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The Morris-Shore (MS) transformation is a powerful tool for decomposition of the dynamics of multistate
quantum systems to a set of two-state systems and uncoupled single states. It assumes two sets of states wherein
any state in the first set can be coupled to any state in the second set, but the states within each set are not
coupled between themselves. Another important condition is the degeneracy of the states in each set, although
all couplings between the states from different sets can be detuned from resonance by the same detuning. The
degeneracy condition limits the application of the MS transformation in various physically interesting situations,
e.g., in the presence of electric and/or magnetic fields or light shifts, which lift the degeneracy in each set
of states, e.g., when these sets comprise the magnetic sublevels of levels with nonzero angular momentum.
This paper extends the MS transformation to such situations, in which the states in each of the two sets are
nondegenerate. To this end, we develop an alternative way for the derivation of Morris-Shore transformation,
which can be applied to nondegenerate sets of states. We present an approximated eigenvalue approach, by
which, in the limit of small detunings from degeneracy, we are able to generate an effective Hamiltonian that
is dynamically equivalent to the nondegenerate Hamiltonian. The effective Hamiltonian can be mapped to the
Morris-Shore basis with a two-step similarity transformation. After the derivation of the general framework,
we demonstrate the application of this technique to the popular � three-state system, and the four-state tripod,
double-�, and diamond systems. In all of these systems, our formalism allows us to reduce their quantum
dynamics to simpler two-state systems even in the presence of various detunings, e.g., generated by external
fields of frequency drifts.
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I. INTRODUCTION

Coherent control of quantum systems is one of the corner-
stones of contemporary quantum physics [1,2]. Most systems
which have been well studied and for which analytical so-
lutions [3–8] exist consist of only two or three quantum
states [9]. In order to make sure that only two or three states
are involved in the dynamics, the physical system has to be
carefully isolated in order to prevent interference from nearby
states with similar energy, which is not always easy to achieve.
One of the ways to isolate a system is by large energy sepa-
ration between the ground and excited states. This separation
renders the manifolds of ground and excited states to a single
pair by largely detuning all other transitions, which dimin-
ishes their excitation probability. On the other hand, if the
energy separation within a manifold is much smaller than the
energy of the coupling field, as is often the case when using
angular momentum states or ultrashort laser pulses, such strat-
egy is unreliable. Even with other state isolation techniques,
such as light polarization, chirping, or light-induced energy
shifts [10–12], additional states often have to be included
which adds an extensive complexity to the system.

Multistate systems, by themselves, have many more de-
grees of freedom and allow the understanding of more
complicated intriguing effects. For example, analytical mul-
tilevel solutions are essential for the most famous quantum

computation algorithms [13] whose building blocks are many-
qubit coherent superposition states. Multistate systems play
an important role in effects such as dark-state polaritons, elec-
tromagnetically induced transparency [14–16], and multistate
population transfer [17] and atom optics [18–21], to name just
a few.

Multistate systems are far more difficult to treat than two-
and three-state systems as they are described by differential
equations of prohibitively high order, unless they can be re-
duced to simpler systems [22]. One of the most prominent
techniques for such reduction is the Morris-Shore (MS) trans-
formation [23]. It is a transformation of the basis vectors in
Hilbert space, which reduces two sets of degenerate states to
a number of independent two-state systems and residue “dark
states,” uncoupled from the interaction. The MS transforma-
tion has been further generalized to three sets of degenerate
states [24] that can reduce the dynamics to independent three-
state systems.

The mathematical description of the MS transformation
requires the derivation of eigenvalues and eigenvectors of a
Hermitian matrix, which is not a particularly hard task. There
are, however, a few restrictions on the MS transformation,
namely, all interactions must share the same time dependence
and all interactions must be resonant, or equally detuned from
the transition frequencies. The last condition implies degen-
eracy among the states in each of the two sets. While the
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restriction of same time dependence for the couplings can
be met with careful alignment, the condition of degeneracy
restricts the applicability of the MS transformation. Indeed,
the degeneracy can easily be lifted in the presence of electric
and/or magnetic fields or light shifts, for example, when these
sets comprise the magnetic sublevels of levels with nonzero
angular momentum.

In order to remove this limitation, in this paper, we propose
an extension of the MS transformation to nondegenerate sets
of states. To this end, we propose an alternative method of
obtaining the MS transformation, which allows us to trans-
form a nondegenerate Hamiltonian to a set of independent
two-state systems. Essentially, we obtain an effective Hamil-
tonian, which is dynamically equivalent to the nondegenerate
Hamiltonian, but whose eigenvalues are much simpler. We
further obtain the nondegenerate MS transformation by map-
ping the diagonalized effective Hamiltonian to the MS basis
with a similarity transformation, which can be obtained by
the degenerate MS Hamiltonian. We apply our technique to
the � configuration [25,26] as it is the simplest system to
which many other problems are reduced. Often, an addi-
tional ground state participates in the interaction of the �

system and, for that matter, we also investigate the tripod
system [27]; the latter also has importance on its own [28]. Fi-
nally, we apply our results to the double-� system since it is of
significant interest for lasing without inversion [29,30], non-
linear optics [31], electromagnetically induced transparency
(EIT) [32], and other coherent excitation effects [33].

This paper is organized as follows. In Sec. II, we intro-
duce the standard MS transformation for degenerate systems.
In Sec. III, we describe the main idea of the effective
Hamiltonian and how to find its MS transformation. Further,
we illustrate these concepts with some common systems in
Sec. IV. Finally, we conclude our findings in Sec. V.

II. DEGENERATE MORRIS-SHORE TRANSFORMATION

The standard Morris-Shore transformation considers a
system of g degenerate ground states coupled to e degen-
erate excited states, as described by the time-dependent
Schrödinger equation in the usual rotating-wave approxima-
tion (RWA),

ih̄
d

dt
C(t ) = H(t )C(t ). (1)

The Hamiltonian is a block matrix given by

H = 1

2

[−�(t )g×g V(t )g×e

V†(t )e×g �(t )e×e

]
. (2)

The detuning matrices in Eq. (2) are all diagonal, namely,

�(t ) = �(t )1. (3)

The time-dependent diagonal detunings are defined as the
difference of the transition frequency of the system and the
frequency of the coupling field,

�(t ) = (ωi − ω j ) − ω, (4)

where the indices i and j run over the excited and ground
states, respectively. Due to the degeneracy of the system, �(t )
is the same for all pairs of coupled states.

FIG. 1. Scheme of the Morris-Shore transformation, where a
multistate system consisting of two coupled sets of degenerate levels
is decomposed into a set of independent two-state systems and a set
of decoupled states.

The interaction matrix V(t ) is g × e dimensional, whose
elements are the couplings between the ground and excited
states,

V(t ) =

⎡⎢⎢⎢⎢⎣
V11 V12 · · · V1e

V21 V22 · · · V2e

... · · · . . .
...

Vg1 Vg2 . . . Vge

⎤⎥⎥⎥⎥⎦. (5)

The idea behind the MS transformation is to find a unitary
matrix U, such that

CMS = UC, (6a)

HMS = UHU† = 1

2

[−�(t ) �(t )

�†(t ) �(t )

]
, (6b)

where the new interaction matrix �(t ) is now diagonal and
the detuning matrix �(t ) of Eq. (3) is left unchanged by the
transformation. The consequence of this change of basis is
that HMS can further be rearranged by inspection in a block-
diagonal form,

H̃MS =

⎡⎢⎢⎢⎢⎢⎣
HMS

1 . . . . . . 0
...

. . . . . .
...

... . . . HMS
n

...

0 . . . . . . HMS
n+1

⎤⎥⎥⎥⎥⎥⎦, (7)

such that the n MS Hamiltonians are 2 × 2 dimensional and
the (n + 1)-th MS Hamiltonian is a diagonal matrix driving
the evolution of uncoupled spectator or “dark” MS states, as
illustrated in Fig. 1.
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The standard procedure to find the transformation matrix
U is to represent it in block-matrix form,

U =
[

A O

O B

]
, (8)

where A is a unitary g-dimensional square matrix and B is
a unitary e-dimensional square matrix. We require that A
and B only mix sublevels of the ground and excited states,
respectively, as well as diagonalize V(t ) in a way that

� = AVB†. (9)

The diagonalization of �(t ) is equivalent to A and B diago-
nalizing the matrices VV† and V†V so that

��† = AVV†A†, (10a)

�†� = BV†VB†. (10b)

Solving Eqs. (10) for A and B determines U.

The diagonal choice of U ensures that the ground and
excited states in the MS basis will be, respectively, superposi-
tions purely of the ground and excited states of the original
basis. The MS transformation provides a powerful tool for
treating multilevel systems, by simply reducing the dynamics
to a number of independent two-level systems and residue un-
coupled dark states. However, the requirement that the ground
and excited states are degenerate is rather strong and becomes
inaccurate in the presence of various energy shifts caused by
external fields or other effects. In the next section, we show a
procedure that can overcome the condition of degeneracy.

III. MS WITH NONDEGENERATE (UNEQUAL)
DETUNINGS

Whenever the energies of the ground states and the excited
states are different, the detunings for all coupled states are no
longer the same. The energy shifts between different sublevels
of the ground and excited levels can be incorporated in the
diagonal matrix

D =
[

Dg(t ) 0

0 De(t )

]
, (11)

whose submatrices

Di(t ) = δi1i×i (12)

are also diagonal, with δi being the frequency shift that lifts
the degeneracy. The new Hamiltonian can then be expressed
as

H = 1

2

[−�(t )g×g + Dg(t )g×g V(t )g×e

V†(t )e×g �(t )e×e + De(t )e×e

]
= H0 + D, (13)

where H0 is the degenerate Hamiltonian of Eq. (2) and D
carries the energy shifts.

The complications arising from this nondegeneracy prevent
us from using the standard MS transformation by changing
basis with U since the Hamiltonian of Eq. (13) is transformed

in the MS basis as

HMS = U(H0 + D)U† = HMS
0 + UDU†

=
[−�(t ) + ADg(t )A† �

�† �(t ) + BDe(t )B†

]
. (14)

The matrices of the additional term UD(t )U† must also be
diagonal for the standard MS transformation to remain valid.
For the matrix representation of U in Eq. (8), this is not the
case since, in general, ADg(t )A† �= Dg(t ) and BDe(t )B† �=
De(t ). Although the off-diagonal terms of UDU† are of the
order of the degeneracy, they cannot simply be ignored since
they introduce couplings among the otherwise independent
Hamiltonians and, more importantly, among the potential dark
states. This simply means that the MS transformation has to
be found by a different procedure than the one used in Sec. II.

An alternative way to achieve the MS transformation is
to first diagonalize the Hamiltonian and then carry a second
transformation that will generate the MS Hamiltonian as

H0
SH0S†

−−−→ �
P�P†−−−→ HMS

0 , (15)

where

� = diag(χ1, χ2, . . . , χn) (16)

is a diagonal matrix of the eigenvalues of H0 and the transfor-
mation matrices S and P satisfy

SH0S† = � = P†HMS
0 P. (17)

As it is evident, S is defined as the matrix which diagonalizes
H0, and P as the matrix which diagonalizes HMS

0 . Combined
together, S and P achieve

PSH0S†P† = UH0U† = HMS
0 , (18)

with

U = PS. (19)

In general, the two-step approach preserves the structure of the
diagonal submatrices in the MS Hamiltonian, generated by a
single step transformation. Since this structure is the same for
both single and two-step transformations, it may also need to
be further rearranged in block-diagonal form by a consequent
similarity transformation.

We now want to find an effective Hamiltonian which is a
dynamically equivalent approximation of the nondegenerate
Hamiltonian and can also be transformed to the MS basis by
Eq. (19). This will be the case if the effective Hamiltonian has
approximately the same eigenvalues as Eq. (13). In order to
utilize the two-step approach, we choose the effective Hamil-
tonian as

Heff = S†QSH0, (20)

where the matrix Q is to be determined. The specific form
of Heff becomes clear once we transform it to the MS basis,
which reads

UHeffU† = PSS†QSH0S†P† = PQ�P† = HMS. (21)

The procedure by which we find the P matrix ensures that
its nonzero elements are at the correct positions so that upon
similarity transformation with P, the transformed matrix has
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diagonal submatrices. In order to ensure that Eq. (21) is the
proper MS transformation of the nondegenerate Hamiltonian,
we have to set Q such that

SHeffS† = Q� = W = RHR† (22)

holds. Here,

W = diag(ε1, ε2, . . . , εi ) (23)

is the matrix of the eigenvalues of the nondegenerate Hamil-
tonian of Eq. (13) and R is composed of its eigenvectors. The
matrices R and W can be found by any standard diagonal-
ization procedure. In order to find the matrix Q, we note that
the nondegenerate eigenvalues can be expressed as a series
expansion in terms of the energy shifts,

εi =
∞∑

k=0

δk
i

k!

dkεi

dδk
i

∣∣∣∣
δi=0

, (24)

where δi is the appropriate energy shift that corresponds to
the ith eigenvalue. Whenever these shifts are small enough,
we can drop the higher-order terms and only keep the linear
expansion,

εi ≈ χi + δiκi, (25)

where

κi = dεi

dδi

∣∣∣∣
δi=0

(26)

is a function of the control parameters of the Hamiltonian,
which is independent of δi. Whenever more than one energy
shift is involved in a specific eigenvalue, the appropriate vec-
tor form of Eq. (25) should be used.

The simplest choice for the matrix Q will be a diagonal
form, whose ith diagonal element reads

Qi = 1 + δiκi

χi
, (27)

since this choice yields εi ≈ Qiχi.
Whenever an eigenvalue is a zero, it should instead be set

to χ0 = lim
p→0

p, and the corresponding element in Q reads

Q0 = lim
p→0

(
1 + δ0κ0

p

)
. (28)

In this way, the eigenvalue evaluates to

ε0 ≈ Q0χ0 = δ0κ0. (29)

We note that the nondegenerate MS Hamiltonian can be
obtained by acting with U on the effective Hamiltonian or with
P on Q�, as evident from Eq. (21). Later on in the text, we
will use the P matrix on the approximated diagonal form of H
to generate the MS transformation.

To summarize, our approach has the following sequence of
steps. First we find the MS transformation for the degenerate
Hamiltonian which gives the matrix U. Then we diagonalize
the degenerate MS Hamiltonian to find the map between the
diagonal form and the MS basis, which yields the P matrix
and, by Eq. (19), the S matrix. The third step is to diagonalize
the nondegenerate Hamiltonian and express its eigenvalue

FIG. 2. Nondegenerate (a) � system, (b) tripod system,
(c) double-� system, and (d) diamond system.

matrix as

W = Q	, (30)

by which we find W and construct the Q matrix. Finally the
nondegenerate MS Hamiltonian is obtained by Eq. (21).

In the next section, we illustrate this two-step approach
to the MS transformation with some common systems of
high practical significance, namely, the �, the tripod, and the
double �.

IV. SPECIFIC EXAMPLES

A. Lambda system

The simplest case we consider is a � system, whose final
state has a different energy from the initial state, as shown in
Fig. 2(a).

In order to focus on the MS transformation and to simplify
our calculations, we will only consider resonant excitation
where �(t ) = 0, although our results can be applied for non-
resonant excitation as well. The nondegenerate Hamiltonian
reads

H� = 1

2

⎡⎢⎣ 0 0 
s

0 2δ 
p


s 
p 0

⎤⎥⎦, (31)

where, for the sake of simplicity, we have assumed the Rabi
frequencies to be real. After we apply the procedure from
Sec. II, we find the transformation matrix for the degenerate
system to be

U = 1


rms

⎡⎢⎣−
p 
s 0


s 
p 0

0 0 
rms

⎤⎥⎦, (32)

063113-4



MORRIS-SHORE TRANSFORMATION FOR NONDEGENERATE … PHYSICAL REVIEW A 102, 063113 (2020)

FIG. 3. Comparison between the third approximated eigenvalue
of Eq. (37) and its corresponding exact eigenvalue of Eq. (31). The
parameters have been set to 
s = 1.25 T −1, 
p = 1.37 T −1, and

rms = 1.85 T −1, where T is the pulse duration for the excitation.

where we have introduced the root-mean-square Rabi fre-
quency,


rms =
√


2
p + 
2

s . (33)

The degenerate MS Hamiltonian is then

HMS
�|δ=0 = 1

2

⎡⎢⎣0 0 0

0 0 
rms

0 
rms 0

⎤⎥⎦. (34)

Furthermore, its diagonalization reads

P†HMS
�|δ=0P = � = 1

2

⎡⎢⎣0 0 0

0 −
rms 0

0 0 
rms

⎤⎥⎦, (35)

with the matrix P given as

P =

⎡⎢⎣1 0 0

0 − 1√
2

1√
2

0 1√
2

1√
2

⎤⎥⎦. (36)

The eigenvalues of the nondegenerate Hamiltonian are too
cumbersome to be presented here so instead we directly
present the result for the approximated eigenvalues. From
Eqs. (25), (27), and (28), we find them to be

Q� =

⎡⎢⎢⎢⎣
δ
2

s

2

rms
0 0

0
δ
2

p

2
2
rms

− 
rms
2 0

0 0
δ
2

p

2
2
rms

+ 
rms
2

⎤⎥⎥⎥⎦. (37)

In order to estimate how good our approximation is, in
Fig. 3 we have compared the bottom corner approximated
eigenvalue of Eq. (37) with its corresponding eigenvalue of
Eq. (31). As evident from the figure, the approximation holds
quite well as long as the ratio δ/
rms is of O(10−2) order. The

MS Hamiltonian (21) for the nondegenerate � system reads

HMS
� =

⎡⎢⎢⎢⎣
δ
2

s

2

rms
0 0

0
δ
2

p

2
2
rms


rms
2

0 
rms
2

δ
2
p

2
2
rms

⎤⎥⎥⎥⎦. (38)

The � system provides a dark state uncoupled from the evo-
lution of the other two. Often, a third ground state coupled to
the excited state is added, forming the tripod system, which
we explore next.

B. Tripod system

The tripod system is illustrated in Fig. 2(b). We assume that
the middle coupling is resonant, while the “left” and “right”
couplings are detuned with ∓δ, respectively, due to the lifted
degeneracy. The Hamiltonian of the system reads

HT = 1

2

⎡⎢⎢⎢⎣
−δ 0 0 
p

0 0 0 
s

0 0 δ 
c


p 
s 
c 0

⎤⎥⎥⎥⎦. (39)

The degenerate MS transformation is carried out by

U =

⎡⎢⎢⎢⎢⎢⎢⎣


p
s


rms

√

2

c+
2
p

−
√


2
c+
2

p


rms


c
s


rms

√

2

c+
2
p

0


c√

2

c+
2
p

0 − 
p√

2

c+
2
p

0


p


rms


s

rms


c

rms

0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦, (40)

where


rms =
√


2
p + 
2

s + 
2
c . (41)

Then the standard MS Hamiltonian is

HMS
T |δ=0 = 1

2

⎡⎢⎢⎢⎣
0 0 0 0

0 0 0 0

0 0 0 
rms

0 0 
rms 0

⎤⎥⎥⎥⎦. (42)

Diagonalizing it with the matrix

P =

⎡⎢⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 1√
2

1√
2

0 0 − 1√
2

1√
2

⎤⎥⎥⎥⎥⎦ (43)

leaves us with

P†HMS
T |δ=0P = 1

2

⎡⎢⎢⎢⎣
0 0 0 0

0 0 0 0

0 0 −
rms 0

0 0 0 
rms

⎤⎥⎥⎥⎦. (44)
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The approximated eigenvalue matrix reads

Q� =

⎡⎢⎢⎢⎢⎢⎣
�̃1 0 0 0

0 �̃2 0 0

0 0 δ
̃−
4
2

rms
− 
rms

2 0

0 0 0 δ
̃−
4
2

rms
+ 
rms

2

⎤⎥⎥⎥⎥⎥⎦, (45)

where we have substituted


̃+ = 
2
p + 
2

c, (46a)


̃− = 
2
p − 
2

c, (46b)

�̃1 = −
δ
(

̃− −

√
4
4

s + 4
̃+
2
s + 
̃2−

)
4
2

rms

, (46c)

�̃2 = −
δ
(

̃− +

√
4
4

s + 4
̃+
2
s + 
̃2−

)
4
2

rms

. (46d)

Finally, the MS transformation of Eq. (39) reads

HMS
T =

⎡⎢⎢⎢⎢⎢⎣
�̃1 0 0 0

0 �̃2 0 0

0 0 δ
̃−
4
2

rms


rms
2

0 0 
rms
2

δ
̃−
4
2

rms

⎤⎥⎥⎥⎥⎥⎦. (47)

Both the � and the tripod systems have a dark state(s),
whose evolution is uncoupled from the rest of the system.
For applications in quantum information, for example, these
are the states of interest since they can sustain superposition
for considerable times. The effect of nondegeneracy leaves
a nonzero eigenvalue, which contributes a global phase shift
to the evolution of the system. In a degenerate system, the
superposition will have a global phase which is beyond exper-
imental control since, in the MS basis, it is a function of the
Rabi frequencies and the detuning. Thus, changing them will
change not only the global phase but the superposition as well.
This comes as a consequence of the zero eigenvalue of the
dark state. However if we instead have a nonzero eigenvalue,
whose phase contribution depends on a parameter that does
not affect the superposition, we can control the global phase.
For example, a close look at Eq. (40) reveals that the second
MS state will be a superposition of the first and third state in
the original basis, which is independent of 
s. During the evo-
lution of the system, however, the state remains unchanged,
besides a phase shift proportional to the detuning element
of Eq. (46d). This phase shift depends on 
s, thus giving a
control parameter that leaves the superposition intact, while
changing the global phase.

C. Double �

The final example that we discuss involves multiple excited
states. The simplest case is the double � shown in Fig. 2(c),
which consists of two ground and two excited states which
are nondegenerate. This systems can also be represented in
a diamond configuration, given in Fig. 2(d), as the two are
similar. In order to simplify the problem, we assume that the

direct and cross couplings between the ground states and the
excited states are equal,


11 = 
22 = 
d , (48a)


12 = 
21 = 
c, (48b)

as is the case for J = 1/2 → J = 1/2 transitions.
The Hamiltonian reads

H2� = 1

2

⎡⎢⎢⎢⎣
0 0 
d 
c

0 −δg 
c 
d


d 
c 0 0


c 
d 0 δe

⎤⎥⎥⎥⎦. (49)

Following the procedures from Sec. II, we find the MS Hamil-
tonian to be

HMS
2�|δi=0 = 1

2

⎡⎢⎢⎢⎣
0 0 
− 0

0 0 0 −
+

− 0 0 0

0 −
+ 0 0

⎤⎥⎥⎥⎦, (50)

where we have taken the shorthand notation


+ = 
c + 
d , (51a)


− = 
c − 
d . (51b)

The transformation matrix to the MS basis is then

U =

⎡⎢⎢⎢⎢⎣
1√
2

− 1√
2

0 0

− 1√
2

− 1√
2

0 0

0 0 − 1√
2

1√
2

0 0 1√
2

1√
2

⎤⎥⎥⎥⎥⎦. (52)

The next step is to find the map between the MS Hamiltonian
and the diagonal form, which reads

P†HMS
2�|δe,g=0P = 1

2

⎡⎢⎢⎢⎣
−
+ 0 0 0

0 
− 0 0

0 0 −
− 0

0 0 0 
+

⎤⎥⎥⎥⎦, (53)

with diagonalization matrix

P =

⎡⎢⎢⎢⎢⎣
0 1√

2
− 1√

2
0

1√
2

0 0 − 1√
2

0 1√
2

1√
2

0
1√
2

0 0 1√
2

⎤⎥⎥⎥⎥⎦. (54)

From Eqs. (25) and (49), we find the approximated eigenvalue
matrix to be

Q� =

⎡⎢⎢⎢⎣
δ− − 
+ 0 0 0

0 δ− + 
− 0 0

0 0 δ− − 
− 0

0 0 0 δ− + 
+

⎤⎥⎥⎥⎦,

(55)
where

δ− = δe − δg

4
. (56)
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The MS Hamiltonian is then

HMS
2� = 1

2

⎡⎢⎢⎢⎣
δ− 0 
− 0

0 δ− 0 −
+

− 0 δ− 0

0 −
+ 0 δ−

⎤⎥⎥⎥⎦, (57)

which can be transformed to a block-diagonal form with the
permutation matrix

π =

⎡⎢⎢⎢⎣
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎤⎥⎥⎥⎦, (58)

that finally leaves us with

πHMS
2� π tT = 1

2

⎡⎢⎢⎢⎣
δ− 
− 0 0


− δ− 0 0

0 0 δ− −
+
0 0 −
+ δ−

⎤⎥⎥⎥⎦. (59)

The clear benefit of the MS transformation here is the simple
two-state picture of the excitation dynamics. Moreover, when
a number of states as well as control parameters are involved,
the dynamics of the system is not at all obvious. For example,
in our current case, if we set 
c = 
d , we will have no
coupling in the upper block of Eq. (59). Furthermore, if we
initially set all the population in the MS states corresponding
to that block, there will be no excitation of any MS state. This
conclusion cannot be drawn from Eq. (49) directly, but comes
easily in the MS basis.

V. DISCUSSION AND CONCLUSION

In this paper, we explored the extension of the MS trans-
formation to sets of nondegenerate states. For this purpose, we
developed an approach based on two-step transformation that
carries an effective Hamiltonian to the MS basis.

A key point in our analysis and derivation of the effective
Hamiltonian of Eq. (20) is that its eigenvalues match those
of the nondegenerate Hamiltonian with high accuracy. We
choose the specific form of Heff in order to keep the validity
of the MS transformation, which is originally derived for the
degenerate Hamiltonian, as well as to ensure its dynamical
equivalence to the nondegenerate Hamiltonian. We assume
that the energy shifts just slightly perturb the nondegener-
ate eigenvalues, which justifies the linear approximation in
Eq. (25). In addition, the approximation holds strongly for
δ/
rms ∼ O(10−2), which well describes the optical transi-
tions where the excitation frequency is greater than a THz and
the frequency shift among magnetic sublevels, for example, is
of the order of MHz. If this is not the case, higher-order terms
have to be included into the eigenvalue approximation of the
effective Hamiltonian.

We illustrated our concept explicitly with four popular sys-
tems, namely, the �, tripod, double-�, and diamond systems,
which have numerous applications in a variety of physical sit-
uations. Further applications of our results might be expected
in the calculation of state fidelities. When an experimental
graph of a readout measurement is compared with a theo-
retical prediction that assumes degeneracy, a discrepancy is
to be expected. The cause is due to a variety of factors,
which are often prescribed to experimental imperfections
rather than inaccuracy of the theoretical model. We expect
that our model will account for such discrepancies between
laboratory-measured fidelity and theoretical predictions due
to negligence of nondegeneracy. The magnitude of this effect
remains to be investigated.
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Ruseckas, Phys. Rev. A 100, 023811 (2019).

063113-8

https://doi.org/10.1103/PhysRevLett.73.2563
https://doi.org/10.1103/PhysRevLett.81.495
https://doi.org/10.1007/s100530050141
https://doi.org/10.1080/09500340.2013.837205
https://doi.org/10.1103/PhysRevA.27.906
https://doi.org/10.1103/PhysRevA.74.053402
https://doi.org/10.1103/RevModPhys.70.1003
https://doi.org/10.1088/0953-4075/45/13/135502
https://doi.org/10.1103/PhysRevA.75.062302
https://doi.org/10.1103/PhysRevA.88.023852
https://doi.org/10.1103/PhysRevA.42.523
https://doi.org/10.1103/PhysRevA.45.420
https://doi.org/10.1103/PhysRevA.60.4996
https://doi.org/10.1038/s41598-017-16062-5
https://doi.org/10.1103/PhysRevA.100.023811

