
PHYSICAL REVIEW A 102, 063110 (2020)

Locally monochromatic approximation to QED in intense laser fields
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We derive an approximation to QED effects in intense laser fields which can be employed in laser-particle
collisions. Treating the laser as a plane wave of arbitrary intensity, we split the wave into fast (carrier) and
slow (envelope) modes. We solve the interaction dynamics exactly for the former while performing a local
expansion in the latter. This yields a “locally monochromatic” approximation (LMA), which we apply to
nonlinear Compton scattering in circularly and linearly polarized backgrounds and to nonlinear Breit-Wheeler
pair production. We provide the explicit link between the LMA and QED, and benchmark against exact QED
results. The LMA is particularly useful for high-energy, intermediate-intensity collisions, where, unlike the
“locally constant field” approximation, the LMA correctly describes the position and amplitude of harmonic
features and exactly reproduces the low energy limit. We show that in the limit of high-intensity and large
harmonic order, the locally constant field approximation is recovered from the LMA.
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I. INTRODUCTION

There is a growing interest in experimentally verifying the
predictions of quantum electrodynamics (QED) in the strong
field, high-intensity, regime. To access this regime in experi-
ment, two requirements must be met: (i) an electromagnetic
field is present which is sufficiently intense so that many field
quanta participate in a given process; and (ii) the momentum
transfer (recoil) in scattering is large enough that the quantum
nature of processes is manifest. Upcoming laser facilities such
as ELI-Beamlines [1], ELI-NP [2], and SEL (see [3] for an
overview) will reach field strengths to fulfill requirement (i).
One way to fulfill (ii) is to use laser wakefield accelerated
particles, recent successes of which include the generation
of positron beams in the laboratory [4] and measurement of
quantum signals of radiation reaction [5,6].

Background electromagnetic field strength can be quanti-
fied using an intensity parameter ξ , equivalent to the work
done by the background over a Compton wavelength, in
units of the background photon energy. When ξ ∼ O(1),
the standard approach of treating the background in per-
turbation theory fails, because this assumes that processes
are more probable when fewer background photons are in-
volved. When ξ � 1, an alternative approximation is often
employed, in which the instantaneous rate for processes
in a constant (“crossed”) plane-wave background (treated
without recourse to perturbation theory) is integrated over
the classical trajectories of the scattered particles. This “lo-
cally constant field approximation” (LCFA) [7–10] has the
particular advantage that it can be applied to arbitrary ex-
ternal fields. Therefore, when used in conjunction with a
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classical Maxwell field equation solver, it can be employed
in situations for inhomogeneous backgrounds. The locally
constant field approximation is almost exclusively the method
by which QED processes in intense fields are added to
laser-plasma simulation codes [11–22]. It has recently been
extended in several respects by including higher derivative
corrections [23–25], analyzing simple, nonconstant, fields in
Schwinger pair production [26], and extending it to previously
neglected processes [27,28].

An alternative approach to probe the strong-field regime of
QED is to use a conventional particle accelerator to fulfill the
energy condition (ii), and a less intense laser to fulfill the field
condition (i). This was demonstrated by the landmark E144
experiment [29] which investigated photon emission [30] and
pair production [31,32] in the weakly nonlinear regime. Using
modern high-intensity laser systems, this form of experiment
will be performed at E320 at FACET-II and at LUXE [33]
at DESY to measure QED in the highly nonlinear, nonper-
turbative regime, which was out of reach for E144. These
experiments will access the intermediate intensity regime ξ ∼
O(1), where the locally constant field approximation breaks
down and fails to capture experimental observables such as
the harmonic structure in spectra [34–36].

To address this problem we derive here, from QED, the
“locally monochromatic approximation” (LMA). Because the
LMA is based upon a perturbation around a monochromatic
background, it is not suitable for intense laser-matter colli-
sions where a plasma is generated. Instead, it complements the
locally constant-field approximation by covering the regime
of high-energy and intermediate intensity where the LCFA be-
comes invalid. As usual, we assume that the laser background
is well defined and backreaction [37,38] can be neglected to
a first approximation. Rather than taking the constant crossed
field result to be fundamental and the basis of the approxima-
tion, the LMA builds upon the monochromatic result, which
is more specific to propagating fields such as laser pulses.
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One can show that both field configurations are “null” (char-
acterized by vanishing field invariants) and thus have the same
degree of symmetry so that the dynamics becomes maximally
superintegrable in either case [39,40].

Various numerical codes have already been implemented
that include the QED effects of nonlinear Compton scat-
tering and nonlinear Breit-Wheeler pair creation, by using
an “instantaneously monochromatic” rate that samples a
nonplane-wave field around the probe particles. Examples
include the simulation code to support the SLAC E144 exper-
iment [29], CAIN [41], and IP Strong [42], which has lately
been used to provide simulation support for the planning of
the LUXE experiment [33].

In this paper we formalize the LMA and identify the
approximations necessary to derive it from QED. We find
the LMA treats the fast dynamics related to the carrier fre-
quency of the plane wave exactly, but uses a local expansion
to describe the slow dynamics associated with the pulse
envelope. This combines the slowly varying envelope approx-
imation [43–47] with the locally constant field approximation,
improving upon both. It captures features to which the locally
constant field approximation is blind, yet because it is still
an explicitly local approximation, it can be added to single-
particle simulation codes. Furthermore, by benchmarking the
LMA against exact calculations in pulses, an additional fea-
ture in the mid-IR region of nonlinear Compton scattering will
become apparent, which may provide an additional signal to
be searched for in experiment.

The paper is organized as follows. In Sec. II we outline
the key steps in deriving the LMA for a general first-order
strong field QED process. In Sec. III we give an outline of the
numerical methods that form the basis of our benchmarking
against finite-pulse results. The LMA for nonlinear Compton
scattering is then compared to QED in circularly and linearly
polarized pulse backgrounds in Sec. IV. We demonstrate the
validity of the LMA for nonlinear Breit-Wheeler pair produc-
tion in Sec. V. We conclude in Sec. VI. In Appendix A a
detailed derivation of the LMA for nonlinear Compton scat-
tering in a circularly polarized background is presented and
in Appendix B we include an alternative derivation of the
infrared1 limit of nonlinear Compton scattering, demonstrat-
ing also that the correct limit is trivially reproduced from the
LMA. Finally, in Appendix C we show that the locally con-
stant field approximation can be recovered as a high-intensity
limit of the LMA.

II. OUTLINE OF THE LOCALLY MONOCHROMATIC
APPROXIMATION

Let the gauge potential of the background aμ(ϕ) de-
pend only on the phase ϕ = k · x, with k being the wave
four vector. We will work in light-front coordinates x =
(x+, x−, x⊥) where x± = x0 ± x3 and x⊥ = (x1, x2). Here x+ is
light-front time while x− and x⊥ are called the longitudinal and

1Here and throughout, we use “infrared” to denote low light-front
energy n · P, for n the laser propagation direction and P any given
particle momentum. This is a natural variable in plane-wave calcula-
tions.

perpendicular directions, respectively [48]. With this notation,
the wave vector of the background kμ = δ+

μ k+, and ϕ = k+x+.
The scattering amplitude S f i for an incoming electron with
on-shell momentum p, p2 = m2, is then calculated using the
Volkov wave function [49]

�p(x) =
(

1 + /k/a(ϕ)

2k · p

)
upe−iSp(x). (1)

In the exponent, Sp(x) is the classical action for an electron in
a plane-wave background,

Sp(x) = p · x +
∫ ϕ

−∞

2p · a(t ) − a2(t )

2k · p
dt . (2)

The scattering amplitude S f i in a plane-wave background
can then be written as

S f i =(2π )3δ3
−,⊥(pin − pout)M, (3)

with an invariant amplitude M. Due to the nontrivial structure
of the background, overall momentum conservation (encoded
in the delta functions) only holds in three directions, {−,⊥}.

A closed form solution for phase integrals such as (2) is
only known for some special cases of the background field, for
example infinite “monochromatic” plane waves (see, e.g., [8]
for extensive applications). Beyond these solutions, one can
turn to a numerical approach or employ an approximation.
The slowly varying envelope approximation is known to sim-
plify the classical action (2) occurring in the exponent and
hence make the phase integrations tractable [43–47]. It is
applied as follows. Let the pulse aμ(ϕ) have the form

aμ(ϕ) =m ξ f
( ϕ

�

)
(εμ cos δ cos ϕ + ε̄μ sin δ sin ϕ), (4)

where ξ is the dimensionless Lorentz and gauge invariant
measure of the field intensity [50], f (ϕ/�) is the pulse en-
velope with phase duration � and εμ, and ε̄μ are polarization
directions satisfying ε2 = ε̄2 = −1 and ε · ε̄ = k · ε = k · ε̄ =
0. The parameter δ ∈ (0, π/2) determines the polarization of
the pulse; δ = 0 for linear polarization along ε, δ = π/2 for
linear polarization along ε̄, and δ = π/4 for circular polar-
ization.2 We consider the pulse envelope to be asymptotically
switched on and off, limϕ→±∞ f (ϕ) = 0.

The slowly varying envelope approximation assumes that
the pulse duration � is sufficiently long that terms of order
O(�−1) can be neglected. (Higher orders can in principle be
included in the approximation but they will lead to a more
complicated result that takes longer to numerically evaluate
and, as we shall see, the leading order terms will already
be sufficient to reproduce the main features of spectra.) As
a result, derivatives of the envelope with respect to the phase
can be neglected, because they are of the form df (ϕ/�)/dϕ ∼
�−1 f ′(ϕ/�). In other words, the envelope varies slowly
compared to the fast dynamics of the carrier frequency. The
practical benefit of this is that we can simplify the classical
action (2). More explicitly, the classical action will have terms
both linear and quadratic in the field envelope. In all terms
involving both fast and slow oscillations, we integrate by

2We make implicit a normalization factor in the gauge potential (4)
such that Max[aμ(ϕ)/(mξ )] = 1.
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parts, picking up terms of order O(�−1) which we neglect,
and so remove the integrals from (2). This gives us, for the
possible linear terms arising,∫ ϕ

−∞
dψ f

(
ψ

�

)
{cos ψ, sin ψ} 	 f

(
ϕ

�

)
{sin ϕ,− cos ϕ},

(5)

and for the possible quadratic terms∫ ϕ

−∞
dψ f 2

(
ψ

�

)
{cos2 ψ, sin2 ψ}

	 1

2
f 2

(
ϕ

�

)
{(ϕ + sin ϕ cos ϕ), (ϕ − sin ϕ cos ϕ)}. (6)

For the particular case of a circularly polarized background,
there arises a term containing only slow oscillations (the in-
tegral of f 2 without trigonometric functions), which must be
approximated by different means (see below). With these ap-
proximations, the background-dependent parts of the classical
action can always be put in the form

Sp(x) 	 G
(
ϕ,

ϕ

�

)
+ 1

2
α

(
ϕ

�

)
[u(ϕ) − u−1(ϕ)]

+ 1

2
β

(
ϕ

�

)
[v(ϕ) − v−1(ϕ)]. (7)

The functions α and β are purely slowly varying functions
of the phase ϕ. The functions u(ϕ) and v(ϕ) are of the form
exp(icϕ), for c ∈ {1, 2}. Note the similarity of the form of the
exponent with the generating function for the Bessel function
of the first kind,

exp

{
1

2
z
( ϕ

�

)
[u(ϕ) − u−1(ϕ)]

}
=

∑
n∈Z

un(ϕ)Jn

[
z
( ϕ

�

)]
. (8)

This was recognized and exploited in [43] and essentially
gives a generalization of the infinite monochromatic field
results [8,51] to the case where the argument of the Bessel
function now depends slowly on the phase. There will also
appear rapidly oscillating terms in the pre-exponent, but these
can be incorporated by differentiating (8) with respect to z
and combining terms. The scattering amplitude will thus be
defined in terms of harmonics, represented by the sum over
integers n in (8).

So far everything has been typical for the application of
the slowly varying envelope approximation in the strong-field
QED literature [43–47]. It is at this point that we take the
further step of performing a local expansion in the phase
variables to arrive at a local “rate” which can be implemented
in one-particle numerical simulations.

To define the local expansion, we will concentrate on single
(dressed) vertex “one-to-two” processes: nonlinear Comp-
ton scattering and nonlinear Breit-Wheeler pair production.
The amount of literature on these processes has become too
large to be cited here in full; regarding nonlinear Compton
scattering see [7,52,53] for the original papers, [8,54] for
reviews, and [45,55–58] for a selection of more recent results.
Nonlinear Breit-Wheeler pair creation was first discussed
in [7,59,60], while the study of finite size effects was initiated
in [61]. Both processes were observed (at mildly nonlinear
intensities) by the SLAC E144 experiment [29,30,32]. For

the two examples to be considered, the reduced amplitude
M in (3) will have one phase integral, and after applying
the slowly varying envelope approximation, will be defined
in terms of an infinite sum over the harmonic order n, i.e.,

M =
∞∑

n=−∞

∫
dϕ Mn(ϕ). (9)

Squaring the amplitude for the probability, we will have some-
thing of the form

P ∼
∞∑

n,n′=−∞

∫
d�LIPS

∫
dϕ dϕ′ M†

n(ϕ)Mn′ (ϕ′), (10)

i.e., a double infinite sum over harmonic orders, two phase
integrals, and an integration over the Lorentz invariant phase
space of the process d�LIPS.

Now we perform a local expansion of the probability,
in analogy to the locally constant field approximation (see,
e.g., [7–10]). We make a change of variables to the sum and
difference of phases,

φ = 1
2 (ϕ + ϕ′), θ = ϕ − ϕ′. (11)

Terms in the probability are then expanded in a Taylor series
in θ 
 1, and the slowly varying envelope approximation is
then applied to all derivatives of the pulse envelope, giving

f

(
ϕ

�

)
≈ f

(
ϕ′

�

)
≈ f

(
φ

�

)
. (12)

This allows the dθ integrals to be performed, and the proba-
bility takes the form

P =
∫

dφ R(φ), (13)

where R(φ) is interpreted as a local rate.3For the processes
of nonlinear Compton scattering and nonlinear Breit-Wheeler
pair production we can write

PLMA ≈
∫

dφ Rmono[ξ f (φ/�)], (14)

where Rmono is the probability per unit phase of the process in
a monochromatic (infinitely long) plane wave. For a circularly
polarized background the LMA is exactly equal to the integral
on the right-hand side of (14). For a linearly polarized back-
ground, it is not so straightforward, as interference between
different harmonic orders is included, but we will find that, to
a good approximation, both sides of (14) are equal.

To conclude this outline of the LMA, we reiterate that
the LMA is simply the application of two well-known ap-
proximations in the strong-field QED literature, the slowly

3In general R(φ) will contain infinite sums over harmonic orders,
and a number of final state momentum integrals. The aim is to
do as many of these final state momentum integrals as possible.
Despite the added complexity which arises from retaining a slowly
varying dependence on the phase variable φ, the number of final state
integrals that can be performed is the same in the LMA as for a first
order process in an infinite monochromatic plane wave [8,51] (see
Appendix A).
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varying envelope approximation, and the “local” expansion
in the relative phase variable θ carried out at the level of the
probability. For each term in the local expansion we apply
the slowly varying envelope approximation, which reduces the
complexity of the rates and allows us to progress further ana-
lytically. What this means is that no further restrictions have
to be imposed on the pulse envelope beyond those required
for the slowly varying envelope approximation to be valid,
i.e., that the phase duration � be sufficiently large that deriva-
tives of the envelope can be safely neglected. Although the
approximation has been used before for a circularly polarized
background [62], as far as we are aware, this is the first explicit
derivation and benchmarking with the direct calculation from
QED for a plane-wave pulse. The monochromatic result is
obtained from the LMA by taking the infinite pulse limit
� → ∞, i.e., f → 1.

III. DIRECT CALCULATION FROM QED FOR
A PULSED BACKGROUND

We wish to benchmark the LMA against the numerical
evaluation of exact expressions from high-intensity QED.
We provide here the details of the integration scheme used.
For both nonlinear Compton scattering and nonlinear Breit-
Wheeler pair production in a plane-wave pulse, one can write
the total probability in the form P = αI/η, where α denotes
the fine structure constant, η = k · P/m2 is the energy pa-
rameter of the incoming particle (where k is the lightlike
wave vector of the plane-wave background and P is the 4-
momentum of the incoming particle), and I is a triple integral.
I involves two phase integrals φ, θ , and an integral over s, the
fraction of the incoming particle’s light-front momentum P−
carried away by the emitted particle. For nonlinear Compton
scattering, this is of the form

I =
∫ ∞

−∞
dφ

∫ 1

0
ds

{
−π

2

+
∫ ∞

0

dθ

θ
[1 + h(a, s)] sin [g(s)θμ(φ, θ )]

}
. (15)

For the numerical calculation of the exact QED result, we are
using the “iε” regularization at the level of the probability
(see, e.g., [63]), as evidenced by the π/2 counterterm in
Eq. (15). The dependence on the field a defined in (4) resides
in both h(a, s) and in the Kibble mass [64,65] normalized by
the electron mass:

μ(φ, θ ) = 1 − 1

θ

∫ φ+θ/2

φ−θ/2

a2

m2
+

(
1

θ

∫ φ+θ/2

φ−θ/2

a

m

)2

. (16)

In what follows we will outline some manipulations allowing
for a straightforward numerical integration of I. The phase
integration plane (φ, θ ) can be split naturally into subregions
where the integrand in (15) takes a specific form according
to the following two observations: First, the field-dependent
function h(a, s) only has support for a �= 0. Second, the Kib-
ble mass becomes phase independent when φ ± θ/2 obey
certain inequalities (see below).

Suppose we consider a pulse envelope f (ϕ/�), which
is symmetric about the origin with support |ϕ| < L/2. The
example pulse shape we consider in this paper is f = cos2,

FIG. 1. Overview of the regions integrated over in the φ-θ plane.
The nonstriped regions are inside of the pulse: |ϕ′| < 2π�. The dark
subregion in the area covered by I4 signifies |ϕ| < 2π�.

where the phase duration is L = π� and the pulse length
parameter � can be related to the number of cycles N via � =
2N . Using the symmetry of the integrand, we only have to
consider the first quadrant in the (φ, θ ) plane, which splits into
the subregions shown in Fig. 1 such that I = ∫

ds
∑4

k=1 Ik .
To deal with the infinite numerical integration of a non-

linearly oscillating pure phase term, we first rewrite the
regularization factor as

π

2
=

∫ ∞

0

dθ

θ
sin Kθ,

which is independent of the choice of the constant factor
K . In order to make for a simpler numerical evaluation, we
choose K = g(s), allowing us to combine it with the other
infinite phase term in (15). (Other choices are useful in other
circumstances, see for example [66] and (B1).) Using this
trick, we find that the first integral vanishes,

I1 =
∫ ∞

2π�

dσ

∫ 2(φ−2π�)

0

dθ

θ
{− sin [g(s)θ ]

+ sin [g(s)θμ(φ, θ )]} = 0.

This can be shown by noting that lima→0 μ(φ, θ ) = 1, and in
this phase region the pulse has no support. This is because
terms depending on the potential, a(ϕ), a(ϕ′) are zero unless

|ϕ| = |φ + θ/2| < 2π� or |ϕ′| = |φ − θ/2| < 2π�.

In contrast, the integral I2 over the region where the pulse is
yet to pass through is nonzero:

I2 =
∫ ∞

0
dφ

∫ ∞

2(2π�+φ)

dθ

θ
{− sin [g(s)θ ]

+ sin [g(s)θμ(φ, θ )]} �= 0.

Nevertheless, it may be calculated analytically by noting that
the combination θμ(φ, θ ) accumulates a constant total phase
θμ → θ + θ∞, when the probe particle traverses the pulse
and continues to propagate in vacuum. Explicitly, one finds
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(a) (b)

FIG. 2. A demonstrative plot showing how different parts of the
integration region contribute to the spectrum (here, for a linearly
polarized pulse) using (a) a log scale and (b) a linear scale.

for both nonlinear Compton and Breit-Wheeler processes that
θ∞ = 3πcεξ

2�/2, where cε = 1 (cε = 1/2) for a circularly
(linearly) polarized background. This finally leads to

I2 = 4π� sin X

[
cos X CiY − sin X SiY

+π

2
sin X − 1

Y
sin (X + Y )

]
, (17)

where X = θ∞g(s)/2 and Y = 4π�g(s). This is related to
recent studies of interference effects in a double-pulse back-
ground [67,68].

The remaining integral I3 collects the contributions where
the average phase φ is outside the pulse, while the phase
difference θ is large enough that φ − θ/2 reaches back into
the pulse,

I3 =
∫ ∞

2π�

dφ

∫ 2(φ+2π�)

2(φ−2π�)

dθ

θ
{− sin [g(s)θ ]

+ sin [g(s)μ(φ, θ )]},
The integrand oscillates with a slowly decaying amplitude for
φ > 2π� outside the pulse. As the oscillations are regular,
they can be handled by using many data points. We also expect
(and will show later) that contributions from outside the pulse
are important mainly in the infrared region of the spectrum,
where we have an analytical expression for the limit.

Finally, I4 is just the evaluation of the full integral in
Eq. (15), for φ ∈ [0, 2π�], θ ∈ [0, 2(2π� + φ)], i.e., “on top
of” the pulse. As this is a well-defined, finite integration range,
convergence can be assured by simply increasing the sampling
resolution of the integrand.

The contribution of each part of the phase integration plane
(φ, θ ) to the spectrum is shown, for example, parameters in
Fig. 2. This demonstrates that in the infrared limit, s → 0,
the integral I from (15) is dominated by the subintegral I2,
i.e., by contributions from phase regions located outside the
pulse. On the one hand, this agrees with intuition based on
the uncertainty principle—the lowest photon energies require
the longest interaction of the electron with the background as
has already been pointed out in the literature for nonlinear
Compton scattering [9]. On the other hand, when studying the

infrared, one should take into account soft contributions from
higher-order processes [63].

IV. NONLINEAR COMPTON SCATTERING

A. Circularly polarized plane wave

Having evaluated the full QED integrals for a pulse, we
can now compare with the LMA. The latter is numerically
more efficient, but also implies enhanced analytical control
as it typically results in well-known special functions. Be-
yond these immediate advantages, our motivation to improve
standard literature approximations is threefold: (i) to have a
locally defined rate which could in principle be implemented
in numerical simulation codes; (ii) to be able to resolve the
harmonic structures present in the exact QED probabilities
with this approximation; and (iii) to be able to work in the
moderate intensity regime ξ ∼ 1 relevant for current state-
of-the-art laser facilities. By construction, item (i) is readily
provided by the LMA. To test the LMA for the other two
goals, we will benchmark it against numerically integrated ex-
act QED probabilities, beginning with the process of nonlinear
Compton scattering.

Consider the interaction of an electron, initial invariant
energy parameter ηe = k · p/m2, with the plane wave

aμ(φ) = mξ cos2

(
φ

�

)
(εμ cos φ + ε̄μ sin φ), (18)

which has circular polarization and envelope f ∼ cos2. The
LMA to the nonlinear Compton spectrum in this setup is given
in (A21). In Fig. 3 we compare the photon spectrum predicted
by the LMA with the exact QED result, for the parameters
ξ = 0.5 and ηe = 0.1, and various pulse lengths �. This is
the low intensity, high-energy regime which will be probed at,
for example, LUXE [33]. In this regime, the locally constant
field approximation, valid for ξ 2/ηe � 1 [69,70], is no longer
applicable and fails by a large margin as demonstrated in
Fig. 3.

Each of the plots in Figs. 3(a)–3(d) shows the spectra for
the LMA (dark long-dashed line), the locally constant field
approximation (light short-dashed line) and the numerically
integrated exact QED results, the latter of which is plotted for
various pulse lengths. (We recall the number of cycles N and
the pulse duration � are related by � = 2N .) The numerically
integrated exact QED spectra have been normalized by N/2
to facilitate comparison. As discussed above, one of the steps
in deriving the LMA for a given process is to first apply the
slowly varying envelope approximation, which assumes that
the pulse duration is sufficiently long such that derivatives of
the profile can be neglected. We can see the consequences of
this in Fig. 3. As the pulse duration is increased, the LMA
result remains the same (when normalized by pulse duration),
but the results from the numerical integration of the exact
QED probability become progressively more peaked around
the first harmonic, and the agreement between this and the
LMA improves. In all cases, the locally constant field ap-
proximation completely misses not only the key harmonic
structures and the infrared limit, but also fails in the high-
energy, s → 1, regime. This is characteristic of the locally
constant field approximation for ξ < 1.
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(a)

(c) (d)

(b)

FIG. 3. The photon spectrum from nonlinear Compton scattering
in a circularly polarized background, in the high-energy, weakly
nonlinear regime, normalized by N/2 for pulses with different num-
bers of cycles N . The locally constant field approximation (light
short-dashed line) poorly approximates the spectrum, whereas the
LMA (dark long-dashed line) captures the harmonic structure and
becomes more accurate as the length of the pulse increases. Plotted
left-to-right is (a) the yield spectrum; (b) the energy spectrum; (c) the
IR part of the spectrum (log-linear); and (d) the UV part of the
spectrum (log). The vertical solid lines here and in the following
figures correspond to the positions of the harmonic edges calculated
for an infinite monochromatic plane wave.

Figure 4 shows the same spectra as before, however for
the increased field strength of ξ = 2.5. We are now in a
regime where the locally constant field approximation is able
to more accurately capture at least the s → 1 behavior of
the spectra, but we can see that the LMA is still vastly su-
perior. In fact, in Fig. 4(c) we can distinguish three distinct
regions of the spectrum on the interval 0 < s < 1, defined
in relation to the position of the first harmonic and Comp-
ton edge, which for a monochromatic plane wave is located
at s1 = 2ηe/(1 + ξ 2 + 2ηe). There is the far infrared sector
where 0 < s 
 s1, the harmonic range where s > s1 which
includes all of the harmonic structure of the spectrum, and the
intermediate regime where s � s1. In both the far infrared and
the harmonic range the LMA gives a very good agreement
with the numerically integrated exact QED spectrum, outper-
forming the locally constant field approximation in both cases.
One of the most striking improvements in this regard is the
agreement between the LMA and the exact QED spectrum
in the far infrared, s → 0 limit. This agreement is not only
visible numerically; one can trivially derive the correct s → 0
limit from the LMA, as shown in Appendix B where we also
provide a novel derivation of the limit from the exact QED
probability.

(a)
(b)

(d)(c)

FIG. 4. The photon spectrum from nonlinear Compton scattering
in a circularly polarized background, in the high-energy nonlin-
ear regime, normalized by half the number of laser cycles N/2.
The locally constant field approximation (light short-dashed line)
approximates the spectrum well for values of s corresponding to
higher harmonics. The LMA (dark long-dashed line) captures both
the harmonic structure and the large-s behavior and becomes more
accurate as the length of the pulse increases. Plotted left-to-right is
(a) the yield spectrum; (b) the energy spectrum; (c) the IR part of the
spectrum (log-linear); and (d) the UV part of the spectrum (log).

The second area in which the LMA performs well is in
the harmonic range. For sufficiently long pulses, which in
Fig. 4 corresponds to eight cycles (full-width half-maximum
duration of around 11 fs for a 800 nm carrier wavelength),
the LMA not only predicts the correct position of the leading
harmonic in the spectrum, but is also accurate in predicting
the locations and magnitudes of the subleading harmonics.

The only part of the spectrum in which the LMA devi-
ates somewhat from the exact QED result is the intermediate
regime where s � s1. It turns out that this sector of the spec-
trum contains features which, to the best of our knowledge,
have not been extensively commented on in the literature.
Most numerical investigations of the exact QED spectrum
and probability are compared to the locally constant field ap-
proximation, which is well known (i) to not capture harmonic
structure and (ii) to diverge towards the infrared. The LMA,
however, yields the correct infrared limit s → 0, and very
good agreement in the harmonic range, but does not capture
the full structure of the spectrum in the intermediate range.
In each of the spectra coming from the numerically integrated
exact QED results there is a clear “bump” in the range just
before the first harmonic. This same feature can be seen in var-
ious other works in the literature, see for example [23,24,71].

A qualitative explanation for these additional peaks is that
a pulse profile introduces additional frequency scales in the
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dynamics, analogous to the usual harmonics found at lo-
cations determined by the carrier frequency scale of the
background, see, e.g., [45,56,57]. For the current choice of
a cos2 pulse envelope, we found that the approximate position
of these peaks can be determined as follows. One first intro-
duces a rescaled frequency k̃0 = k0/2I , where k0 is the carrier
wave frequency and I is the integral4 of the pulse profile f .
One then calculates the position of the first harmonic and
Compton edge s1, using the rescaled energy parameter ηe →
ηe/2I . As pulse duration increases, the additional broad peaks
get pushed further back into the infrared and are smoothed out,
eventually disappearing in the infinite plane-wave (monochro-
matic) limit. Therefore an improvement of the accuracy of
the LMA in this part of the spectrum might be achieved by
including higher order terms in 1/�, i.e., the slowly varying-
envelope part of the approximation. The amplitude of these
peaks also decreases significantly as ξ falls below unity.

Figure 4 also shows that in the UV range s → 1 there is
good agreement between the LMA and the locally constant
field approximation for ξ = 2.5. However, this is no longer
true when ξ = 0.5 as in Fig. 3. To capture the UV limit in
more detail one could adopt the methods of [72,73] and use
the saddle point method, noting that, in the exponent, the
prefactor of the Kibble mass is proportional to (1 − s)−1. Fol-
lowing this route, though, is beyond the scope of our present
discussion.

The case of a circularly polarized plane-wave pulse gives
the simplest form of the LMA due to the additional symme-
tries of the choice of background. The approach can, however,
still be used for the case of linear polarization, to which we
now turn.

B. Linearly polarized plane wave

As above, we compare the LMA for a linearly polarized
background field with the numerically integrated exact re-
sult for a fixed electron energy ηe = 0.1 and field strengths
ξ = 0.5 (Fig. 5) and ξ = 2.5 (Fig. 6). In this case the LMA
is given by (A34). Even for infinite monochromatic plane-
wave fields, the probability of nonlinear Compton scattering
for a linearly polarized background field has extra structure
compared to the circularly polarized case. The same is true
for the LMA in a pulsed linearly polarized field. The source
of the extra structure is that for linear polarization the term
which is quadratic in the background field in the classical
action (2) is dependent on both the slow oscillations due
to the pulse profile, and the fast oscillations of the carrier
frequency of the plane wave. Within the LMA, this results in
a nontrivial integration over the angular spread of the emitted
photons. As a consequence (see Appendix A for details), there
remains a double harmonic sum, compared to the circularly
polarized case, where it simplifies due to the extra symmetry
in the background. Hence, it is not possible to simply take
the textbook expression for linearly polarized monochromatic
plane waves [51] and localize the field intensity ξ → ξ f , as

4For circular polarization, i.e., the choice (18), one finds I = π�/2.
An analogous argument for linear polarization (see below) employs
the scaling k̃0 = k0/

√
2π�.

(a)

(c) (d)

(b)

FIG. 5. The photon spectrum from nonlinear Compton scattering
in a linearly polarized background, in the high-energy, weakly non-
linear regime, normalized by half the number of laser cycles N/2.
The agreement of the LMA (dark long-dashed line) and disagreement
of the locally constant field approximation (light short-dashed line)
with the numerically exact results is similar to the circularly polar-
ized case. The dot-dashed line is the spectrum acquired by taking
the LMA for a circularly polarized background and rescaling the
intensity parameter ξ → ξ/

√
2.

could be done in the circularly polarized case. In principle,
the additional structure of a double-harmonic sum allows for
the possibility of interference effects between the harmonics.
However, in the intermediate intensity, high-energy regime,
we did not find any appreciable contribution from this inter-
ference.

For weak fields, ξ < 1, the low-energy part of the spec-
trum, i.e., the region s � s1 below the first harmonic s1, is
well approximated by the perturbative contribution from the
squared potential a2. In this case, the linearly polarized LMA
turns out to be well approximated by taking the circularly
polarized LMA and making the replacement ξ → ξ/

√
2, as is

demonstrated in (6). Because of this, rescaling the circularly
polarized result is a method which has been used to implement
rates for linear polarization in numerical codes.

However, this method fails for ξ > 1. In this regime, higher
harmonics, proportional to a2n for the nth harmonic, con-
tribute to the spectrum and can no longer be obtained through
a simple modification of the circularly polarized LMA. This
impact of the background polarization at higher values of
the field strength is demonstrated in Fig. 6. Although the
position of the harmonics is still correctly predicted by the
rescaled circularly polarized LMA, their amplitude is not,
nor is the overall shape of the spectrum correctly captured:
the rescaled circularly polarized result gives an underestimate
for the smallest values of s, but an overestimate for larger
values. Hence, the linearly polarized LMA proper, rather than
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(a)

(c) (d)

(b)

FIG. 6. The photon spectrum from nonlinear Compton scattering
in a linearly polarized background, in the high-energy, nonlinear
regime, normalized by half the number of laser cycles. The agree-
ment of the LMA (dark long-dashed line) and the locally constant
field approximation (light short-dashed line) with the exact pulsed
results is similar to the circularly polarized case. The dot-dashed line
is the spectrum acquired by taking the LMA for a circularly polarized
background and replacing the intensity parameter ξ → ξ/

√
2. Un-

like in the weak-field regime, the linearly polarized LMA is not well
approximated by rescaling the intensity parameter in the circularly
polarized LMA.

the rescaled circularly polarized LMA, must be used in the
intensity regime of upcoming experiments [33].

From both the circular and linear polarization cases just
discussed one notes that the higher the field strength ξ ,
the better the agreement between LMA and locally constant
field approximation in the ultraviolet (large-s) regime. In
Appendix C we show explicitly that this is not just some
numerical accident. Indeed, we will derive the locally constant
field approximation as the high-field limit of the LMA.

V. NONLINEAR BREIT-WHEELER

So far our focus has been on implementing and analyzing
the LMA for nonlinear Compton scattering. In principle, how-
ever, the LMA can be applied to any QED scattering process
in a plane-wave background. As another example, consider
nonlinear Breit-Wheeler pair production, where an initial pho-
ton decays into an electron-positron pair. The derivation of
the LMA for this process follows the same route as for non-
linear Compton scattering (see Appendix A), and we again
find that in the case of a circularly polarized plane wave the
final differential probability is simply the textbook result in
a monochromatic plane wave [51] with a localization of the

field strength ξ → ξ f , see (A36). A well known feature of the
nonlinear Breit-Wheeler process is the strict lower bound n�

on the harmonic number contributing for a given field strength
and initial photon energy. This is because the outgoing particle
states are massive, so that their production can only proceed
above an energy threshold.

For a monochromatic plane wave, the lower bound is given
by nmono

� = 2(1 + ξ 2)/ηγ , where ηγ = k · �/m2 is the energy
parameter for the incident photon with four-momentum �.
Comparing this to (A37), we can see that for a pulse there
are points along the phase for which the minimum harmonic
n� < nmono

� for the same ξ and ηγ .
At first glance, this would appear to mean that at the wings

of the pulse, as f → 0, the minimum harmonic contributing
would decrease, and since Bessel harmonics of lower order are
typically greater in magnitude, that the process would be more
probable at lower field strengths. One has to keep in mind,
though, that the argument z(φ) of the Bessel function depends
on the pulse profile f and vanishes in the limit f → 0. The
only Bessel function surviving this limit is J0. However, since
the harmonic sum in (A36) is over strictly positive n > 0 and
thus excludes J0, there is no contribution to the probability
for f → 0. Hence, in comparison to nonlinear Compton scat-
tering, the nonlinear Breit-Wheeler process will still require
either very high field strengths, for which the locally constant
field approximation should be a good approximation, or very
high initial photon energies.

For both the Compton and Breit-Wheeler processes, the
momentum taken from the field increases with field strength,
and the harmonic structure becomes less well defined. In order
to demonstrate the LMA for the Breit-Wheeler process, the
center-of-mass energy should be close to the pair rest energy
in order that only very few laser photons are required for pair
production to take place. In Fig. 7 we demonstrate such a situ-
ation, where we present the spectrum of electrons produced by
a head-on collision of a 250 GeV photon (ηγ = 3) with a laser
pulse of intensity ξ = 1. We note that the harmonic structure
of the spectrum for long pulses is well approximated by the
LMA, whereas the locally constant field approximation both
misses the harmonics in the spectrum and underpredicts the
yield.

VI. SUMMARY

Motivated by the need to improve the theoretical tools
required for supporting state-of-the-art laser experiments
probing the high-intensity regime of QED, we have intro-
duced here the locally monochromatic approximation (LMA).

This technique treats the quickly and slowly oscillating
components of laser field profiles differently, in order to im-
prove on the accuracy of the existing locally constant field
approximation, which essentially treats all field components
as slowly varying. Oscillations due to the carrier frequency
of the laser field are treated exactly, while the slowly varying
field envelope degrees of freedom are treated in a local ex-
pansion. Therefore, the accuracy of the LMA increases with
increasing pulse duration as we have shown by comparing
directly with exact QED results. This conclusion agrees with
other works that have compared a train of monochromatic
pulses with single short-pulse spectra [74,75]. Although we
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FIG. 7. The spectrum of electrons produced in nonlinear Breit-
Wheeler pair production for ξ = 1, ηγ = 3. A comparison of the
locally constant field approximation (light short-dashed line) and
the LMA (dark long-dashed line) with the exact numerical result in
pulses of different numbers of cycles N .

have not included it here, the LMA could easily be extended to
include a carrier-envelope phase, since the separation between
fast and slow time scales would remain (see, e.g., [62] for
an example of this applied to the slowly varying-envelope
approximation).

The LMA (or its precursors) have been used in several
numerical codes, albeit in an ad-hoc fashion. To put the LMA
on a firmer basis, we provide the first derivation from, and the
first benchmarking against, QED in a plane-wave background.
In doing so we have identified the character of expansions at
work and established how the accuracy improves with pulse
duration. Finally, we have located spectral features in the
mid-infrared that are missed by this approximation.

We note, however, that despite being local in the phase
variable, the LMA is unsuitable for intense laser-matter in-
teractions where plasma is present. This is because the LMA
relies on the presence of structures particular to laser fields, es-
sentially a central frequency and an envelope, which normally
are absent in a plasma. Instead, the LMA can be thought to ex-
tend the LCFA up to higher energies and down to intermediate
and low intensities, in situations where the background field
is a laser pulse of well-characterized shape. Such a situation is
to be found in upcoming high-energy experiments [33]. When
applicable, the LMA correctly resolves harmonic structure in
particle spectra. While it is known that these can be washed
out due to multiparticle effects [76], they have been observed
in experiments [29,35,36,77]. The washing-out effect is ex-
pected to be less significant if the electron beam has a narrow
momentum spread. A further advantage of the LMA is its
capability to capture the infrared limit of nonlinear Compton
scattering. In contrast, the locally constant field approxima-
tion is well known to fail in this regard.

In this paper we have considered the first-order processes
of nonlinear Compton scattering and nonlinear Breit-Wheeler
pair production, but the LMA could also be extended to
higher-order processes such as trident pair production (see,
e.g., [78–83]) and double nonlinear Compton scattering (see,
e.g., [73,84–88]). This extension is not trivial, as it would need
to deal with the appearance of resonant singularities in dressed
propagators [89,90] and is therefore a subject for further work.
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APPENDIX A: DETAILED DERIVATION OF THE LMA

In Sec. II we presented only the key steps involved in
calculating the LMA for a high-intensity QED process. To be
more explicit, we turn to an example derivation for the process
of nonlinear Compton scattering in a plane-wave pulse. We
will give a thorough account of the calculation for a circu-
larly polarized pulse, and provide details about the technical
differences in the linearly polarized case. We note that the
calculation of the LMA for nonlinear Breit-Wheeler pair pro-
duction discussed in Sec. V follows a completely analogous
procedure. Hence, it will be sufficient to simply quote the final
result below. Once the slowly varying envelope approximation
has been applied to the exponent of the scattering amplitude,
the remaining analysis amounts to a generalization of the
calculation in a purely monochromatic plane wave (see for
example [51] for the circularly polarized case).

Nonlinear Compton scattering is the process by which an
electron of 4-momentum p scatters off a background plane-
wave pulse to emit a photon of momentum �′ and polarization
ε∗
�′ , e−(p) → e−(p′) + γ (�′). The amplitude is given by the

standard S-matrix element

SNLC = −ie
∫

d4x �̄p′ (x)/ε∗
�′�p(x)ei�′ ·x. (A1)

The explicit representation of the Volkov wave func-
tions (1) and some trivial integrations lead to the represen-
tation (3) with reduced amplitude

MNLC = − ie
∫

dϕ S (ϕ) exp

(
i
∫ ϕ

−∞

�′ · πp

k · (p − �′)

)
. (A2)

The integrand involves a spin structure

S (ϕ) = ūp′

(
1 + /a(ϕ)/k

2k · p′

)
/ε∗

�′

(
1 + /k/a(ϕ)

2k · p

)
up. (A3)

and an exponential given in terms of the kinetic momentum of
a classical electron in a plane-wave background,

πμ
p (ϕ) = pμ − aμ(ϕ) + 2p · a(ϕ) − a2(ϕ)

2k · p
kμ. (A4)

We proceed now to the particular case of a circularly polarized
pulse.
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1. Circularly polarized plane-wave pulse

The circularly polarized plane-wave pulse is given by (4)
with δ = π/4 and a normalization factor of

√
2 such that

max (|aμ/mξ |) = 1,

aμ(ϕ) =mξ f

(
ϕ

�

)
(εμ cos ϕ + ε̄μ sin ϕ). (A5)

The term quadratic in the gauge potential in (A4) only con-
tains the slow timescale in ϕ:

a2(ϕ) = −m2ξ 2 f 2

(
ϕ

�

)
, (A6)

and so the slowly varying envelope approximation (5) need
only be applied to the other terms linear in aμ. This results in∫ ϕ

−∞

�′ · πp

k · (p − �′)
	 G(ϕ) − αc

(
ϕ

�

)
sin ϕ + αs

(
ϕ

�

)
cos ϕ.

(A7)

The function G(ϕ) is slowly varying with ϕ,

G(ϕ) = s

2ηe(1 − s)

[(
1 + |�′

⊥ − sp⊥|2
s2m2

)
ϕ

+
∫ ϕ

−∞
dψ ξ 2 f 2

(
ψ

�

)]
, (A8)

and depends on ηe = k · p/m2, the normalized measure of
the electron’s light-front momentum, and s = k · �′/k · p, the
light-front momentum fraction of the outgoing photon. The
rapidly oscillating terms {cos ϕ, sin ϕ} each have a slowly

varying prefactor,

αc

(
ϕ

�

)
= ξ f

(
ϕ

�

)
ηem(1 − s)

(�′ − sp) · ε,

αs

(
ϕ

�

)
= ξ f

(
ϕ

�

)
ηem(1 − s)

(�′ − sp) · ε̄, (A9)

respectively, and depend on a 4-vector L = �′ − sp, projected
onto the polarization directions ε and ε̄ of the background.
Defining an angle ϑ ,

ϑ = tan−1 αs

αc
, (A10)

allows us to write

αc

(
ϕ

�

)
= z

(
ϕ

�

)
cos ϑ, αs

(
ϕ

�

)
= z

(
ϕ

�

)
sin ϑ, (A11)

[we will use the shorthand z(ϕ) ≡ z(ϕ/�) in what follows]
such that

z(ϕ) =
√

α2
c + α2

s =
√

ξ 2 f 2
(

ϕ

�

)
η2

e m2 (1 − s)2
|�′ − sp|2. (A12)

This drastically simplifies the exponent (A7), and the reduced
amplitude (A2), which becomes

MNLC = − ie
∫

dϕ S (ϕ) ei{G(ϕ)−z(ϕ) sin(ϕ−ϑ )}. (A13)

The probability is now calculated in the usual way by
averaging and summing over incoming and outgoing spins
and polarizations and integrating over the outgoing particle
phase space with the result

P(circ)
NLC = α

16π2(k · p)2

∫
dϕ

∫
dϕ′

∫
ds

s(1 − s)

∫
d|L⊥|2

∫
dϑ TNLC(ϕ, ϕ′)

× exp[iG(ϕ) − iG(ϕ′) − iz(ϕ) sin(ϕ − ϑ ) + iz(ϕ′) sin(ϕ′ − ϑ )]. (A14)

Here we have introduced the fine structure constant α and the auxiliary quantity

TNLC(ϕ, ϕ′) = − 2m2 +
(

1 + s2

2(1 − s)

)
[a(ϕ) − a(ϕ′)]2 (A15)

(up to a factor), representing the trace tr S̄S from the spin sum and average. For the perpendicular photon momentum integrals
one has d2�′

⊥ = d2L⊥ or, in polar coordinates,

∫
d2�′

⊥ = 1

2

∫
d|L⊥|2

∫
dϑ. (A16)

The trace term (A15) also depends on the gauge potential. However, the rapidly oscillating parts of both the exponential
and the pre-exponential can always be combined into the Bessel generating function (8). Doing so, we expand each term in the
probability into sums over Bessel harmonics, writing, in this expression, z ≡ z(ϕ) and z′ ≡ z(ϕ′),

TNLC(ϕ, ϕ′)e−iz sin(ϕ−ϑ )+iz′ sin(ϕ′−ϑ ) =
∞∑

n,n′=−∞
e−inϕ+in′ϕ′+i(n−n′ )ϑ

(
−2m2Jn(z)Jn′ (z′) − m2ξ 2

(
1 + s2

2(1 − s)

)
{[

f 2

(
ϕ

�

)
+ f 2

(
ϕ′

�

)]
Jn(z)Jn′ (z′) − f

(
ϕ

�

)
f

(
ϕ′

�

)
[Jn+1(z)Jn′+1(z′) + Jn−1(z)Jn′−1(z′)]

})
. (A17)
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Observe that the only dependence on the angle ϑ is through
the term exp[i(n − n′)ϑ] [recall G(ϕ) is also independent
of ϑ , cf. (A8)]. The integral over this angle can then be
performed, giving a δ function which means the probability
only has support on n = n′, reducing the complexity from a
doubly infinite sum to a single one. (It is interesting to note
that in the calculation for a monochromatic plane wave [51]
this factor setting n = n′ comes instead from a phase integral.)

The probability (A14) still has a complicated form, with
two phase integrals and an integral over the transverse mo-
mentum variable |L⊥|2 which resides in the argument z(ϕ) of
the Bessel functions. As the integrals cannot be done analyti-
cally, the route forward now is to introduce a local expansion.
We switch to the sum and difference variables (11) and expand
in θ = ϕ − ϕ′ 
 1, once again ignoring all derivatives of the
field profile f (ϕ/�). Then we have f (ϕ/�) ≈ f (ϕ′/�) ≈

f (φ/�), and consequently

z(ϕ) ≈ z(ϕ′) ≈z(φ). (A18)

[We recall φ = (ϕ + ϕ′)/2.] Finally, after setting n = n′ as
discussed above, the remaining terms in the exponential are
given by

G(ϕ) − G(ϕ′) − nϕ + n′ϕ′

=
{

s

2ηe(1 − s)

[
1 + |L⊥|2

s2m2
+ ξ 2 f 2

(
φ

�

)]
− n

}
θ.

(A19)

The only dependence on the phase variable θ now comes
from (A19), which appears in the exponent of the integrand.
The integral over θ yields another δ function, so

P(circ)
NLC = − α

ηe

∫
dφ

∫
ds

∫
d|L⊥|2

∞∑
n=−∞

δ

(
|L⊥|2 − m2

{
2ηe(1 − s)sn − s2

[
1 + ξ 2 f 2

(
φ

�

)]})

×
(

J2
n [z(φ)] + 1

2
ξ 2 f 2

(
φ

�

)(
1 + s2

2(1 − s)

){
2J2

n [z(φ)] − J2
n+1

[
z(φ)

] − J2
n−1[z(φ)]

})
. (A20)

The remaining momentum integral is now trivial, giving the final result of

P(circ)
NLC 	 − α

ηe

∫
dφ

∞∑
n=1

∫ sn,∗(φ)

0
ds

{
J2

n [z(φ)] + 1

2
ξ 2 f 2

(
φ

�

)(
1 + 1

2

s2

(1 − s)

)[
2J2

n [z(φ)] − J2
n+1[z(φ)] − J2

n−1[z(φ)]
]}

, (A21)

in which

z(φ) = 2nξ
∣∣ f

(
φ

�

)∣∣√
1 + ξ 2 f 2

(
φ

�

)
[

s

sn(1 − s)

(
1 − s

sn(1 − s)

)]1/2

(A22)

and

sn = 2nηe

1 + ξ 2 f 2
(

φ

�

) , ηe = k · p

m2
, s = k · �′

k · p
. (A23)

[We have suppressed the argument of sn = sn(φ/�) for
brevity.] Momentum conservation leads to the condition n �
1 on the harmonic number, whereas kinematic considerations
lead to a phase-dependent upper bound on the s integration
of sn,∗(φ) = sn(φ)/[1 + sn(φ)]. So for a circularly polarized
plane-wave field, (A5), the LMA gives a direct generaliza-
tion of the infinite monochromatic plane-wave result (see,
e.g., [51]), where the field strength has been localized, i.e.,
turned into a function of phase φ by replacing ξ → ξ f (φ/�).
As mentioned in the main text, this ad-hoc replacement has
been used in the literature [62], but to the best of our knowl-
edge, the necessary approximations required, and in fact the
validity of the approach, has not been studied. In [62] this trick
of localizing the field strength in the monochromatic result
is also used for the case of a linearly polarized plane-wave
pulse. However, we will see below that the validity of this
replacement may not be applicable in all cases.

2. Linearly polarized plane-wave pulse

The derivation of the LMA for a linearly polarized plane-
wave pulse mostly follows the same path as for circular
polarization, and so we just point out the key differences,
most importantly the reasons why it is not possible to simply
take the standard results for the case of a linearly polarized
monochromatic plane wave (see, e.g., [8]) and “localize” the
field strength ξ .

We will assume the pulse to be linearly polarized in the ε

direction by adopting (4) with δ = 0, hence

aμ(ϕ) =mξ f

(
ϕ

�

)
εμ cos ϕ. (A24)

Choosing a linearly polarized background leads to additional
structure in the final expression for the probability. The source
of this is quite simple: in a circularly polarized pulse the
term (A6) quadratic in the gauge potential is slowly varying
with ϕ, but in the linear case5 contains rapidly oscillating
parts,

a2(ϕ) = −m2ξ 2 f 2

(
ϕ

�

)
cos2 ϕ. (A25)

5In the monochromatic limit f → 1 the use of linear polarization is
also well known to add some additional complexity to the probability
as the quadratic term in a circularly polarized pulse is constant, while
it varies with the phase in the linear case. Compare, e.g., the results
of [8] (linear) with [51] (circular) for nonlinear Compton scattering.
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The appearance of the cos2 ϕ term means that we must
implement both slowly varying envelope approximations (5)
and (6) for the linear terms. The exponent in (A2) is then∫ ϕ

−∞

�′ · πp

k · (p − �′)
	 G(ϕ) − α(ϕ) sin ϕ + β(ϕ) sin 2ϕ,

(A26)

where we have introduced the function

G(ϕ) = s

2ηe(1 − s)

[(
1 + |�′

⊥ − sp⊥|2
s2m2

)
+ ξ 2

2
f 2

(
ϕ

�

)]
ϕ,

(A27)

and the abbreviations

α(ϕ) = ξ f
(

ϕ

�

)
ηem(1 − s)

[(�′ − sp) · ε],

β(ϕ) = s

8ηe(1 − s)
ξ 2 f 2

(
ϕ

Φ

)
. (A28)

Notice that α(·) ≡ αc(·) [see (A9)] and thus depends on the
projection of the photon momentum along ε, but that β(ϕ)
is independent of the perpendicular directions. These simple

observations have far reaching consequences. Most notably,
the two trigonometric terms in (A26) cannot be combined as
was done in (A13). Therefore, each of the oscillating terms in
the exponential will have to be expanded individually, once
they have been put into the form of the Bessel generating
function (8). Furthermore, after implementing the expansion
into Bessel harmonics, the probability will depend on terms
like Jn[α(ϕ)], the argument of which depends on both the
magnitude |L⊥| and the angle ϑ (using the notation of the cir-
cularly polarized case). As such, only one of the two integrals
coming from the perpendicular components of the outgoing
photon momentum can be done, and the result will have a
residual angular dependence (if one chooses to do the integral
in |L⊥|). Remember that for circular polarization the simple
dependence on the angle ϑ in (A17) meant that the integral
over ϑ could be performed, and the probability then only had
support on n = n′. This is not the case for linear polarization,
and one finds that the number of harmonic sums cannot be
reduced to the same amount as for the case of an infinite
monochromatic plane wave.

With all this in mind we jump ahead to the probability, ex-
pand in the phase difference variable θ = ϕ − ϕ′, and perform
all the remaining integrals which can be done analytically.
Defining the combinations of Bessel functions

�0,n(φ) ≡
∞∑

r=−∞
Jn+2r[α(φ)]Jr[β(φ)], (A29)

�1,n(φ) ≡1

2

∞∑
r=−∞

{Jn+2r+1[α(φ)] + Jn+2r−1[α(φ)]}Jr[β(φ)], (A30)

�2,n(φ) ≡1

4

∞∑
r=−∞

{Jn+2r+2[α(φ)] + Jn+2r−2[α(φ)] + 2Jn+2r[α(φ)]}Jr[β(φ)], (A31)

with arguments

α(φ) = − (n + n′)ξ
∣∣ f

(
φ

�

)∣∣ cos ϑ√
1 + ξ 2

2 f 2
(

φ

�

) √
wn+n′ (1 − wn+n′ ), β(φ) = ξ 2 f 2

(
φ

�

)
8ηe

s

1 − s
, (A32)

and abbreviations

wn+n′ = s

sn+n′ (1 − s)
, sn+n′ = (n + n′)ηe

1 + ξ 2

2 f 2
(

φ

�

) , (A33)

the probability for linearly polarized nonlinear Compton scattering finally becomes

P(lin)
NLC 	 α

2πηe

∫
dφ

∞∑
n=1

∞∑
n′=1

∫ sn+n′,∗(φ)

0
ds

∫ 2π

0
dϑ exp[−i(n − n′)φ]

{
− �0,n(φ)�0,n′ (φ)

− 1

2
ξ 2 f 2

(
φ

�

)(
1 + s2

2(1 − s)

)
[�2,n(φ)�0,n′ (φ) + �0,n(φ)�2,n′ (φ) − 2�1,n(φ)�1,n′ (φ)]

}
, (A34)

where the upper bound on the integration over s is given by
sn+n′,∗(φ) = sn+n′ (φ)/[1 + sn+n′ (φ)].

Due to the additional structure and the infinite summations
it is not possible to simply take the standard monochro-
matic plane-wave result and localize the field strength, as
could be done in the circularly polarized case. In princi-
ple, the appearance of this extra structure opens up the
possibility of interference between different harmonics. How-
ever, in the parameter regime investigated in the main

text we did not find a case where this interference was
significant.

3. Nonlinear Breit-Wheeler pair production

Nonlinear Breit-Wheeler pair production [31,32,59] is the
decay of a photon, of momentum �, and polarization ε, into an
electron-positron pair, with momenta p′ and q′, respectively:
γ (�) → e−(p′) + e+(q′). In vacuum, this process is forbid-
den as it violates energy-momentum conservation, but here
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is made possible through the interaction with a background
electromagnetic field. Again, the amplitude is given in terms
of the Volkov wave functions (1), namely

SBW = −ie
∫

d4x�̄p′ (x)/ε��−q′ (x)e−i�·x. (A35)

The derivation of the LMA is exactly the same as for nonlinear
Compton scattering, and so we do not give any details here.
Instead, we simply state the final result for the case of the
circularly polarized plane wave (A5), namely

P(circ)
BW 	 α

ηγ

∫
dφ

∞∑
n>�n�(φ)�

∫ r+(φ)

r−(φ)
dr

{
J2

n [z(φ)] − 1

2
ξ 2 f 2

(
φ

�

)(
1

2r(1 − r)
− 1

)[
2J2

n [z(φ)] − J2
n+1[z(φ)] − J2

n−1[z(φ)]
]}

,

(A36)

where we have employed the abbreviations

z(φ) = 2nξ
∣∣ f

(
φ

�

)∣∣√
1 + ξ 2 f 2

(
φ

�

)
[

1

rn(1 − r)r

(
1 − 1

rn(1 − r)r

)]1/2

, rn = 2nηγ

1 + ξ 2 f 2
, ηγ = k · �

m2
, n�(φ) = 2[1 + ξ 2 f 2(φ)]

ηγ

.

(A37)
The lower bound on the harmonic number �n�(φ)� is required by momentum conservation, as energy-momentum conservation
must be satisfied when producing the outgoing pair. The kinematics of the nonlinear Breit-Wheeler process constrains the
integration region to r−(φ) < r < r+(φ), where r± = 1

2 [1 ± √
1 − n�(φ)/n].

APPENDIX B: INFRARED LIMIT (s → 0) OF NONLINEAR COMPTON SCATTERING

A well-known discrepancy between the locally constant field approximation and exact QED results is the failure of the
former in the “infrared” s → 0 limit of the emitted photon spectrum. This is a consequence of performing a local expansion in
θ = ϕ − ϕ′ 
 1 for the entire pulse, whereas the low s spectrum is dominated by contributions from large θ [9]. Here we present
a new derivation of this limit from the full QED probability in an arbitrary plane-wave pulse, and show that the same limit can
be obtained trivially in the LMA.

The probability of nonlinear Compton scattering can be expressed in differential form as (see, e.g., [23,66])

dPNLC

ds
= − α

πηe

∫ ∞

−∞
dφ

∫ ∞

0
dθ sin

(
θμ

2ηe

s

1 − s

){
1

μ

∂μ

∂θ
+ g(s)

θ
[a(φ + θ/2) − a(φ − θ/2)]2

}
. (B1)

Here we employ the Kibble effective mass μ introduced in (16) for the gauge potential aμ = (0, a), where

μ(φ, θ ) = 1 + 1

θ

∫ φ+θ/2

φ−θ/2
a2 −

(
1

θ

∫ φ+θ/2

φ−θ/2
a
)2

. (B2)

Rescaling the phase difference variable,

θ = t

s
, (B3)

the Kibble effective mass (B2) becomes, to leading order in small s,

lim
s→0

μ ∼ 1 + s

t

∫ ∞

−∞
a2, (B4)

which is independent of the phase variable φ. The derivative of the Kibble mass appearing in (B1) is then trivially of order s2.
Using also that, as s → 0, g(s) → 1/2, and replacing 1/(1 − s) → 1 throughout, we find the leading order behavior comes form
the term in small square brackets in (B1), i.e., the squared difference of the potentials,

dPNLC

ds
∼ α

πηe

∫ ∞

−∞
dφ

∫ ∞

0

dt

t
sin

(
t

2ηe

)
[a2(φ + t/2s) − a(φ + t/2s) · a(φ − t/2s)], (B5)

in which we have also shifted integration variables to compactify the expression. To proceed, we Fourier transform the gauge
potentials, make use of ∫

dφ eiω(φ+t/2s)eiν(φ±t/2s) = 2πδ(ω + ν)eit (ω∓ν)/2s, (B6)

to get rid of the integral over φ, and put the differential probability in the form

dPNLC

ds
∼ 1

2π

α

πηe

∫
dω a(ω) · a�(ω)

∫ ∞

0

dt

t
sin

(
t

2ηe

)[
1 − cos

( tω

s

)]
. (B7)
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The remaining integral over t can now be performed ex-
actly,∫ ∞

0

dt

t
sin

(
t

2ηe

)[
1 − cos

( tω

s

)]

= −π

4

[
−2 + sgn

(
1 − |ω|

s

)
+ sgn

(
1 + |ω|

s

)]
. (B8)

In the limit s → 0 this yields

lim
s→0

∫ ∞

0

dt

t
sin

(
t

2ηe

)[
1 − cos

( tω

s

)]
= π

2
, (B9)

so that the infrared limit finally becomes

lim
s→0

dPNLC

ds
= 1

2π

α

2ηe

∫
dω a(ω) · a�(ω). (B10)

This agrees with the result found in [10].
Now, the locally constant field approximation is well

known to fail in predicting the correct value for the s → 0
limit [9,10,23,69–71,91]. We have demonstrated in the main
text that, on the other hand, the LMA gives a perfect match
to the exact QED results numerically. It turns out that in the
LMA, recovering the correct limit (B10) is completely trivial.

First consider the LMA of nonlinear Compton scattering in
a circularly polarized plane-wave pulse (A21). The argument
of the Bessel functions z(φ), defined in (A22), has leading
order behavior z(φ) → 0 in the s → 0 limit. In the z → 0
limit, the Bessel functions obey

lim
z→0

Jm(z) =
{

1 for m = 0,

0 for m �= 0.
(B11)

So the only term that remains nonzero in the s → 0 limit is
the term ∝ J2

n−1(z) in (A21), with n = 1. Then, after Fourier
transforming the remaining terms and calculating the result-
ing trivial integrals, one recovers precisely (B10). The same
argument carries through for linear polarization as well.

APPENDIX C: HIGH-FIELD LIMIT (ξ � 1) OF THE LMA

We noted in the main text that the locally constant field
approximation can be derived as the high-field limit of the
LMA; we show this explicitly here. We will focus on the
simplest case, nonlinear Compton scattering in a circularly
polarized background field, cf. (A21).

We begin by considering the behavior of the argument of
the Bessel function (A22) for ξ � 1 which should be real and
positive. For a particular value of the light-front momentum
fraction s, there is a minimum value of the harmonic number
given by

nmin = ξ̄ 3

2χe

s

1 − s

[
1 + 1

ξ̄ 2

]
, (C1)

where we use the shorthand ξ̄ = ξ f and defined χe = ξ̄ηe.
We note that as ξ̄ → ∞, n ∼ ξ̄ 3/χe, and hence the corre-

sponding harmonic order at a fixed value of s becomes very
large. In this limit, the behavior of the Bessel function terms
may be determined as follows. Let v = s/sn,∗ where sn,∗ =
sn/(1 + sn) is the edge of the nth harmonic. This removes any

dependency on n from the s integration range:∫ sn,∗

0
ds → sn,∗

∫ 1

0
dv.

Then the argument of the Bessel functions becomes

z = 2nξ̄√
1 + ξ̄ 2

[
sn,∗
sn

v

1 − vsn,∗

(
1 − sn,∗

sn

v

1 − vsn,∗

)]1/2

. (C2)

Recalling that sn = 2nηe/(1 + ξ̄ 2), we see that, in the limit of
ξ̄ → ∞, keeping all other variables fixed, z → nζ (v), where
ζ is independent of n. In the high-field limit, ξ̄ � 1, the
function ζ (v) tends to

lim
ξ̄�1

ζ (v) 	 2[v(1 − v)]1/2. (C3)

In this limit, the main contribution to the probability comes
from the vicinity of ζ ∼ 1 or v ∼ 1/2. In other words, the
main contribution comes from the region where z ∼ n. Using
the high field limit of n, the argument of the Bessel functions
z can be shown to approach the finite value

z → ξ̄ 3

χe

s

1 − s
. (C4)

To proceed we follow the approach of Ritus [8] and intro-
duce a new parameter,

τ = ξ̄

2

[(
zχe

ξ̄ 3

(1 − s)

s

)2

− 1

]
, (C5)

which characterizes the difference between z and its limiting
high-field value at the points of maximum contribution to the
probability (with a normalization set for later convenience).
Then, using the relationship between z and the harmonic num-
ber n, we can express n in terms of τ ,

n = ξ̄ 3

2χe

s

1 − s

(
1 + 2τ

ξ̄

)
+ nmin. (C6)

In the probability one now exchanges the order of summa-
tion (over n) and integration (over s). In the high-field limit,
one can replace the summation by an integration over τ such
that

PNLC 	 − α

ηe

∫
dφ

∫ ∞

0
ds

∫ ∞

−ξ̄ /2
dτ

(
ξ̄ 2

χe

s

1 − s

)

×
{

J2
n (nζ ) − ξ̄ 2

(
1 + 1

2

s2

(1 − s)

)

×
[

1 − ζ 2

ζ 2
J2

n (nζ ) + J ′
n

2(nζ )

]}
. (C7)

As noted previously, in the high field limit, the minimum
value nmin for the harmonic number becomes large, and the
main contribution to the probability comes from the regions
where ζ ∼ 1. These two conditions allow us to use the Watson
representation [92] of the Bessel functions,

Jn(nζ ) 	
(

2

n

)1/3

Ai(y), y =
(

n

2

)2/3(
1 − ζ 2

)
, (C8)

where Ai(y) is an Airy function. Implementing the Watson
representation, expanding around ξ̄ � 1, and defining u = s /
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(1 − s)we can approximate

y 	
(

u

2χe

)2/3

(1 + τ 2), (C9)

such that the probability turns into

PNLC 	 − 2α

ηe

∫
dφ

∫ ∞

0

du

(1 + u)2

∫ ∞

0
dτ

(
u

χe

)1/3{
Ai2(y) −

(
2χe

u

)2/3(
1 + 1

2

u2

(1 + u)

)[
yAi2(y) + Ai′2(y)

]}
. (C10)

In (C10) we made use of the fact that the only dependence of the probability on τ is through (C9), and so the integration in τ is
symmetric in the ξ̄ � 1 limit.

Next, we change variables to T = (u/2χe)2/3τ 2, use the two Airy function identities [8,92]

yAi2(y) + Ai′2(y) = 1

2

d2

dy2
Ai2(y), (C11)∫ ∞

0

dT√
T

Ai2(A + T ) = 1

2

∫ ∞

22/3A
dxAi(x), (C12)

and define

z̄ =
(

u

χe

)2/3

, Ai1(z̄) =
∫ ∞

z̄
dxAi(x), (C13)

to cast the probability into the form

PNLC 	 − α

ηe

∫
dφ

∫ ∞

0

du

(1 + u)2

{
Ai1(z̄) + 2

z̄

(
1 + 1

2

u2

(1 + u)

)
Ai′(z̄)

}
. (C14)

Finally, changing variables back to s = u/(1 + u) the probability can be put in the form

PNLC 	 − α

ηe

∫
dφ

∫ 1

0
ds

{
Ai1(z̄) +

(
2

z̄
+ sχ

√
z̄

)
Ai′(z̄)

}
. (C15)

This is exactly the locally constant field approximation, cf. (A.14) of [23], where χγ ≡ sχ . Hence, the locally constant field
approximation is nothing but the high-field limit of the more general LMA which has been the subject of the present paper.
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