
PHYSICAL REVIEW A 102, 063115 (2020)

Resonant two-photon ionization of atoms by twisted and plane-wave light
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We study the resonant two-photon ionization of neutral atoms by a combination of twisted and plane-wave
light within a fully relativistic framework. In particular, the ionization of an isotropic ensemble of neutral sodium
atoms (Z = 11) from their ground 3 2S1/2 state via the 3 2P3/2 level is considered. We investigate in details the
influence of the kinematic parameters of incoming twisted radiation on the photoelectron angular distribution
and the circular dichroism. Moreover, we study the influence of the geometry of the process on these quantities.
This is done by changing the propagation directions of the incoming twisted and plane-wave light. It is found
that the dependence on the kinematic parameters of the twisted photon is the strongest if the plane-wave and
twisted light beams are perpendicular to each other.
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I. INTRODUCTION

The interaction of twisted (or vortex) light beams with
matter has become an important research topic with extensive
applications. These beams can carry a nonzero projection of
the orbital angular momentum (OAM) onto the propagation
direction. This projection, being an additional degree of free-
dom, provides a unique possibility to gain a deeper insight into
the role of the OAM in light-matter interactions. Moreover,
the Poynting vector of the vortex light beams rotates in a
corkscrew manner around the propagation direction, and the
intensity profile exhibits a ring structure. Therefore, in pro-
cesses involving vortex photons, the position and structure of
the target play a prominent role, in contrast to the plane-wave
case.

Twisted photons are currently applied in, e.g., nanotech-
nology [1], astronomy [2,3], metrology [4], condensed-matter
physics [5], and quantum information [6]. Most of these and
many other applications rely on knowledge about the inter-
action of twisted light with ions and atoms. That, in turn,
has stimulated investigations of fundamental processes in-
volving twisted light beams and atomic or ionic systems. Up
to now, theoretical studies of the excitation [7–12], ionization
[13–20], and scattering [21] processes have been presented.
Experimental investigations were performed, e.g., for the ex-
citation of a single Ca+ ion [22] and the ionization of a gas
target consisting of helium atoms [23]. For a more in-depth
discussion of the possible applications utilizing twisted light,
see the reviews [24,25] and references therein.

In the present paper, we perform a fully relativistic inves-
tigation of the resonant two-photon ionization of alkali-like
ions (or atoms) by a combination of plane-wave and twisted

light. We carry out our study in an example of neutral sodium
atoms (Z = 11). For this system, the resonant two-photon
ionization proceeds as follows. In a first step, the plane-wave
photon excites the valence electron from 3s to 3p3/2 state, and
in the second step it is ionized by a vortex photon. As a target,
we consider an isotropic ensemble of atoms as it can be read-
ily performed using present-day techniques. In this case, we
show that both the photoelectron angular distribution and the
circular dichroism depend on the ratio of the transversal and
longitudinal components of the momentum of twisted light,
which is defined by the so-called opening angle. We propose
to enhance this dependency through an appropriate choice of
geometry, i.e., via adjusting the angle between the plane-wave
and twisted photons. It is found that the sensitivity to the
opening angle is the strongest if the incident (plane-wave and
twisted) beams are perpendicular to each other. Moreover,
this dependency is stronger than in the case of single-photon
ionization by twisted light beams [24].

The paper is organized as follows: In Sec. II A the basic
equations for resonant two-photon ionization by plane-wave
light are briefly recalled. In Sec. II B the theoretical descrip-
tion of this process involving a combination of twisted and
plane-wave light is presented. In Sec. III we investigate the
angular distribution and the circular dichroism for different
opening angles of the twisted photon. The dependence of the
“twistedness”-induced effects on the angle between the first,
plane-wave, and the second, twisted, photon is also presented
in Sec. III. Finally, a summary and outlook are given in
Sec. IV.

Relativistic units, me = h̄ = c = 1, and the Heaviside
charge unit e2 = 4πα (where α is the fine-structure constant)
are used in the paper.
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II. BASIC FORMALISM

In the present paper, we focus on an investigation of res-
onant two-photon ionization of alkali-metal atoms using a
combination of plane-wave and twisted photons. The resonant
two-photon ionization is a two-step process. In the first step,
the photon excites the target atom from the ground i state to
the excited d one, while the second photon ionizes the atom.
Here, we study the scenario in which the first photon is a con-
ventional (plane-wave) one and the second photon is twisted.
Our analysis is restricted to the case of continuous-wave
lasers. The investigation of the influence of time duration of
the pulses and the time delay between them on the process
is beyond the scope of the present study. A discussion of
the temporal effects in resonant two-photon ionization and
similar processes can be found, e.g., in Refs. [26–30]. We
start with the basic expressions for the conventional resonant
two-photon ionization since the formulas for the twisted case
can be traced back to their plane-wave counterparts.

A. Resonant ionization by two plane-wave photons

The probability of two-photon ionization in the resonance
approximation (see Ref. [31] for further details) is given by

dW (pl)
k2λ2,k1λ1

d� f

= p f ε f

�2
d

4(2π )7

2 ji + 1

∑
μ f mi

∣∣∣∣∣
∑
md

τ
(ion,pl)
p f μ f ;k2λ2,dmd

τ
(exc)
dmd ;k1λ1,imi

∣∣∣∣∣
2

, (1)

where ε f and p f are the energy and asymptotic momentum
of the emitted electron, respectively, p f = |p f |, ji is the total
angular momentum (TAM) of the initial i state, md is the TAM
projection of the excited d state, and �d is the total width of
this state. The first photon is characterized by its momentum
k1 and helicity λ1, and the second photon by k2 and λ2,
accordingly. In Eq. (1), averaging over the TAM projection
of the initial state mi and the summation over the helicity of
the outgoing electron μ f are performed. In the present work,
we consider alkali-metal atoms. Therefore, we can apply the
single active electron approximation for the description of
resonant two-photon ionization. In the framework of this ap-
proximation, the excitation amplitude is given by

τ
(exc)
dmd ;k1λ1,imi

= −
∫

dr	†
dmd

(r)R(pl)
k1λ1

(r)	imi (r). (2)

Here 	imi (r) and 	dmd (r) are the wave functions of the initial
and intermediate atomic states, respectively, and R(pl)

kλ
= −eα ·

A(pl)
kλ is the photon absorption operator in a Coulomb gauge

with the vector of Dirac matrices α and the vector potential of
the plane-wave photon:

A(pl)
kλ (r) = εkλeik·r√

2ω(2π )3
. (3)

The spherical-wave decomposition of the photon field is [32]

εkλeik·r =
√

2π
∑
LM

iL
√

2L + 1DL
Mλ(ϕk, θk, 0)

×
∑
p=0,1

(iλ)pa(p)
LM (r), (4)

where CJM
j1m1 j2m2

is the Clebsch-Gordan coefficient, DJ
MM ′ is

the Wigner matrix [32,33], and a(p)
LM denote the magnetic (p =

0) and electric (p = 1) multipole fields defined by

a(0)
LM (r) = jL(kr)YLLM (r̂), (5)

a(1)
LM (r) = jL−1(kr)

√
L + 1

2L + 1
YLL−1M (r̂)

− jL+1(kr)

√
L

2L + 1
YLL+1M (r̂). (6)

Here YJLM [33] is the vector spherical harmonics. Utilizing
Eqs. (3) and (4) and making use of the Wigner-Eckart theo-
rem, one obtains

τ
(exc)
dmd ;k1λ1,imi

= − e√
2ω(2π )2

∑
LM

iL
√

2L + 1DL
Mλ1

(
ϕk1 , θk1 , 0

)

×
∑
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(iλ1)p

√
2L + 1

2 jd + 1

×C jd md
jimi LM〈	d‖α · a(p)

L ‖	i〉. (7)

The explicit form of the reduced matrix elements 〈‖ · · · ‖〉 can
be found in Ref. [34].

The ionization amplitude is given by

τ
(ion,pl)
p f μ f ;k2λ2,dmd

= −
∫

dr 	 (−)†
p f μ f

(r)R(pl)
k2λ2

(r)	dmd (r), (8)

where 	 (−)
p f μ f

is the wave function of the outgoing electron
with a definite asymptotic momentum [35–37]:

	 (−)
p f μ f

(r) = 1√
4πε f p f

∑
κmj

C
jμ f

l0 1/2μ f
il
√

2l + 1e−iδκ D j
mjμ f

(ϕ f , θ f , 0)	εκmj (r). (9)

Here κ = (−1)l+ j+1/2( j + 1/2) is the Dirac quantum number determined by the total angular momentum j and the parity l ,
δκ is the phase shift induced by the scattering potential, and 	εκmj (r) is the partial-wave solution of the Dirac equation in the
scattering field [38]. Substituting Eqs. (3), (4), and (9) into (2), we arrive at

τ
(ion,pl)
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The amplitudes (2) and (8) uniquely define the probability
(1), and thus all the properties of the resonant two-photon
ionization process.

B. Resonant ionization by plane-wave and twisted photons

In the present work, we restrict ourselves to the case of
Bessel-wave twisted photons. These waves possess a well-
defined energy ω, helicity λ, as well as projections of the
linear kz and total angular m momenta onto the propagation di-
rection. We fix the z axis along this direction. The Bessel-wave
twisted photon is described by the vector potential [14,39,40]:

A(tw)
κmkzλ

(r) = iλ−m
∫

eimϕk

2πk⊥
δ(k⊥ − κ)δ(k‖ − kz )A(pl)

kλ
(r)dk,

(11)
where k‖ and k⊥ are the longitudinal and transversal compo-
nents of the momentum k, respectively, and κ = √

ω2 − k2
z

is the well-defined transversal momentum of the Bessel pho-
ton. From Eq. (11), it is seen that in momentum space,
Bessel states represent a cone with the opening angle θk =
arctan(κ/kz ). In the coordinate space, the intensity profile and
the flux density of the twisted photon are not homogeneous
functions but exhibit complex internal structures. As an ex-
ample, the intensity profile reads

I (tw)
⊥ (r⊥) = ∣∣P(tw)

z (r⊥)
∣∣

= ωλ

(4π )3

[
J2

m−1(κr⊥)c2
+1 − J2

m+1(κr⊥)c2
−1

]
(12)

with

c±1 = 1 ± λ cos θk.

Here Jn is the Bessel function of the first kind [41,42], r⊥
is the perpendicular component of r, and P(tw)

z (r⊥) is the z
component of the time-averaged Poynting vector [17]:

P(tw)(r) = 1
2 Re{iA(tw)(r) × [∇ × A(tw)(r)]∗}. (13)

Figure 1 displays a characteristic intensity profile that has
a ringlike structure. This distinguishing feature makes the
ionization amplitude-dependent on the relative position of the
twisted photon and the target. To investigate the resonant
two-photon ionization of a single alkali-metal atom by a com-
bination of plane-wave and Bessel photons, we first need to
discuss the geometry of this process, which is schematically
depicted in Fig. 2. As was mentioned before, the z axis is
directed along the propagation direction of the second, Bessel,
photon. The reaction x-z plane is formed by the z axis and
the wave vector of the first, plane-wave, photon k1. The po-
sition of the target atom is given by the impact parameter
b = (b, ϕb, 0) in cylindrical coordinates. The probability of
the process under investigation in the resonance approxima-
tion is given by

dW (tw)
κmkzλ2,k1λ1

d� f
(b)

= p f ε f

�2
d

4(2π )7

2 ji + 1

∑
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∑
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τ
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p f μ f ;κmkzλ2,dmd

(b) τ
(exc)
dmd ;k1λ1,imi

∣∣∣∣∣
2

,

(14)

FIG. 1. The transverse intensity profile of a Bessel beam I⊥ is
characterized by a vanishing intensity on the beam axis (x = y = 0)
and an infinite number of concentric rings. It is shown in units of
the maximum intensity for a beam with ω = 3.677 96 eV, θk = 5◦,
λ = 1, and m = 3.

where the amplitude of the ionization by the twisted photon
has the following form:

τ
(ion,tw)
p f μ f ;κmkzλ2,dmd

(b)

= −
∫

dr 	 (−)†
p f μ f

(r − b)R(tw)
κmkzλ2

(r)	dmd (r − b). (15)

Here R(tw)
κmkzλ

is the photon absorption operator:

R(tw)
κmkzλ

= −eα · A(tw)
κmkzλ

. (16)

Substituting Eq. (11) into Eq. (15) and changing the integra-
tion variable r to r − b, one can express the amplitude of the
ionization by a twisted photon through the one obtained in the
plane-wave case (8):

τ
(ion,tw)
p f μ f ;κmkzλ2,dmd

(b) =
∫

eimϕk

2πk⊥
iλ−mδ(k⊥ − κ)

× δ(k‖ − kz )eik·b τ
(ion,pl)
p f μ f ;kλ2,dmd

dk. (17)

So far we have discussed the resonant ionization of a single
atom by the combination of the plane-wave and Bessel pho-
tons. This process is interesting from a theoretical viewpoint,
but most photoionization experiments deal with extended
(macroscopic) targets. Therefore, we focus below on the
macroscopic target, and we describe such a target as an inco-
herent superposition of atoms randomly and homogeneously
distributed. The probability of resonant two-photon ionization
in this case is given by

dW (mac,tw)
κkzλ2,k1λ1

d� f
=

∫
db
πR2

dW (tw)
κmkzλ2,k1λ1

d� f
(b)

= 2

πRκ

∫ 2π

0

dϕk

2π

dW (pl)
kλ2,k1λ1

d� f
, (18)
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FIG. 2. Geometry of the resonant ionization of a single atom by the combination of plane-wave and twisted light.

where the vector k is defined by cylindrical coordinates
(κ, ϕk, kz ), 1/πR2 is the cross-section area, with R being
the radius of the cylindrical box. Note that for macroscopic
targets, the probability of the resonant two-photon ionization
does not depend on the TAM projection m but is still sensitive
to the opening angle of the incoming twisted photon.

In the present investigation, we restrict ourselves to the
normalized probability

dW (norm,tw)
λ2,λ1

d� f
= 1

W (avr)
λ2,λ1

dW (mac,tw)
κkzλ2,k1λ1

d� f
, (19)

where

W (avr)
λ2,λ1

= 1

4π

∫
d� f

dW (mac,tw)
λ2,λ1

d� f
. (20)

III. RESULTS AND DISCUSSIONS

Let us proceed to the investigation of the effects of the
“twistedness” and explore the possibilities of their enhance-
ment. Since in the present study we consider only the scenario
of the macroscopic target, these effects are constituted in the
dependence of the measurable quantities on the opening angle
of the vortex light beam. In the present work, we consider
two-photon ionization of a valence electron of neutral sodium
(Z = 11). We describe this process within the framework of
the single active electron approximation. The active electron
in the ground 3s, excited 3p3/2, and continuum states is de-
scribed by the wave functions being the solutions of the Dirac
equation with the effective potential describing the electric
field of the nucleus and the spectator electrons. Here we

utilize the so-called Xα central potential whose parameters
are adjusted in such a way as to reproduce the energy of
the 3 2S1/2-3 2P3/2 transition, namely 2.104 43 eV [43]. The
radial Dirac equation with the effective potential is solved
by the modified RADIAL package [44]. The energy of the
twisted photon ω2 = 3.677 96 eV is chosen to be the same
as in the experiment [45] where the resonant two-photon
ionization of the neutral sodium atoms by two plane-wave
photons was studied. We note that the fine-structure levels
3 2P1/2 and 3 2P3/2 in neutral sodium are separated by 0.002 eV
[43] and their width is approximately 0.000 26 meV [46]. The
technique of the exclusive population of these nonoverlapping
levels is well-established [47].

A. Ionization probability

We start with the analysis of the probability of the resonant
ionization of the macroscopic sodium target by two photons
with λ1 = λ2 = 1. Except for the right panel of the last row,
Fig. 3 presents the normalized probability (19) as a function
of the polar angle of the ionized electron θ f for different
values of the angle between the two photons θ1. For reference,
we show the normalized probability of ordinary two-photon
ionization (solid black line). From the upper three rows of
this figure, it is seen that the ionization probability changes
significantly when the angle θ1 is changed to 180◦ − θ1. This
phenomenon can be understood from the two-photon ioniza-
tion by co- and counterpropagating plane-wave light (first row
in Fig. 3). In this scenario, the process is invariant under
rotations around the z axis, and, as a result, the TAM projec-
tion onto this axis is conserved. Therefore, only the following
transitions can take place:

θ1 = 0◦ :

∣∣∣∣3s1/2 mi = ±1

2

〉
→

∣∣∣∣3p3/2 md = +1

2
,+3

2

〉
→

∣∣∣∣p f m f = +3

2
,+5

2

〉
, (21)

θ1 = 180◦ :

∣∣∣∣3s1/2 mi = ±1

2

〉
→

∣∣∣∣3p3/2 md = −1

2
,−3

2

〉
→

∣∣∣∣p f m f = ±1

2

〉
, (22)

where κ f is the Dirac quantum number of the electron in the
continuum, and m f is its TAM projection onto the z axis. The

TAM projection of the intermediate state is md = mi + λ1

for copropagating photons and md = mi − λ1 for
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FIG. 3. Except for the right panel of the last row, the normalized probability (19) of the resonant two-photon ionization of a macroscopic
sodium target as a function of the polar angle of the ionized electron θ f is depicted. The results are presented for different values of the angle
between the first, plane-wave, and the second, Bessel, photon θ1 (see Fig. 2). The Bessel photon is characterized by its opening angle θk . In the
right panel of the last row, the normalized probability (23) of single-photon ionization by twisted light is depicted.

counterpropagating beams. From the scheme (21), it is
seen that s1/2 and p1/2 waves are absent in the final electron
state for the scenario with θ1 = 0◦. This can, in principle,

lead to the significant differences between the cases of co-
and counterpropagating plane-wave light beams. Although
for other geometries these simple selection rules are not

063115-5



V. P. KOSHELEVA et al. PHYSICAL REVIEW A 102, 063115 (2020)

valid, the contribution of the s1/2 and p1/2 waves still
remains suppressed for the scenarios with θ1 < 90◦, which is
supported by numerical results.

From Fig. 3, it is also seen that the ionization probabil-
ity depends strongly on the opening angle θk of the twisted
photon. As an example, in the case of ionization by two
copropagating plane-wave photons (the upper left panel of
Fig. 3), the photoelectrons are not emitted under the angles
0◦ and 180◦. But for the ionization by a combination of plane-
wave and twisted light beams, the probability of forward and
backward emission is nonzero. From Fig. 3 it is also seen that
the closer θ1 is to 90◦, the stronger is the dependence of the
ionization probability on the opening angle of the ionizing
twisted photon θk . For θ1 = 90◦, the dependence becomes the
most pronounced, as seen from the left panel of the last row
in Fig. 3. In this case, the probability changes significantly, in
comparison to the plane-wave one, even for relatively small
opening angles. That makes the scenario with θ1 = 90◦ the
most promising for the detection of the kinematic effects in
two-photon ionization. In addition, the dependence of the
probability on the opening angle of the ionizing twisted pho-
ton is larger for angles θ1 > 90◦ in comparison to the case in
which θ1 → 180◦ − θ1.

It is instructive to compare our results with those presented
in Ref. [24], where the ionization from the ground state of
hydrogenlike ions by a twisted photon has been considered.
This comparison should serve only as a qualitative indica-
tion of the enhancement of the kinematic effects. Within the
nonrelativistic formalism, which was used in Ref. [24], the
single-photon ionization probability is given by

dW (norm,tw)
1ph

d� f
= 1

4π
[1 − P2(cos θk )P2(cos θ f )]. (23)

We note that this ionization probability does not depend either
on the nuclear charge Z or on the energy of the ionizing
photon. To restore these dependences, one should consider
the relativistic formalism (see, for details, Ref. [48], where the
time-reversed process of photoionization, namely radiative re-
combination, was considered). To the best of our knowledge,
a fully relativistic description of photoionization by twisted
photons has not yet been presented in the literature. In the
right panel of the last row of Fig. 3, the normalized probability
of single-photon ionization by twisted light is depicted. From
Fig. 3 it is seen that by choosing properly the geometry in
the process of the ionization by the combination of twisted
and plane-wave photons, one can significantly enhance the
kinematic effects in comparison to the single-photon case.

B. Circular dichroism

The two-photon ionization by a combination of plane-
wave and twisted light can be additionally characterized by
dichroism. As was shown before, for macroscopic targets the
angular distribution of photoelectrons does not depend on the
TAM projection of the vortex photon. Therefore, the dichro-
ism signal in our case can appear only due to a flip of the
helicity of the first or second incoming photon. Such a signal
is commonly known as circular dichroism (CD):

CD = dW1,1 − dW1,−1

dW1,1 + dW1,−1
, (24)

where dWλ2,λ1 ≡ dW (norm,tw)
λ2 ,λ1
d� f

. Before proceeding to the numeri-
cal results for the circular dichroism, we present the following
properties of the ionization probabilities:

dWλ2,λ1 = dW−λ2,−λ1 (25)

and

dWλ2,λ1 −−−−−−→
θ f →180◦−θ f
θ1→180◦−θ1

dW−λ2,λ1 . (26)

With the use of these expressions and the results presented in
Fig. 3, one can calculate the CD. For the sake of visualization,
we present the CD (24) for the scenarios with θ1 < 90◦ in
Fig. 4. Let us note that from Eqs. (25) and (26) one can notice
that the CD is an antisymmetric function with respect to the
simultaneous replacement θ1 → 180◦ − θ1 and θ f → 180◦ −
θ f . Therefore, for θ1 = θ f = 90◦ the CD equals zero, which
can be seen in the right panel of the second row in Fig. 4.
From this graph, one can also see that in the case when the
electrons are emitted in the forward or backward directions,
the CD tends to zero. One can conclude that in this scenario,
the ionization probability does not depend on the polarization
of the photons. In general, from Fig. 4 it is seen that, as in the
case of the normalized probability, the dependence of the CD
on the opening angle θk increases while θ1 approaches 90◦. In
the case of θ1 = 90◦, the kinematic effects become the most
pronounced.

We want to note that while our calculations are performed
for the continuous-wave laser case, they can also (at least
qualitatively) be used to understand the experimental results
obtained in a case of pulsed lasers. Thus, the theoretical de-
scription of resonant two-photon ionization of neutral sodium
by two laser pulses is presented in a seminal paper by Hansen
and coauthors [27]. In that work, the modification of the
photoelectron angular distribution due to the evolution of
the intermediate 3 2P3/2 state during the time delay between
exciting and ionizing laser pulses was studied. These modi-
fications, however, are of minor importance when compared
with those induced by the vortex structure of the second pho-
ton. This means that for the experimental study of the process
considered here, it is sufficient to make the time delay between
the laser pulses much smaller than the lifetime of the 3 2P3/2

intermediate state, which is 16.254(22) ns [46].

IV. CONCLUSION

In the present work, we studied the resonant ionization
by a combination of plane-wave and twisted light within the
fully relativistic formalism. The study is performed for the
ionization of a valence 3s electron of a neutral sodium atom
(Z = 11) via the 3p3/2 state. We consider a scenario in which
the plane-wave and Bessel beam collide with a macroscopic
target. In particular, we investigate the photoelectron angular
distribution and the circular dichroism for different opening
angles of the twisted photon θk and different angles between
the first, plane-wave, and the second, Bessel, photons θ1.
It was found that the kinematic effects do increase with θ1

approaching 90◦. That makes the case of θ1 = 90◦ the most
promising scenario for the observation of these effects in an
experimental realization of the investigated process.
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FIG. 4. The circular dichroism CD (24) for the resonant two-photon ionization of a macroscopic sodium target as a function of the polar
angle of the ionized electron θ f is shown. The results are presented for different values of the angle between the first, plane-wave, and the
second, Bessel, photon, θ1 (see Fig. 2). The Bessel photon is characterized by its opening angle θk .

We also performed a qualitative comparison between our
and the nonrelativistic results presented in Ref. [24] for the
single-photon ionization from the ground state of hydrogen-
like ions by the twisted light. From this comparison, we found
that the presence of the plane-wave photon in the two-photon
ionization significantly increases the kinematic effects in com-
parison with those in the single-photon ionization.
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