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Experiments with vortex beams have shown a surge of interest in controlling cold atoms. Most of the
controlling protocols are dominated by circularly polarized light due to its ability to induce vector polarization
at atoms, which is impossible for paraxial linearly polarized light. Here we develop a theory for frequency
dependent polarizability of an atomic state interacting with a focused linearly polarized vortex beam. The
naturally induced spin-orbit coupling in this type of linearly polarized beam produces vector component of
the valence polarizability to an atomic state, obeying the total angular-momentum conservation of the beam. The
theory is employed on 87Sr+ to accurately calculate the magic wavelengths for the clock transitions and tune-out
wavelengths for the clock states using the relativistic coupled-cluster method. The induced vector component
in the dynamic polarizability due to the linearly polarized focused vortex beam promotes a fictitious magnetic
field to the atomic state. We demonstrate that this fictitious magnetic field, depending on the focusing angle and
orbital angular momentum of the beam, improves the flexibility of the coherent heteronuclear spin oscillations
in a spin-1 mixture of 87Rb and 23Na atoms.
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I. INTRODUCTION

In recent years, laser trapping and cooling of neutral atoms
have attracted significant attention from experimentalists and
become an established technique in high-precision spectro-
scopic measurements [1–3]. Along with neutral atoms, optical
dipole trappings of ions have recently bolstered interest in
ultracold physics [4–7]. However, the mechanism of the trap-
ping by optical means inevitably produces Stark shifts in
the atomic energy levels and influences the fidelity of the
precision measurements. Magic wavelengths are the unique
wavelengths of the external laser beam for which the dif-
ferential AC-Stark shift of an atomic transition effectively
vanishes. Therefore, the impediment in precise spectroscopic
measurements can be eliminated almost entirely if the atoms
are confined at the predetermined magic wavelengths of the
laser beam. The light at magic wavelengths have significant
applications in atom optics, such as atomic interferome-
ters [8], atomic clocks [9–11], and atomic magnetometers
[12].

Determinations of magic wavelengths for an atomic
transition depend mainly on how accurately the frequency-
dependent valence polarizability (POL) values of the atomic
Zeeman sublevels are calculated. The valence POL consists
of three components, scalar POL (α0

V ), vector POL (α1
V ),

and tensor POL (α2
V ) [13–16]. In general, POL is defined in
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terms of an off-resonant electric-dipole interaction between
the atom and its trapping light. The vector POL, which yields
the energy shift among the Zeeman sublevels, arises usually
due to a circularly polarized light [13,17,18]. It is one of the
non-magnetic-field sources to remove the Zeeman degener-
acy and becomes very significant in the evaluation of magic
wavelengths for cases such as “knob” to adjust an optical trap
[19].

In this work, we theoretically develop and demonstrate
that a linearly polarized focused vortex (LP-FV) beam can
naturally produce the vector part of the dynamic POL when it
interacts with cold atoms or ions. The vector part is certainly
not a component of dynamic POL for a linearly polarized
Gaussian or paraxial vortex beam. The distinctive feature of
the vortex beam is that, in addition to the spin angular mo-
mentum associated with the polarization, it has orbital angular
momentum (OAM) which arises due to the helical phase front
of the beam [20–30]. We find that the origin of the vector POL
comes from the prolific artifacts of the spin-orbit coupling of
the LP-FV beam satisfying conservation of the total angular
momentum of the beam during the interaction process. Also,
this vector POL creates a fictitious magnetic field [31] when it
interacts with an atomic system. This fictitious magnetic field
interrogates, manipulates, and traps an atom or ion indepen-
dently [32] or in conjunction with the real magnetic field [33].
Furthermore, this fabricated field provides a unique opportu-
nity for exploring spin dynamics in the form of coherent spin
oscillations [34–37] in the ultracold spinor quantum gas. This
has been the subject of intensive theoretical and experimental
research due to its high controllability [38].
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The primary objective of the present work is to visualize
the effect of vector POL, which originates due to the spin-orbit
coupling of the LP-FV beam, in the clock transitions and
clock states. We apply our theory to calculate the dynamic
POL values of the fine-structure states 5S 1

2
, 4D 3

2
, and 4D 5

2

of 87Sr+. Singly ionized strontium is an excellent candidate
for an optical frequency standard, quantum information, and
quantum storage [39,40]. As the spin-orbit coupling of LP-FV
beam varies with the choice of OAM and focusing angle of
the lens, we quantitatively show the effects of these param-
eters on the magic wavelengths for 5S 1

2
→ 4D 3

2 , 5
2

transitions
and tune-out wavelengths (where the dynamic POL value be-
comes zero [41,42]). These quantifications will be important
for the experimentalists to choose the parameters of the vor-
tex beams used for trapping [19,32]. To manifest the impact
of the vector POL, we compare the calculated magic and
tune-out wavelengths induced from the LP-FV beam with the
corresponding wavelengths induced from a linearly polarized
Gaussian beam. Moreover, as an important application, we
investigate how the fictitious magnetic field, originated from
the vector POl, can control the coherent heteronuclear spin
oscillations in a spin-1 mixture of 87Rb and 23Na atoms with
influences from both linear and quadratic Zeeman shifts.

II. THEORY

According to time-independent second-order perturbation
theory [43], the AC-Stark shift of an atomic state in an exter-
nal oscillating electric field E (ω) is expressed by �F (ω) =
− 1

2αT (ω)E2, where αT (ω) is the total dynamic POL of the
atomic state at frequency ω and E is the magnitude of the ex-
ternal electric field. For a single-valence atom with a valence
electron in the vth orbital, the total dynamic POL can be writ-
ten as αT (ω) = αC (ω) + αVC (ω) + αV (ω). Here αC (ω) is the
frequency-dependent core POL of the ionic core obtained by
removing the valence electron. αVC (ω) gives a correction [44]
to the core POL due to the presence of the valence electron
and is considered as ω independent in the present work. αV (ω)
is the valence POL of the single-valence state. αC and αVC

provide small contributions to αT compared with αV , and they
are computed approximately by using lower-order many-body
perturbation theory [43,45,46].

Now we evaluate αV (ω) in the presence of an exter-
nal LP-FV beam. As a Laguerre-Gaussian (LG) beam is a
well-established example of a vortex beam, initially, we as-
sume a paraxial form of a linearly polarized coherent LG
beam without any off-axis node and that propagates along
the z axis. The field is expressed as [24] Ei(ρ, φ, z, t ) =
Ei(t )(

√
2ρ/w0)|l|ei(lφ+k0z)x̂. Here k0 is the wave number of the

free space, w0 is the waist-size, and l is OAM of the beam.
We consider that this paraxial LG beam is focused by passing
through an objective (lens) with a high numerical aperture
(NA) [25]. Then this focused LG beam interacts with a cold
atom or ion whose de Broglie wavelength is large enough to
experience the intensity variation of this beam. To take a full
advantage of the high NA of the lens, we assume that w0 over-
fills the entrance aperture radius. According to Kirchhoff’s
approximation in diffraction theory [47,48], the consequent
components of the spin-orbit coupled LP-FV beam can be

expressed as

E (ρ, φ, z, t )

=
⎡
⎣Ex

Ey

Ez

⎤
⎦ = (−i)l+1E0ei(lφ−ωt )

×
⎡
⎣ul (ρ, z) + ul+2(ρ, z)e2iφ + ul−2(ρ, z)e−2iφ

−i[ul+2(ρ, z)e2iφ − ul−2(ρ, z)e−2iφ]
−i[ul+1(ρ, z)eiφ − ul−1(ρ, z)e−iφ]

⎤
⎦. (2.1)

Here Ex, Ey, and Ez are the x, y, and z components of the
electric field, respectively. The amplitude of the focused
electric field is E0 = π f

λ
TEi, where Ei is the amplitude

of the incident electric field, T is the transmission
coefficient of the objective, and f is its focal length
related to ρ by ρ = f sin θ (Abbe sine condition). The
coefficients ul+m, where m takes the values 0, ±1, and ±2
in the above expression depend on the focusing angle
of NA (ϑm) following the relation [49] ul+m(ρ, z) =∫ ϑm

0 dϑ (
√

2ρ

w0
)|l| sin ϑ

√
cos ϑg|m|(ϑ )Jl+m(kρ sin ϑ )eikz cos ϑ .

Here Jl+m(kρ sin ϑ ) represents the cylindrical Bessel
function, and k = μk0 with μ as the refractive index of
the lens medium. g|m|(ϑ ) are the angular functions with
g0(ϑ ) = 1 + cos ϑ , g1(ϑ ) = sin ϑ , and g2(ϑ ) = 1 − cos ϑ .

Now let us discuss Eq. (2.1) in detail. Linearly polarized
light can be considered as the superposition of left (β = +1)
and right (β = −1) circularly polarized beams. Because of the
focusing and the diffraction from the edges of the aperture,
each circularly polarized light (β = ±1) can be decomposed
into three sets of local polarizations (±1, ∓1, and polarization
along the z axis) [25]. Among these three sets of local po-
larizations, the first set has equal amplitude (ul ) for ±1 local
polarizations. Therefore, after passing through the focusing
lens, the superposition of these local polarizations results in a
linearly polarized beam with an OAM similar to the OAM
of the incident beam. However, in the case of the second
set, different field amplitudes, ul+2 and ul−2, are generated
with two different local polarizations (−1 and +1, respec-
tively) and topological charges (l + 2 and l − 2, respectively,
to conserve total angular momentum) after passing through
the lens. Therefore, the field gains two opposite circular polar-
izations with different amplitudes and creates the vector part
of the valence POL in interaction with an atom or ion. The
third set yields ul+1 and ul−1 fields with topological charges,
l + 1 and l − 1, respectively. However, both these fields are
polarized along the z direction, which is another interesting
manifestation of a focusing beam. Nevertheless, using LP-FV
beam presented in Eq. (2.1), αV (ω) of the atomic state can be
presented by

αV (ω) = C0α
0
V (ω) + C1α

1
V (ω) + C2α

2
V (ω). (2.2)

Here the coefficients Cis are expressed in the following forms:

C0 = {ul}2 + {ul+1}2 + {ul−1}2 + 2[{ul+2}2 + {ul−2}2],

C1 = [2{ul−2}2 − 2{ul+2}2]

(
MJV

2JV

)
,

C2 = [{ul}2 − {ul+1}2 − {ul−1}2 + 2{ul+2}2 + 2{ul−2}2]

×[(
3M2

JV
− JV (JV + 1)

)/
(2JV (2JV − 1))

]
, (2.3)
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FIG. 1. Frequency-dependent total vector POL (C1α
1
V ) of

5S 1
2
(+1/2) and 4D 3

2 , 5
2
(+1/2) states for LP-FV beam with OAM =

+1 and +2 at focusing angle 60◦.

where JV and MJV are the total angular momentum and its
magnetic component for the single-valence atomic state |�V 〉.
The mathematical expressions of the scalar, vector, tensor,
and consequently the valence POL at the fine- and hyperfine-
structure levels are presented in the Appendix. The calculation
of αV (ω) [17,43] of an atomic state directly depends on dif-
ferent combinations of the integrals ul+m. These integrals can
be altered with the various choices of the topological charges
of the incident LG beam and the NA of the objective. As a
consequence, the total POL values of the atomic states and
the magic wavelengths for the transitions among them can be
tuned externally by using different parameters of the beam.

III. RESULTS AND DISCUSSIONS

As the electron correlation most significantly affects the
αV (ω) part of the dynamic POL due to the loosely bound
valence electron, the accurate estimates of the scalar, vector,
and tensor components of αV (ω) for the different states re-
quire correlation-exhaustive many-body calculations [50–58]
with a sophisticated numerical approach (see Appendix for
details of the computations). To have a quantitative analysis
of the effect of OAM of LP-FV beam on the total vector
POL [C1α

1
V (ω)] of an atomic state, we show variations of

C1α
1
V (ω) with frequency for 5S 1

2
(+1/2) and 4D 3

2 , 5
2
(+1/2)

states of 87Sr+ in Fig. 1 [MJ = − 1
2 provides the opposite sign

of C1α
1
V (ω)]. The fine-structure states 5S 1

2
, 4D 3

2
, and 4D 5

2
are

indicated by 5S1, 4D3, and 4D5, respectively in this figure
and the next two figures of this paper. Here LP-FV beam
has either OAM = +1 or +2 with focusing angle of 60◦.
Although the effect of variation of focusing angle to C1α

1
V (ω)

is marginal, it is significant to the total scalar and tensor POL
values, and consequently to the total POL values. The peak
values of C1α

1
V (ω) occur at resonance frequencies: 0.11 a.u.

for 5S 1
2

state; around 0.045 a.u and 0.21 a.u. for 4D 3
2

and 4D 5
2

states, respectively. However, many small-scale structures in
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FIG. 2. Frequency-dependent αT of 5S 1
2

and 4D 3
2

and 4D 5
2

states. LP-FV beam is focused at 60◦ with OAM = +1. The values
inside the parentheses indicate the magnetic components. The corre-
sponding wavelengths at the intersections of the polarizability curves
of 5S 1

2
, 4D 3

2
, and 4D 5

2
states are the magic wavelengths for the clock

transitions 5S 1
2
-4D 3

2
and 5S 1

2
-4D 5

2
. For both these clock transitions,

five sets (Set 1 to Set 5) of magic wavelengths are found.

the C1α
1
V (ω) profiles of the 4D 3

2
and 4D 5

2
states appear due to

the multiple resonance transitions around 0.25 to 0.30 a.u.
It can be seen from the graphs that OAM = +1 always

produces a higher peak value of C1α
1
V (ω) compared with

OAM = +2. This is because of the stronger spin-orbit cou-
pling for OAM = +1 compared with OAM = +2. Also, the
magnitude of the peak value of C1α

1
V (ω) is higher for larger

MJ for a fixed value of J , which is obvious from the expression
of C1.

Figure 2 displays profiles of αT for 5S 1
2

and 4D 3
2

and 4D 5
2

states of 87Sr+ at 60◦ focusing angle for LP-FV beam with
OAM = +1. However, it should be mentioned that focusing
angle does affect αT values at various frequencies of the
beam. Figure 2 shows a number of intersection points between
αT profiles of the multiplets of 5S 1

2
, 4D 3

2
, and 4D 5

2
states.

These intersection points indicate the magic wavelengths at
which the differential AC-Stark shift of the associated clock
transition states vanishes. We observe five sets (Set 1 to Set 5)
of magic wavelengths for 5S 1

2
→ 4D 3

2
, 4D 5

2
clock transitions

within the frequency span (from the near-infrared to the ultra-
violet regions) as shown in the figures (see Appendix). This is
true for all the magnetic sublevels involved in the transitions.
However, the infrared magic wavelengths (fall under Set 1
and Set 2) are the most important to trap 87Sr+ due to rela-
tively large αT values and support the red-detuned trapping
scheme useful for frequency-standard experiments. We find
that the magic wavelengths for the clock transitions at Set 1
are maximally affected by the spin-orbit coupling of the beam.
For the 5S 1

2
→ 4D 5

2
(+3/2) transition, the magic wavelength

at Set 1 is 1793.83 nm for either linearly polarized paraxial
LG beam or Gaussian beam. The results are the same because
the OAM of the paraxial light does not affect the electronic
motion of a cold atom or ion (which is below its recoil limit)
at the dipole transition level [17,24]. However, we observe
that, for OAM = +1 and +2 of the LP-FV beam, the magic
wavelengths of the 5S 1

2
→ 4D 5

2
(+3/2) transition at Set 1 can

be varied up to −20% and −15%, respectively, compared with
the corresponding magic wavelength of a Gaussian beam.

Figure 3 illustrates wavelength dependence on αT for the
clock transition state 4D 3

2
of 87Sr+ due to the external field of

LP-FV beam with OAM = +1 and +2, focused at an angle of
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FIG. 3. Variation of αT (in a.u.) with wavelength (in nm) for
all the magnetic components of the state 4D 3

2
for the LP-FV beam

focused at 60◦ [with (a) OAM = +1 and (b) OAM = +2] and parax-
ial Gaussian beam are presented. Wavelengths at which the curves
intersect the zero-polarizability axis are the tune-out wavelengths.

60◦, and linearly polarized paraxial Gaussian beam. Because
the beam is linearly polarized, the vector component does not
arise in αT for the Gaussian beam. Therefore, the tune-out
wavelengths for the 4D 3

2
(MJ = ±1/2) and 4D 3

2
(MJ = ±3/2)

states are degenerate with respect to the sign of MJ and their
values are 507.83 and 744.12 nm, respectively. These degen-
eracies are lifted for the LP-FV beam. This leads to splitting of
the tune-out wavelengths for the oppositely signed MJ -levels
with respect to the corresponding tune-out wavelengths for
the linearly polarized Gaussian beam. The figure shows that
nonzero OAM of the LP-FV beam causes redshifting and
blueshifting of the tune-out wavelengths with respect to the
tune-out wavelengths of the Gaussian beam for MJ = | 1

2 | and
MJ = | 3

2 |, respectively. The comparison of Figs. 3(a) and 3(b)
reveals that the separation between the tune-out wavelengths
corresponding to +MJ and −MJ of a particular value of MJ

decreases with the increasing OAM of the beam. This also
indicates the decreasing strength of the spin-orbit coupling
with the increasing OAM of the LP-FV beam.

We also gauge the effect of the vector POL arising from
LP-FV beam by considering a heteronuclear spin-1 mixture
of 87Rb and 23Na atoms with spin states |MFV 1〉 and |MFV 2〉,
respectively, of FV 1 = FV 2 = 1 hyperfine levels of their re-
spective ground states 5S 1

2
and 3S 1

2
. Here, we show how

their coherent spin oscillations can be controlled by the fic-
titious magnetic field generated from the vector POL due
to the LP-FV beam. We calculate the total magnetic energy
E |MFV 1 ,MFV 2 〉(B) (from the Breit-Rabi formula [59]) associated
with the |MFV 1 , MFV 2〉 state, where B is the externally ap-
plied magnetic field. In this example, we start with |0, 0〉
mixture of 87Rb and 23Na atoms. Therefore, we have only
two types of spin-changing transition process at the FV = 1
level conserving the total magnetization: |0, 0〉 ↔ | − 1, 1〉
and |0, 0〉 ↔ |1,−1〉. In the presence of a laser beam, the
magnitudes of the frequency-dependent Stark-shifts for both
the atoms largely depend on the positions of the D-line transi-
tions, which are close to 590 and 790 nm for the 23Na and 87Rb
atoms, respectively. Therefore, if a light beam of wavelength
nearly 790 nm is used, it can make the Stark shift essen-
tially species-selective for 87Rb, but mostly transparent for
23Na. The dynamic polarizability for the state |5S1/2, FV = 1,

MFV = 0,±1〉 of 87Rb is depicted in Fig. 4(a) for
786–794 nm. Here a LP-FV beam with intensity 10 W/cm2

and both OAM = +1, +2 are employed to selectively dress

FIG. 4. (a) Variation of αT (in a.u.) with wavelength (in nm) for
the ground state of the 87Rb at the hyperfine level FV = 1 for the
LP-FV beam focused at 60◦. (b) Magnetic energy diagram for the two
heteronuclear spin-oscillation processes without light shift: |0, 0〉 ↔
| − 1, 1〉 (red dashed) and |0, 0〉 ↔ |1, −1〉 (red solid). Blue dot and
green dash-dot curves are magnetic energy variations with OAM =
+1 and +2, respectively, for |0, 0〉 ↔ |1, −1〉. The intensity of the
LP-FV beam is assumed to be 10 W/m2.

the energy levels of 87Rb near 790.14 nm wavelength, which
is the tune-out wavelength for the MFV = 0 state. The figure
shows that the Stark shift for MFV = ±1 is larger for OAM =
+1 compared with OAM = +2 at the wavelength 790.14 nm.

Without the LP-FV beam, the total Zeeman energy
difference of the process |0, 0〉 ↔ | − 1, 1〉 is indicated
by �E−(B) = E |0,0〉 − E |−1,1〉 and of the process |0, 0〉 ↔
|1,−1〉 is indicated by �E+(B) = E |0,0〉 − E |1,−1〉. These
Zeeman energy differences of the heteronuclear spin-
oscillations include contributions of both the linear and
quadratic Zeeman shifts [60]. Since the heteronuclear spin
oscillation can only occur near �E±(B) = 0 [61], Fig. 4(b)
suggests that only the oscillation |0, 0〉 ↔ |1,−1〉 is pos-
sible at the magnetic field 0.99 G. The other oscillation,
|0, 0〉 ↔ | − 1, 1〉, is strongly suppressed at this magnetic
field. Now, taking into account the light shift by the LP-FV
beam on 87Rb atoms at the wavelength of 790.14 nm, the
total Zeeman energy difference of the allowed process is
modified to �E+(B) = (E |0,0〉 − E |1,−1〉) + [δEl (MFV = 0) −
δEl (MFV = 1)], where δEl is the light shift. In Fig. 4(b),
we find that �E+(B) becomes zero at the magnetic fields
1.40 and 1.26 G for OAM = +1 and +2, respectively, of
the LP-FV beam. Therefore, the external magnetic field that
is required for |0, 0〉 ↔ |1,−1〉 transition with �E+(B) = 0
to take place is changed significantly due to the presence of
the LP-FV beam, which accounts for the fictitious magnetic
field generated by the vector polarizability. This is purely a
manifestation of the vector light shift that arises from the
spin-orbit coupling of the beam. Also, the spin oscillation
process of the heteronuclear spin-1 mixture of 87Rb and 23Na
can be controlled externally by changing the focusing angle
and OAM of LP-FV beam. This process will be very useful
for recent experiments using spherical-quadrupole magnetic
traps [62].

IV. CONCLUSION

In summary, we have developed a theoretical formalism to
calculate the dynamic POL of an atomic state in the external
field of a LP-FV beam. We have demonstrated how the OAM
and focusing angle of the beam induce the spin-orbit coupling
in the beam, which in turn produces vector polarizability in the
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atomic state even for linearly polarized light. The fine tuning
of magic wavelengths for the clock transitions 5S 1

2
→ 4D 3

2 , 5
2

of 87Sr+ ion are demonstrated by controlling the OAM and
focusing parameters of the LP-FV beam (details are in the
Appendix). The vector POL values presented in this paper can
be verified experimentally by stimulated Raman spectroscopy
[63] or by measuring the tune-out wavelengths for the mag-
netic sublevels of identical multiplets [64,65]. Moreover, we
develop a controlling mechanism of heteronuclear spin oscil-
lations of spin-1 mixture of 87Rb and 23Na atoms with the
fictitious magnetic field generated by the LP-FV beam. This
mechanism can be used to tune the heteronuclear spin dynam-
ics [66] and generate entanglement between distinguishable
atoms [67]. We believe that the present theoretical develop-
ment will give an additional flexibility in the spin-changing
interaction process of other multispecies spinor condensates.
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APPENDIX

In Sec. A, we present a brief mathematical description
of the scalar, vector, and tensor polarizabilities of a single-
valence atomic state at the fine-structure and hyperfine levels.
In Sec. B, we show the numerical procedure to calculate the
dynamic polarizabilities of 87Sr+ and 87Rb. In this section, we
also include the details of the Zeeman energy difference that
leads the spin oscillation processes of the spin-1 mixture 87Rb
and 23Na atoms. In Sec. C, we tabulate a list of magic wave-
lengths and the corresponding vector and total polarizabilities
for the clock transitions 5S 1

2
→ 4D 3

2 , 5
2

of 87Sr+ ion.

1. Scalar, vector, and tensor polarizabilities at the fine-structure
and hyperfine levels

α0
V (ω), α1

V (ω), and α2
V (ω) are the scalar, vector, and tensor

components, respectively, of the dynamic valence polarizabil-
ity αV (ω) at the fine-structure level of the single-valence state
�V . These components are expressed using the sum-over-
states approach [13–16,43,44] as follows:

α0
V (ω) = 2

3(2JV + 1)

∑
N

|〈ψV ||d||ψN 〉|2 × (εN − εV )

(EN − EV )2 − ω2
,

(A1)

α1
V (ω) = −

√
6JV

(JV + 1)(2JV + 1)

∑
N

(−1)JN +JV

×
{

JV 1 JV

1 JN 1

} |〈ψV ||d||ψN 〉|2 × 2ω

(EN − EV )2 − ω2
, (A2)

α2
V (ω) = 4

√
5JV (2JV − 1)

6(JV + 1)(2JV + 1)(2JV + 3)

∑
N

(−1)JN +JV

×
{

JV 1 JN

1 JV 2

} |〈ψV ||d||ψN 〉|2 × (εN − εV )

(EN − EV )2 − ω2
.

(A3)

Here JV is the total angular momentum and EV is the ion-
ization potential of ψV . 〈ψV ||d||ψN 〉 is the reduced matrix
element of the electric-dipole operator.

At a hyperfine level FV with nuclear spin I , the scalar
component α0

V F (ω) of the valence polarizability is equal to
α0

V (ω). This is because of the second-order scalar energy
shift does not depend on any hyperfine quantum number [68].
But the hyperfine-induced vector α

(1)
V F (ω) and tensor α

(2)
V F (ω)

components have different angular-momentum factors to be
multiplied with the above expressions for α1

V (ω) and α2
V (ω),

respectively [18,68,69]:

α
(1)
V F (ω) = (−1)JV +FV +I+1

{
FV JV I
JV FV 1

}

×
√

FV (2FV + 1)(2JV + 1)(JV + 1)

JV (FV + 1)
α

(1)
V (ω) (A4)

and

α
(2)
V F (ω) = (−1)JV +FV +I

{
FV JV I
JV FV 2

}

×
√(

FV (2FV − 1)(2FV + 1)

(2FV + 3)(FV + 1)

)

×
√(

(2JV + 3)(2JV + 1)(JV + 1)

JV (2JV − 1)

)
α

(2)
V (ω). (A5)

The total valence polarizability at the hyperfine level [αV
F (ω)]

takes the form

αV
F (ω) = C0α

0
V F (ω) + C1α

1
V F (ω) + C2α

2
V F (ω), (A6)

where Ci are the coefficients mentioned in the main text.

2. Details of numerical procedure

Here, we present the numerical procedure to calculate the
dynamic polarizability of an atomic state discussed in the
main text. The electron-correlation significantly affects the
valence polarizability of an atomic state due to the loosely
bound valence electron. Therefore, the precise estimations of
the scalar, vector, and tensor components of the valence po-
larizability for an atomic state require correlation-exhaustive
many-body treatments with a sophisticated numerical ap-
proach.

Calculation of the dynamic polarizability for 87Sr+

To calculate the valence polarizabilities for 5S 1
2
, 4D 3

2
, and

4D 5
2

states, we consider all possible non-negligible dipole
matrix elements in Eqs. (A1) to (A3). This sets the highest
principle quantum number of the running index N , which is
considered up to 25. According to the significance of each
dipole matrix elements to the summations in the equations,
many-body calculations of different orders of correlations are
performed with negligible compromise in the accuracy of the
polarizability values [17]. The most dominant dipole matrix
elements are associated with the intermediate states 5P1/2,3/2

to 8P1/2,3/2 and 4F5/2,7/2 to 6F5/2,7/2 as ψN , and they are
computed using a relativistic coupled-cluster theory having
cluster operators containing single, double, and valence triple
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TABLE I. Magic wavelengths (in nm) with corresponding polarizabilities (in a.u.) of 87Sr+ for different focusing angles of the linearly
polarized vortex beam (with OAM = +1 and +2) for transitions 5S 1

2
(+1/2) → 4D 3

2
(MJ ). The values in the parentheses refer vector

polarizabilities at the corresponding magic wavelengths. In the parentheses (a, b), “a” and “b” indicate the vector polarizabilities for the
5S 1

2
(+1/2) and 4D 3

2
(MJ ) states, respectively, in a.u.

State λ50◦
α50◦

λ60◦
α60◦

λ70◦
α70◦

4D 3
2
(MJ ) OAM = +1

(+ 1
2 ) 1627.26 113.53 (−0.16, −7.20) 1598.71 115.45 (−0.16, −7.81) 1571.15 117.37 (−0.16, −7.27)

992.67 126.99 (−0.33, 12.91) 981.97 129.94 (−0.34, 13.95) 981.97 132.77 (−0.32, 13.14)
403.57 17.32 (158.00, 3.10) 403.57 17.32 (156.69, 3.07) 403.57 17.32 (158.72, 2.91)
213.21 −29.88 (−0.13, −0.93) 213.21 −30.79 (−0.13, −0.84) 213.21 −31.81 (−0.13, −0.24)
200.01 −24.11 (−0.10, −1.37) 200.45 −25.01 (−0.10, −1.43) 200.45 −26.03 (−0.09, −1.24)

(− 1
2 ) 1786.80 111.60 (−0.15, 5.20) 1752.44 114.54 (−0.15, 6.21) 1752.44 116.47 (−0.14, 5.52)

1003.60 126.99 (−0.33, −12.51) 992.67 129.94 (−0.34, −13.25) 992.67 131.86 (−0.32, −12.93)
403.57 10.53 (158.00, −3.10) 403.57 10.53 (156.69, −3.07) 403.57 11.54 (158.72, −2.91)
213.21 −29.88 (−0.13, 0.93) 213.21 −30.79 (−0.13, 0.84) 213.21 −31.81 (−0.13, 0.24)
200.45 −25.01 (−0.10, 1.47) 200.90 −25.01 (−0.10, 1.43) 201.34 −26.03 (−0.09, 1.64)

(+ 3
2 ) 1368.27 116.47 (−0.19, −40.15) 1389.13 118.39 (−0.20, −37.93) 1406.28 120.32 (−0.19, −34.55)

961.25 128.92 (−0.35, 43.73) 961.25 130.84 (−0.37, 43.90) 961.25 133.79 (−0.34, 42.50)
403.57 23.09 (158.00, 9.25) 403.57 23.09 (156.69, 9.26) 403.57 23.09 (158.72, 8.75)
213.21 −29.88 (−0.13, −2.78) 212.71 −30.79 (−0.13, −18.52) 213.21 −31.81 (−0.13, −2.64)
199.58 −24.11 (−0.10, −4.33) 199.58 −25.01 (−0.10, −5.23) 199.58 −25.01 (−0.08, −3.46)

(− 3
2 ) 1815.27 111.60 (−0.15, 15.61) 1815.27 113.53 (−0.21, 15.65) 1815.27 116.47 (−0.13, 14.78)

981.97 128.01 (−0.34, −41.81) 992.67 128.92 (−0.34, −40.55) 992.67 131.86 (−0.32, −38.00)
403.57 4.75 (158.00, −9.25) 403.57 4.75 (156.69, −9.26) 403.57 5.77 (158.72, −8.75)
213.21 −29.88 (−0.13, 2.78) 213.21 −30.79 (−0.13, 2.80) 213.21 −31.81 (−0.13, 2.64)
202.14 −25.01 (−0.10, 6.21) 202.14 −26.03 (−0.10, 6.13) 201.79 −26.03 (−0.09, 5.29)

(4D 3
2
(MJ )) OAM = +2

(+ 1
2 ) 2312.86 103.00 (−0.05, −1.66) 2201.13 104.92 (−0.05, −1.91) 2052.40 107.75 (−0.06, −2.15)

1047.43 117.37 (−0.15, −5.16) 1035.53 119.30 (−0.16, −1.46) 1035.53 122.24 (−0.16, −1.43)
405.73 13.47 (115.64, 1.51) 403.57 14.37 (86.72, 1.59) 405.73 14.37 (119.91, 1.56)
213.21 −27.96 (−0.06, −0.55) 213.21 −28.86 (−0.07, −0.48) 213.21 −28.86 (−0.06, −0.47)
199.66 −22.18 (−0.05, −0.71) 200.01 −23.09 (−0.05, −0.74) 199.58 −23.09 (−0.05, −0.61)

(− 1
2 ) 2559.74 101.98 (−0.04, 1.43) 2360.80 104.92 (−0.05, 1.71) 2201.13 107.75 (−0.06, 1.88)

1035.53 117.37 (−0.16, 1.38) 1035.53 119.30 (−0.16, 1.46) 1035.53 122.24 (−0.16, 1.43)
403.57 10.53 (82.11, −1.51) 403.57 10.53 (86.72, −1.59) 405.73 11.54 (119.91, −1.56)
213.21 −27.96 (−0.06, 0.55) 213.21 −28.86 (−0.07, 0.48) 213.21 −28.86 (−0.06, 0.47)
199.58 −22.18 (−0.05, 0.39) 200.01 −23.10 (−0.05, 0.74) 200.01 −23.09 (−0.05, 0.69)

(+ 3
2 ) 1276.28 111.60 (−0.11, −33.13) 1276.28 112.62 (−0.11, −35.00) 1290.75 115.45 (−0.11, −28.42)

943.34 122.24 (−0.18, 22.70) 943.34 124.17 (−0.20, 23.98) 943.34 126.99 (−0.19, 23.54)
405.73 19.24 (115.64, 4.52) 405.73 19.24 (122.13, 4.79) 405.73 19.24 (119.91, 4.70)
213.21 −27.96 (−0.06, −1.37) 213.21 −28.86 (−0.07, −1.45) 213.21 −28.86 (−0.06, −1.42)
200.90 −22.18 (−0.05, −2.36) 200.90 −23.09 (−0.05, −2.50) 200.45 −23.09 (−0.05, −2.25)

(− 3
2 ) 1428.32 108.77 (−0.09, 16.18) 1451.06 109.68 (−0.09, 16.10) 1474.54 112.62 (−0.09, 14.67)

951.22 121.22 (−0.18, −22.19) 951.22 123.15 (−0.19, −23.54) 951.22 126.99 (−0.19, −23.01)
403.57 9.62 (82.11, −4.51) 403.57 9.62 (86.72, −4.75) 405.73 9.62 (119.91, −4.70)
213.21 −27.96 (−0.06, 1.37) 213.21 −28.86 (−0.07, 1.45) 213.21 −28.86 (−0.06, 1.42)
202.14 −23.09 (−0.05, 2.90) 202.14 −24.11 (−0.05, 3.06) 201.79 −24.11 (−0.05, 2.84)

excitations in linear and nonlinear forms [50–56,58,70]. Rel-
atively less significant dipole matrix elements are involved
with the states 9P1/2,3/2 to 12P1/2,3/2 and 7F5/2,7/2 to 12F5/2,7/2

are evaluated using the second-order relativistic many-body
perturbation theory [52]. The remaining matrix elements con-
tribute little to the summations of Eq. (A1) to (A3) and are
calculated using the Dirac-Fock method. Also, to achieve a
better accuracy in the total dynamic polarizability values, we
utilized the transition energies from the experimental data
[71]. By employing the above methods, the static scalar polar-

izabilities α0
V (0) of 5S 1

2
, 4D 3

2
, and 4D 5

2
states are calculated

as 87.68, 55.92, and 56.21 a.u., respectively, and static tensor
polarizabilities α2

V (0) of 4D 3
2

and 4D 5
2

states are computed as
−34.67 and −47.12 a.u., respectively [17].

The core polarizability αC (ω) is valence-state-independent
quantity and can be calculated quite accurately for a system
having noble gas electronic configuration with core polar-
ization corrected dipole matrix elements using third-order
relativistic many-body perturbation theory [46,72]. Our cal-
culation yields that the static core POL αC (0) of the ion is
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TABLE II. Magic wavelengths (in nm) with corresponding polarizabilities (in a.u.) of 87Sr+ for different focusing angles of linearly
polarized vortex beam with OAM = +1 for transitions 5S 1

2
(+1/2) → 4D 5

2
(MJ ). The values in the parentheses refer to vector polarizabilities

at the corresponding magic wavelengths. In the parenthesis (a, b), “a” and “b” indicate the vector polarizabilities for 5S 1
2
(+1/2) and 4D 5

2
(MJ )

states, respectively, in a.u.

State λ50◦
α50◦

λ60◦
α60◦

λ70◦
α70◦

4D 5
2
(MJ ) OAM = +1

(+ 1
2 ) 1544.52 114.54 (−0.17, −4.39) 1523.86 116.47 (−0.18, −4.56) 1523.86 118.39 (−0.17, −4.31)

1122.25 122.24 (−0.28, −5.30) 1122.25 124.17 (−0.28, −5.33) 1122.25 126.99 (−0.26, −5.46)
403.57 18.22 (158.00, 2.14) 403.57 18.22 (156.69, 2.15) 403.57 18.22 (158.72, 2.03)
212.22 −29.88 (−0.13, 1.44) 212.22 −29.88 (−0.13, 1.45) 212.22 −30.79 (−0.12, 1.36)
202.14 −25.01 (−0.10, −0.89) 202.59 −26.03 (−0.10, −1.03) 202.14 −26.03 (−0.10, −0.91)

(− 1
2 ) 1656.85 113.53 (−0.16, 3.77) 1656.85 114.54 (−0.16, 3.78) 1627.26 117.37 (−0.15, 3.72)

1122.25 122.24 (−0.28, 5.30) 1122.25 124.17 (−0.28, 5.33) 1122.25 126.99 (−0.26, 5.46)
403.57 13.47 (158.00, −2.14) 403.57 13.47 (156.69, −2.15) 403.57 14.37 (158.72, −2.03)
212.22 −29.88 (−0.13, −1.44) 212.22 −30.79 (−0.13, −1.45) 212.22 −30.79 (−0.12, −1.36)
202.59 −25.01 (−0.10, 1.02) 202.59 −26.03 (−0.10, 1.03) 202.59 −26.94 (−0.10, 0.96)

(+ 3
2 ) 1406.28 115.45 (−0.20, −18.64) 1428.32 117.37 (−0.20, −17.34) 1428.32 120.32 (−0.19, −16.37)

1122.25 122.24 (−0.28 −15.94) 1122.25 124.17 (−0.28, −15.99) 1122.25 126.99 (−0.26, −15.09)
403.57 23.09 (158.00, 6.52) 403.57 22.07 (156.69, 6.44) 403.57 22.07 (158.72, 6.10)
212.22 −28.86 (−0.13, 4.33) 212.22 −30.79 (−0.13, 4.34) 212.22 −30.79 (−0.12, 4.10)
201.79 −25.01 (−0.10, −2.68) 201.79 −25.01 (−0.10, −2.69) 201.79 −26.03 (−0.10, −2.56)

(− 3
2 ) 1712.91 112.62 (−0.15, 10.46) 1687.53 114.54 (−0.16, 10.86) 1687.53 117.37 (−0.15, 10.26)

1122.25 122.24 (−0.28, 15.94) 1122.25 124.17 (−0.28, 15.99) 1122.25 126.99 (−0.26, 15.09)
403.57 9.62 (158.00, −6.52) 403.57 9.62 (156.69, −6.44) 403.57 9.62 (158.72, −6.10)
212.22 −29.88 (−0.13, −4.33) 212.22 −30.79 (−0.13, −4.34) 212.22 −30.79 (−0.12, −4.10)
203.05 −26.03 (−0.10, 3.59) 203.50 −26.94 (−0.10, 4.04) 203.50 −26.94 (−0.10, 3.82)

(+ 5
2 ) 1276.28 119.30 (−0.22, −46.32) 1276.28 120.32 (−0.22, −46.44) 1309.29 123.15 (−0.21, −36.17)

1122.25 122.24 (−0.28, −26.57) 1122.25 124.17 (−0.28, −26.64) 1122.25 126.99 (−0.26, −25.16)
403.57 26.93 (158.00, 10.70) 403.57 26.94 (156.69, 10.73) 403.57 26.94 (158.72, 10.15)
212.22 −28.86 (−0.13, 7.23) 212.22 −30.79 (−0.13, 7.24) 212.22 −30.79 (−0.12, 6.84)
201.79 −25.01 (−0.10, −4.48) 201.79 −26.03 (−0.10, −4.49) 201.79 −26.03 (−0.10, −4.24)

(− 5
2 ) 1687.53 112.62 (−0.16, 18.04) 1712.91 114.54 (−0.15, 17.48) 1712.91 117.37 (−0.14, 16.51)

1122.25 122.24 (−0.28, 26.57) 1122.25 124.17 (−0.28, 26.64) 1122.25 126.99 (−0.26, 25.16)
403.57 5.77 (158.00, −10.70) 403.57 5.77 (156.69, −10.73) 403.57 6.68 (158.72, −10.15)
212.22 −29.88 (−0.13, −7.23) 212.22 −29.88 (−0.13, −7.24) 212.22 −30.79 (−0.12, −6.84)
204.41 −26.03 (−0.10, 8.15) 203.95 −26.03 (−0.10, 7.46) 203.95 −26.93 (−0.10, 7.03)

6.103 a.u. The static core-valence parts αVC (0) for the states
5S 1

2
, 4D 3

2
, and 4D 5

2
are calculated to be −0.25, −0.38, and

−0.42 a.u., respectively. All the magic and tune-out wave-
lengths calculated for the ion using the above-mentioned
numerical procedure have maximum uncertainty of around
±1%. To calculate the uncertainty, we replace the most impor-
tant dipole matrix elements of the transitions: 5S 1

2
→ 5P1

2 , 3
2

for 5S 1
2
, 4D 3

2
→ 5P1

2 , 3
2
, 4F5

2
for 4D 3

2
, and 4D 5

2
→ 5P3

2
, 4F5

2 , 7
2

for 4D 5
2

by the corresponding matrix elements calculated
by Safronova [73] using single-double all-order method in-
cluding partial triple excitations and recalculate the magic
and tune-out wavelengths. The maximum difference between
these recalculated wavelengths and the corresponding wave-
lengths obtained from our method gives the uncertainty of our
results.

Calculation of the dynamic polarizability for 87Rb

To determine the valence polarizability of the ground state
5S 1

2
of 87Rb at the hyperfine level, Eq. (A6) reduces to

αV
F (ω) = C0α

0
V F (ω) + C1α

1
V F (ω). The tensor part of the po-

larizability is zero for the 5S 1
2

state. Similar to the 87Sr+ ion,
here also, the dipole matrix elements involved with the states
5P1/2,3/2 to 8P1/2,3/2 and 9P1/2,3/2 to 12P1/2,3/2 are computed
by using the relativistic coupled-cluster theory and second-
order relativistic many-body perturbation theory, respectively.
The 13P1/2,3/2 to 25P1/2,3/2 states and their associated matrix
elements with the 5S 1

2
state are calculated by using the Dirac-

Fock method. To achieve better accuracy, the energy values
of the states, used to calculate the polarizability values, are
extracted from the experimental measurements [71]. For the
5S 1

2
state of 87Rb, we find that the static scalar, core, and core-

valence polarizability values are 314.14, 9.11, and −0.26 a.u.,
respectively. The tune-out wavelengths of the hyperfine spin
states of 87Rb, discussed in the main text, have a maximum
uncertainty of ±0.1%.

Zeeman shift for 87Rb and 23Na

The Zeeman shifts for 87Rb and 23Na are evaluated by
using ĤZ = −βF̂Z + γ F̂ 2

Z , where β and γ are the linear and
quadratic Zeeman shifts, respectively. F̂Z represents the z
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TABLE III. Magic wavelengths (in nm) with corresponding polarizabilities (in a.u.) of 87Sr+ for different focusing angles of the linearly
polarized vortex beam with OAM = +2 for transitions 5S 1

2
(+1/2) → 4D 5

2
(MJ ). The values in the parentheses refer vector polarizabilities at

the corresponding magic wavelengths. In the parenthesis (a, b), “a” and “b” indicate the vector polarizabilities for 5S 1
2
(+1/2) and 4D 5

2
(MJ )

states, respectively, in a.u.

State λ50◦
α50◦

λ60◦
α60◦

λ70◦
α70◦

4D 5
2
(MJ ) OAM = +2

(+ 1
2 ) 2360.80 103.00 (−0.05, −0.93) 2149.21 105.83 (−0.05, −1.17) 2052.40 107.75 (−0.06, −1.25)

1122.25 114.54 (−0.14, −2.61) 1122.25 116.47 (−0.14, −2.75) 1122.25 119.30 (−0.14, −2.70)
405.73 14.37 (115.64, 1.05) 405.73 15.39 (122.13, 1.11) 405.73 15.39 (119.91, 1.09)
212.22 −26.94 (−0.06, 0.71) 212.22 −27.96 (−0.07, 0.73) 212.22 −28.86 (−0.06, 0.73)
201.34 −23.09 (−0.05, −0.40) 201.79 −23.09 (−0.05, −0.44) 201.34 −24.11 (−0.05, −0.42)

(− 1
2 ) 2489.80 103.00 (−0.05, 0.87) 2278.17 104.81 (−0.05, 1.05) 2149.21 107.75 (−0.06, 1.15)

1122.25 114.54 (−0.14, 2.61) 1122.25 116.47 (−0.14, 2.75) 1122.25 119.30 (−0.14, 2.70)
405.73 12.45 (115.64, −1.05) 403.57 13.24 (86.72, −1.11) 405.73 13.47 (119.91, −1.09)
212.22 −26.94 (−0.06, −0.71) 212.02 −27.39 (−0.07, 2.09) 212.22 −28.86 (−0.06, −0.73)
201.79 −23.09 (−0.05, 0.44) 201.88 −23.66 (−0.05, 0.44) 201.79 −24.11 (−0.05, 0.46)

(+ 3
2 ) 1544.52 107.75 (−0.09, −6.45) 1544.52 108.77 (−0.09, −6.82) 1523.86 111.60 (−0.09, −6.93)

1122.25 114.54 (−0.14, −7.81) 1122.25 116.47 (−0.14, −8.25) 1122.25 119.30 (−0.14, −8.10)
405.73 18.22 (115.64, 3.15) 405.73 18.22 (122.13, 3.34) 405.73 18.22 (119.91, 3.27)
212.22 −26.94 (−0.06, 2.13) 212.22 −27.96 (−0.07, 2.25) 212.22 −28.86 (−0.06, 2.20)
201.79 −23.09 (−0.05, −1.31) 201.79 −23.09 (−0.05, −1.38) 201.79 −24.11 (−0.05, −1.37)

(− 3
2 ) 1752.44 105.83 (−0.07, 4.85) 1712.91 107.75 (−0.07, 5.41) 1712.91 109.68 (−0.07, 5.31)

1122.25 114.54 (−0.14, 7.81) 1122.25 116.47 (−0.14, 8.25) 1122.25 119.30 (−0.14, 8.10)
405.73 11.54 (115.64, −3.15) 403.57 11.54 (86.72, −3.34) 405.73 11.54 (119.91, −3.27)
212.22 −26.94 (−0.06, −2.13) 212.22 −27.96 (−0.07, −2.25) 212.22 −28.86 (−0.06, −2.20)
202.59 −23.09 (−0.05, 1.50) 202.59 −24.11 (−0.05, 1.59) 202.59 −24.11 (−0.05, 1.56)

(+ 5
2 ) 1192.76 117.37 (−0.13, −37.85)

1136.24 119.29 (−0.14, −41.59)
405.73 22.07 (115.64, 5.25) 405.73 22.07 (122.13, 5.55) 405.73 22.07 (119.91, 5.45)
212.22 −26.94 (−0.06, 3.54) 212.22 −27.96 (−0.07, 3.73) 212.22 −28.86 (−0.06, 3.67)
203.05 −23.09 (−0.05, −2.72) 202.59 −24.11 (−0.05, −2.65) 202.59 −24.11 (−0.05, −2.60)

(− 5
2 ) 1276.28 110.70 (−0.11, 22.70) 1290.75 112.62 (−0.11, 21.72) 1328.38 114.54 (−0.11, 18.54)

1122.25 114.54 (−0.14, 13.02) 1122.25 116.47 (−0.14, 13.74) 1122.25 119.30 (−0.14, 13.50)
405.73 11.54 (115.64, −5.25) 403.57 11.54 (86.72, −5.55) 405.73 11.54 (119.91, −5.45)
212.22 −26.94 (−0.06, −3.54) 212.22 −27.96 (−0.07, −3.73) 212.22 −28.86 (−0.06, −3.67)
204.78 −24.11 (−0.05, 4.29) 204.41 −24.11 (−0.05, 4.23) 203.95 −25.01 (−0.05, 3.77)

component of the external magnetic field. The coefficients
β and γ can be obtained from the power-series expansion
of the Breit-Rabi formula [59]. The fine structure gJ and
nuclear Landé g factors gI , used in the Breit-Rabi formula, are
2.002 331 13 and −0.000 995 141 4, respectively, for 87Rb,
while they are 2.00 229 60 and −0.000 804 610, respectively,
for 23Na [74]. Also, the ground-state hyperfine splittings of
87Rb and 23Na, required in the Breit-Rabi formula, have the
values 6.8 and 1.7 GHz [74], respectively.

3. List of magic wavelengths with the corresponding vector
and total polarizabilities

A list of magic wavelengths and the corresponding total
polarizability values at these wavelengths for the transitions
5S 1

2
→ 4D 3

2 , 5
2

are presented in Tables I–III. Moreover, at
each magic wavelength, values of the vector polarizabilities
of the relevant states are quoted. Results are displayed for
OAM = +1 and +2, while the focusing angles of the beam

are considered as 50◦, 60◦, and 70◦. As seen in the tables,
all the transitions between the magnetic sublevels of 5S 1

2
and

4D 3
2

and 4D 5
2

states produce five sets of magic wavelengths
except for a few cases, say, the 5S 1

2
→ 4D 5

2
transition for

OAM = +2. Depending on the proximity of the resonances,
the strength of the vector polarizability of one of the state
dominates over the other state for a particular value of magic
wavelength. For the 5S 1

2
→ 4D 5

2
(+5/2) transition, we have

found (in Table III) that two sets of infrared magic wave-
lengths are missing at the focusing angles 50◦ and 60◦ of the
beam, but all five sets of magic wavelengths are present at 70◦,
when the projected beam has OAM = +2. This highlights
the direct effect of spin-orbit coupling of a linearly polar-
ized vortex beam on the magic wavelengths. All the tables
show that the magic wavelengths that fall in the visible and
ultraviolet region of the electromagnetic spectrum support the
blue-detuned trapping scheme confining the ion in the low-
intensity region of the beam [75–78].
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