇

′
0 = 0, (C10a)

P2
n(t0)

2
− K2

0

2
− �E0 = 0, (C10b)

F0 · [K0 − Pn(t0)] + K2
0

t0 − t ′
0

= 0,

�E0 = −
(
κ2 + K ′2

0

)
(t0 − t ′

0)F2
0

[
K0 · K ′

0

t0 − t ′
0

− F ′
0 · (K0 − K ′

0)

2

]
,

(C10c)

where

K ′
0 ≡ K ′(t0, t ′

0), K0 ≡ K(t0, t ′
0), K̇

′
0 ≡ K̇

′
(t0, t ′

0),

F0 = F(t0), F ′
0 = F(t ′

0), Ḟ
′
0 = ∂F(t ′

0)

∂t ′
0

,

F0 =
√

F ′
0

2 − K ′
0 · Ḟ

′
0.

Equations (C10a) and (C10b) coincide with Eqs. (35a) and
(35b) and determine the ionization and rescattering times for a
given pn, while Eq. (C10c) corresponds to Eq. (42) in the main
text and determines the “caustic” value p0 of the photoelectron
momentum for a given direction p̂n. The caustic rescattering
energy E (c), corresponding to p0, is given by

E (c) = K2
0

2
+ �E0 = 1

2
[p0 + A(t0)]2, (C11)

where p0 = p0 p̂n.
Straightforward calculations of �0, β0, and γ0 give

�0 = 1

2
[pn + A(t0)]2 − E (c), (C12a)

β0δα = F0 · (pn − p0), (C12b)

γ0 = Ḟ0 · [K0 − Pn(t0)] − 3
F0 · Pn(t0)

t0 − t ′
0

. (C12c)

As a result, the partial amplitude ã(r)
j near the caustic may

be written in the form similar to Eq. (36):

ã(r)
j (pn) = a(tun)

j ã(prop)
j T (Pn(t0), K0), (C13)

where

a(tun)
j = e− κ

3
0

3F0√
κ0F0

f (0)
E0

(K ′
0 + i� jK̇

′
0), (C14a)

ã(prop)
j = 1√

(t0 − t ′
0)3π

(
2

γ0

)1/3

Ai

[
−D

4

(
2

γ0

)4/3]

≈ C

⎧⎨⎩e
±i( π

4 −D3/2

3γ 2
0

)
D > 0

e
− |D|3/2

3γ 2
0 D < 0

, (C14b)

C = eiS0

(t0 − t ′
0)3/2

√
2π

√|D|
, (C14c)

S0 = 1

2

∫ t0

P2
n(τ )dτ − E0t ′

0

− 1

2

∫ t0

t ′
0

(
A(ξ ) − 1

t0 − t ′
0

∫ t0

t ′
0

A(τ )dτ

)2

dξ,

(C14d)

where D is given by Eq. (C6b) with notations (C12), κ0 =√
κ2 + K ′

0
2, and the sign “+′′ (or “−′′) in Eq. (C14b) should

be chosen if ã(r)
j corresponds to the short (or long) trajectory.

APPENDIX D: NUMERIC SOLUTION OF TDSE

For the numerical solution of TDSE, we use the velocity
gauge and the dipole approximation for electron-laser interac-
tion

i�̇(r, t ) = H�(r, t ), H = −∇2

2
+ U (r) − iA(t ) · ∇,

(D1)
where U (r) is the atomic potential, A(t ) is the vector potential
of a laser pulse. The desired time-dependent wave function is
expanded in terms of spherical harmonics Ylm(r̂):

�(r, t ) = 1

r

lmax∑
l=0

m=l∑
m=−l

ψlm(r, t )Ylm(r̂). (D2)

The radial coordinate r is discretized by the finite element
discrete variable representation [73]. The whole coordinate
space of r is divided into many finite elements. Gauss–Lobatto
quadratures of order 8 are used as basis functions in every
finite element. In this work, we use the Arnoldi propagator
[74] to carry out the evolution of the wave function from the
initial state. To save the computational time and reduce the
reflection effect, the splitting scheme [75] is used for the wave
function �(r, t ):

� = �inner + �outer = M� + (1 − M )�. (D3)

The wave function is split by a mask function M

M(r) = 1

1 + exp
( r−rc

rw

) , (D4)

where rc = 0.5rmax and rw = 0.03rmax, with rmax being the
maximum of the r grid. The outer part of �(r, t ), �outer, is
separated every one-third cycle of the laser pulse at time ti,
which is then projected to scattering states and analytically
propagated till the end of pulse t f by the Volkov propagator,

UVolkov(t f , ti ) = exp

[
−iE (t f − ti ) − i

∫ t f

ti

p · A(τ )dτ

]
.

(D5)
When the laser pulse is off, the residual wave function,
�(r, t f ), is also projected to scattering states. Finally, the
separated wave function and the residual wave function are
coherently added up in the momentum space to evaluate the
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double differential probability using [76]

P (r)(p) = d3W

dEpd�p
= 1

2π p

∣∣∣∣∣∑
l,m

(−i)l eiδlYlm( p̂)
∫ ∞

0
drψall

lm (r, t f )rRpl (r)

∣∣∣∣∣
2

, (D6)

ψall
lm (r, t f ) =

∑
ti

UVolkov(t f , ti )ψ
outer
lm (r, ti ) + ψlm(r, t f ), (D7)

where p̂ = p/p defines the polar and azimuthal angles of the electron momentum, δl stands for the phase shift, and Rpl stands
for scattering states in the radial coordinate r.
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