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Relativistic ionization dynamics of hydrogenlike ions in strong electromagnetic fields:
Generalized pseudospectral method for the time-dependent Dirac equation
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We perform a theoretical and computational study of relativistic hydrogenlike ions subject to linearly polarized
strong electromagnetic fields. The time-dependent Dirac equation is solved with the help of the generalized
pseudospectral method in spherical coordinates. When solving the Dirac equation numerically with basis-set
methods, spurious eigenstates usually show up. We suggest a simple transformation of the original discretized
Dirac Hamiltonian that removes such states and keeps highly accurate true eigenstates. We calculate the
ionization probabilities of the hydrogen atom and hydrogenlike ions Ne9+ and Ar17+ for various peak field
strengths and pulse durations scaled with respect to the nuclear charge of the target. Calculations are performed
both within and beyond the dipole approximation. We analyze the nondipole effects and find the region of the
Lorentz deflection parameter where the dipole approximation is still applicable.
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I. INTRODUCTION

Recent decades brought new breakthroughs in the laser
technologies making it possible to generate extremely intense
short pulses and attracting much attention to the light-matter
interaction phenomena both in the theory and experiment (see
review papers [1,2] and references therein). With optical lasers
at the intensities 1017–1018 W/cm2, interaction of electromag-
netic radiation with matter already enters a relativistic regime,
where electrons can reach relativistic velocities within one
optical cycle. Numerous new phenomena, such as relativistic
self-focusing in plasmas, relativistic multiphoton and tunnel-
ing recollision dynamics, laser-assisted electron-positron pair
production, etc., can be possibly observed [2]. On the other
hand, the most powerful free-electron laser facilities, such as
the X-ray Free-Electron Laser (XFEL) [3] at Hamburg and the
Linac Coherent Light Source (LCLS) [4] at Stanford, are ex-
pected to produce electromagnetic fields with extremely high
brilliance and wavelengths down to 0.05 nm, thus providing
opportunities to explore the interaction of strong and short-
wavelength electromagnetic radiation with highly charged
ions, which themselves are relativistic quantum systems. In
this respect, we can mention the upcoming High-Intensity
Laser Ion-Trap Experiment (HILITE) experiment [5–7] in-
tended to study the light-matter interaction using a Penning
trap.

Theoretical treatment of highly charged ions exposed to
electromagnetic fields with extremely high intensities must be
fully relativistic since the electron moves with very high speed
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under the influence of both the Coulomb field of a highly
charged nucleus and a strong external electromagnetic field.
Various approaches for relativistic treatment of the laser-ion
interaction have been suggested and implemented. We can
mention several methods to solve the time-dependent Dirac
equation (TDDE) numerically in spherical coordinates with
expansion of the angular part of the wave function in spherical
harmonics [8–13]. The radial wave function can be either
discretized on the exponential mesh [8,14] or expanded on a
basis of B-splines [9–13]. Kinetically balanced B-spline basis
sets in both radial and angular coordinates for TDDE with an
axial symmetry were introduced in Ref. [15]. Non-Hermitian
approaches such as complex rotation of the coordinates,
which have become a powerful tool in the theoretical atomic,
molecular, and optical physics (see, for example, review pa-
pers [16,17]) are applied as well. The methods of Refs. [8,10]
make use of the complex scaling of the coordinates, and com-
plex absorbing potentials are utilized in Refs. [11,12]. Other
theoretical and computational approaches feature the relativis-
tic time-dependent close-coupling method [18,19], relativistic
generalization of the matrix iteration method [20], and clas-
sical relativistic phase-space averaging method, generalized
to arbitrary central potentials [21]. The relativistic Coulomb-
corrected strong-field approximation [22,23] has been used
for treatment of above-threshold ionization.

For the frequencies of the external electromagnetic fields
in the ultraviolet region and below, where the wavelength
of the radiation exceeds the atomic size to a great extent,
the electric-dipole approximation is a common approach to
describe the interaction of the atom or ion with the field. In the
dipole approximation, the variation of the external field vector
potential in space is neglected. Then the external field is a
time-dependent and spatially uniform electric field, while the

2469-9926/2020/102(6)/063109(13) 063109-1 ©2020 American Physical Society

https://orcid.org/0000-0002-2509-2904
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.102.063109&domain=pdf&date_stamp=2020-12-11
https://doi.org/10.1103/PhysRevA.102.063109


DMITRY A. TELNOV AND SHIH-I CHU PHYSICAL REVIEW A 102, 063109 (2020)

magnetic field totally vanishes. This approximation has been
widely used in nonrelativistic calculations of atoms in strong
laser fields where the treatment is based on the time-dependent
Schrödinger equation (TDSE). It was also applied on sev-
eral occasions to essentially relativistic systems described by
TDDE, such as highly charged ions exposed to electromag-
netic fields [9,13,15,18,24]. However, nondipole effects due
to magnetic fields may be important even at long wavelengths,
depending on the field intensity [25]. When the intensity of the
laser field increases, so does the velocity of the rescattering
electron. Then the nondipole effects due to the magnetic field
of the laser pulse become more and more important, and the
dipole approximation eventually breaks down. Description
of the interaction with the external electromagnetic field be-
yond the dipole approximation may be necessary even if an
atomic or molecular system is treated nonrelativistically with
TDSE [26–29]. For relativistic atomic and molecular systems,
various approaches were made to extend the treatment beyond
the dipole approximation in TDDE [8,10–12,19,30]. They
include the Fourier [8], power series [11], and spherical Bessel
function [19] expansions to accommodate the nondipole cor-
rections. It was shown [10] that the spatial dependence in the
pulse envelope, rather than in the carrier, provides a dominant
correction beyond the dipole approximation.

In our previous work [30], we studied ionization of rel-
ativistic quasimolecular systems in strong fields solving the
TDDE with the help of the generalized pseudospectral (GPS)
method in prolate spheroidal coordinates. We found that spu-
rious eigenstates of the Dirac Hamiltonian, which usually
emerge among the true bound states when solving the problem
with basis-set expansion methods, do not show up if the GPS
method is applied in prolate spheroidal coordinates. In the
present paper, we address the problem of strong-field ion-
ization of relativistic hydrogenlike ions, where the spherical
coordinates is the natural choice. Previously, the GPS method
in spherical coordinates was successfully applied to a number
of nonrelativistic atomic problems (see, for example, Ref. [17]
and references therein). It does not require computations of
the potential-energy matrix elements, and its nonuniform spa-
tial grid is well suited for treatment of the systems bound by
the Coulomb forces. It allows us to obtain highly accurate
results while using only a moderate number of grid points.
Therefore, it is desirable to extend this method to relativistic
atomic systems described by the Dirac equation. However, if
the GPS method in spherical coordinates is applied straight-
forwardly to the time-independent Dirac equation, then the
spurious states do appear, and they may interfere in solving
the TDDE as well. Here we suggest a modification of the
discretized Dirac Hamiltonian that removes the spurious states
while maintaining a high accuracy of true bound states. This
method is applied to calculate the ionization probabilities of
the hydrogen atom as well as hydrogenlike ions Ne9+ and
Ar17+ subject to pulses of electromagnetic field with appro-
priately scaled parameters. The calculations are performed
both within and beyond the dipole approximation. We analyze
the relativistic ionization dynamics of hydrogenlike ions in
strong electromagnetic fields and draw conclusions about the
applicability of the dipole approximation.

The paper is organized as follows: In Sec. II, we present
theoretical and computational details of our approach, which

makes use of the GPS method in spherical coordinates. Here
we extend this method for the accurate and efficient numerical
solution of TDDE and suggest a modification of the Hamil-
tonian matrix to remove the spurious states. In Sec. III, we
present and discuss our results regarding ionization dynam-
ics of relativistic hydrogenlike ions in strong electromagnetic
fields. In Sec. III B, we study the dependence of the ionization
probabilities on the pulse duration and nuclear charge within
the dipole approximation. In Sec. III C, the results obtained
beyond the dipole approximation are presented and conclu-
sions about the applicability of the dipole approximation
are made. Section IV contains concluding remarks. Atomic
units (a.u.) are used throughout the paper unless specified
otherwise.

II. THEORETICAL AND COMPUTATIONAL METHODS

A. Time-dependent Dirac equation for one-electron system
in linearly polarized electromagnetic field

A conventional form of the unperturbed Dirac Hamiltonian
for an electron moving in the potential of the atomic nucleus
is as follows:

HD = c(α · p) + mec2β + U (r), (1)

where c is the speed of light, p is the momentum operator,
me is the electron mass (me = 1 in atomic units), U (r) is the
nucleus potential, and α and β are the Dirac matrices:

α =
∥∥∥∥02 σ

σ 02

∥∥∥∥, β =
∥∥∥∥12 02

02 −12

∥∥∥∥. (2)

In Eq. (2), “02” and “12” are 2×2 matrices:

02 =
(

0 0
0 0

)
, 12 =

(
1 0
0 1

)
, (3)

and σ denotes the vector consisting of the Pauli matrices as
components:

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (4)

From the very beginning, it is convenient to perform a unitary
transformation:

H0 = G†HDG, (5)

G =
∥∥∥∥C 02

02 iC

∥∥∥∥, (6)

where C is a diagonal 2×2 matrix:

C =
(

1 0
0 exp(iϕ)

)
(7)

and ϕ is the azimuthal angle describing rotation about the z
axis. For the unperturbed hydrogenlike ion, the choice of the
z axis is arbitrary, since the core potential U (r) is spherically
symmetric. However, if a linearly polarized external electro-
magnetic field is introduced in the time-dependent problem,
then the direction of the z axis is chosen along the polarization
vector of the external field. The new Hamiltonian H0 takes the
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form

H0 = mec2

∥∥∥∥12 02

02 −12

∥∥∥∥ + c

∥∥∥∥02 B
B† 02

∥∥∥∥
+ c

∥∥∥∥02 D
D† 02

∥∥∥∥ + U (r)

∥∥∥∥12 02

02 12

∥∥∥∥. (8)

Using the cylindrical coordinates ρ, ϕ, z as generic coordi-
nates emphasizing the direction along the z axis, the 2×2
matrices B and D are expressed as follows:

B =

⎛⎜⎜⎝
∂

∂z

∂

∂ρ
+ 1

ρ

∂

∂ρ
− ∂

∂z

⎞⎟⎟⎠, D =

⎛⎜⎜⎝ 0 − i

ρ

∂

∂ϕ

i

ρ

∂

∂ϕ
0

⎞⎟⎟⎠. (9)

They are anti-Hermitian:

B† = −B, D† = −D. (10)

Note that all terms in the unperturbed Hamiltonian H0 are real-
valued, except for the one with the matrix D.

The time-dependent Dirac equation for the electron inter-
acting with the atomic core and external electromagnetic field
reads as

i
∂

∂t
�(r, t ) = (H0 + V )�(r, t ), (11)

where �(r, t ) is a four-component wave function and the
minimal coupling interaction of the electron with the external
electromagnetic field linearly polarized along the z axis is
described by the following term:

V (r, t ) = A(r, t )

∥∥∥∥ 02 iσz

−iσz 02

∥∥∥∥ (12)

[the vector is potential of the external field is equal to A(r, t )ẑ,
ẑ being the unit vector along the z axis].

As a function of the azimuthal angle ϕ, the wave function
� can be expanded in the Fourier series:

� =
∞∑

m=−∞
exp(imϕ)� (m). (13)

Each term on the right-hand side of Eq. (13) corresponds to
the projection M = m + 1/2 of the total angular momentum
on the z axis. The following relation holds:

H0� =
∞∑

m=−∞
exp(imϕ)H (m)

0 � (m). (14)

The partial Hamiltonians H (m)
0 are real-valued:

H (m)
0 = Tm + U (r)

∥∥∥∥12 02

02 12

∥∥∥∥, (15)

where Tm is the kinetic and rest energy operator:

Tm = mec2

∥∥∥∥∥∥∥∥
12

Wm

mec
W †

m

mec
−12

∥∥∥∥∥∥∥∥, (16)

Wm = B + Dm, (17)

and the 2×2 matrices Dm are defined as follows:

Dm =

⎛⎜⎝ 0
m

ρ

−m

ρ
0

⎞⎟⎠. (18)

Since the unperturbed Hamiltonian H0 is spherically sym-
metric, the projection of the total angular momentum on the
z axis is conserved if the external field is switched off. This
is also the case when the interaction with the laser field is
treated in the dipole approximation and the field is linearly
polarized along the z axis. Then for the initial state with the
definite angular-momentum projection, only one term with
the corresponding m value should be retained in Eqs. (13)
and (14). Beyond the dipole approximation, several m terms
in the wave-function expansion (13) must be kept to achieve
convergence. In general, the stronger the field, the larger num-
ber of angular-momentum projections should be used.

To accomplish the time propagation in Eq. (11), we apply
the split-operator method in the energy representation [31],
which we have extensively used for solving the TDSE [32–34]
and time-dependent Kohn-Sham equations [35–37] as well as
to solve the TDDE for quasimolecules in prolate spheroidal
coordinates [30]. The following short-time propagator scheme
is employed:

�(t + �t ) = exp

(
− i

2
�t H0

)
× exp

[
−i�t V

(
t + 1

2
�t

)]
× exp

(
− i

2
�t H0

)
�(t ); (19)

at each time step, an error bound of this scheme is of the
order of (�t )3. The field-free propagator exp(− i

2�t H0) is
time independent; it is calculated only once before the time
propagation process begins. The total field-free propagator
can be expressed through the propagators corresponding to
the specific angular-momentum projections:

exp

(
− i

2
�t H0

)
�(t )

=
∞∑

m=−∞
exp(imϕ) exp

(
− i

2
�t H (m)

0

)
� (m)(t ). (20)

The partial propagators exp(− i
2�t H (m)

0 ) are calculated by the
spectral expansion:

exp

(
− i

2
�t H (m)

0

)
=

∑
n

exp

(
− i

2
�t E (m)

n

)∣∣� (m)
n

〉〈
� (m)

n

∣∣,
(21)

where � (m)
n and E (m)

n are the eigenstates and energies of the
partial Hamiltonian H (m)

0 (15). Equation (20) is very useful for
the calculations beyond the dipole approximation where the
angular-momentum projection is not conserved: in the matrix-
vector product, it allows us to use several matrices of a smaller
dimension (partial propagators) rather than one matrix of a
larger dimension (full propagator).

The external field propagator exp(−i�t V ) can be cal-
culated analytically for the interaction operator given by
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Eq. (12):

exp(−i�t V ) =
∥∥∥∥ cos(A�t )12 sin(A�t )σz

− sin(A�t )σz cos(A�t )12

∥∥∥∥. (22)

In the full coordinate representation, where the angle ϕ is
discretized on a uniform grid, it is quasidiagonal in the sense
that it consists of four square blocks, each of them being
a diagonal matrix (note that multiplication by a function of
the coordinates is represented by a diagonal matrix in the
GPS method that we apply to solve the problem). The field
propagator is time dependent and must be calculated at each
time step. However, this operation is not time consuming since
the propagator matrix is quasidiagonal. Before applying the
partial field-free propagators at each time step, the wave func-
tion must be converted from the full coordinate representation
to the angular-momentum projection representation; this is
done by the fast Fourier transform (FFT) with respect to the
coordinate ϕ. This operation is performed by the hardware-
optimized FFT routines and is not time consuming, either.

The split-operator formula (19) is not exact but approxi-
mate because the operators H0 and V do not commute. Since
the field propagator (22) couples the positive and negative
energy states with the large energy gap 2mec2 between them,
the commutator [H0,V ] effectively multiples the states by
this factor, and the time step �t in the split-operator method
must be chosen small enough to suppress the influence of
the commutator. The requirement that the time step must be
very small could be a serious disadvantage when applying
the split-operator method to solve the TDDE. We should note
here that the stiffness issues are known for the TDDE and
have been discussed in the literature [11,20,38]. In our cal-
culations, converged results in the TDDE propagation using
the split-operator method can be obtained with the time step
about two orders of magnitude smaller than the time step in
the TDSE propagation for the same system and field parame-
ters. An alternative time propagation scheme is based on the
Crank-Nicolson algorithm [39]. In this method, the Hamilto-
nian is not split in two parts, the commutator problem does
not exist, and the time step can be chosen much larger than
that in the split-operator method. However, one has to deal
with the large Hamiltonian matrix obtained by discretization
of all three coordinates (including the angle ϕ) because the
total Hamiltonian beyond the dipole approximation does not
possess the axial symmetry.

B. Generalized pseudospectral discretization of the Dirac
Hamiltonian in spherical coordinates and removal

of spurious states

To obtain the initial wave function in the time-dependent
problem (11) and construct the field-free propagators (21),
one has to solve the eigenvalue problems for the partial un-
perturbed Hamiltonians (15):

H (m)
0 � (m)

n = E (m)
n � (m)

n . (23)

We use the GPS method in the spherical polar coordinates
suitable for one-center atomic targets [36]. The radial coor-
dinate r is discretized by using the Gauss-Lobatto scheme
where the collocation points are the roots of the polyno-
mial (1 − x2)P′

Nx+1(x), P′
Nx+1(x) being the derivative of the

Legendre polynomial. There are Nx + 2 collocation points
within the interval [−1, 1], including the points −1 and 1. The
latter two points correspond to the boundaries of the radial
coordinate range when an appropriate mapping between x and
r is established. If zero boundary conditions are imposed on
the wave function at these points, only Nx internal collocations
points are used to represent the discretized wave function. We
adopt the following mapping function r(x):

r(x) = Rm
(1 + x)2 + 2δ(1 + x)

1 − x + 4Rm(1 + δ)/Rb
. (24)

Here Rm, Rb, and δ are parameters of the transformation.
The endpoint Rb must be chosen large enough to ensure the
space domain used to solve the equation contains all important
physics. A quadratic term in the numerator of Eq. (24) and
a small value of the parameter δ make the distribution of
the radial grid points denser in the vicinity of the nucleus;
this is important for the calculations of heavy ions where the
extended nucleus model is used.

For the polar angle ϑ , we apply the Gauss-Legendre dis-
cretization scheme where the collocation points are the roots
of the Legendre polynomial PNy (y). There are Ny collocation
points which lie entirely within the interval [−1, 1]. An appro-
priate mapping transformation ϑ (y) is given by the following
expression:

ϑ = π

2
(1 + y). (25)

It is convenient to introduce an array �
(m)
i j containing the

scaled values of the wave function � (m)(r, ϑ ) at the colloca-
tion points:

� (m)(ri, ϑ j )

= 1

ri

√√√√ (Nx + 1)(Nx + 2)
(
1 − y2

j

)
8πr′

iϑ
′
j sin ϑ j

PNx+1(xi )P
′
Ny

(y j )�
(m)
i j

(26)

(r′
i and ϑ ′

j denote the values of the derivatives dr/dx and
dϑ/dy at the collocation points xi and y j , respectively). Then
the normalization integral of the wave function is calculated
as follows:∫

d3r[� (m)(r)]†� (m)(r) =
Nx∑

i=1

Ny∑
j=1

[
�

(m)
i j

]†
�

(m)
i j . (27)

Upon discretization, the differential operators with respect
to the coordinates in the Hamiltonian [see Eq. (9)] are
represented by matrices acting upon the vector with the com-
ponents �

(m)
i j . The matrix elements are calculated as follows:(

∂

∂z

)
i j,i′ j′

= δ j j′√
r′

i r
′
i′

cos ϑ jd
x
ii′

− δii′

2ri

√
ϑ ′

jϑ
′
j′

⎛⎝
√√√√1 − y2

j′

1 − y2
j

√
sin ϑ j

sin ϑ j′
sin ϑ jd

y
j j′

−
√√√√ 1 − y2

j

1 − y2
j′

√
sin ϑ j′

sin ϑ j
sin ϑ j′d

y
j′ j

⎞⎠, (28)
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(
∂

∂ρ

)
i j,i′ j′

= δ j j′√
r′

i r
′
i′

sin ϑ jd
x
ii′

+ δii′

2ri

√
ϑ ′

jϑ
′
j′

⎛⎝
√√√√1 − y2

j′

1 − y2
j

√
sin ϑ j

sin ϑ j′
cos ϑ jd

y
j j′

−
√√√√ 1 − y2

j

1 − y2
j′

√
sin ϑ j′

sin ϑ j
cos ϑ j′d

y
j′ j

⎞⎠− δii′δ j j′

2ri sin ϑ j
,

(29)

with the derivative matrices dx
ii′ and dy

j j′ defined as

dx
ii′ = 1

xi − xi′
(i �= i′), dx

ii = 0 (1 � i � Nx ); (30)

dy
j j′ = 1

y j − y j′
( j �= j′), dy

j j = y j

1 − y2
j

. (31)

The nuclear potential and other multiplications by functions
of the coordinates in the Hamiltonian are represented by di-
agonal matrices in the GPS method, with the matrix elements
equal to the values of the potential at the collocation points.

It is well known that the numerical solution of the
eigenvalue problem for the Dirac equation using basis-set
expansions leads to emergence of spurious eigenstates among
the true bound states in the discrete spectrum region [40]. Var-
ious methods have been suggested to remove such undesirable
states; from imposing special boundary conditions [41,42]
to using kinetically balanced basis sets [43]. When working
with B-spline basis sets, it was shown that spurious states
are eliminated if splines of different orders are used for the
large and small components of the wave function [44]. Other
based on B splines numerical schemes, which are free of
the spurious states, were suggested in Ref. [45]. It was also
reported that nonphysical states are removed when using the
split-shift potential method for the radial Dirac equation [46].
In the previous study [30] we reported that spurious states do
not show up, at least among the low-lying bound states, when
the GPS method is applied in prolate spheroidal coordinates.
When the GPS method is applied in spherical coordinates for
an eigenvalue problem with a spherically symmetric potential,
the spurious states do appear. To get rid of the spurious states,
we suggest here a transformation of the Hamiltonian matrix
in the spirit of the dual kinetic balance (DKB) approach [43].
First, the following substitution is applied for the wave
function:

� (m) = Qm�̃ (m), (32)

with the matrix Qm defined as follows:

Qm =

∥∥∥∥∥∥∥
12 − Wm

2mec
W †

m

2mec
12

∥∥∥∥∥∥∥. (33)

To make the eigenvalue problem symmetric for the wave
function �̃ (m)

n , Eq. (23) should be also multiplied by Q†
m:

Q†
mH (m)

0 Qm�̃ (m)
n = E (m)

n Q†
mQm�̃ (m)

n . (34)

Of course, if the discretized versions of H (m)
0 and Qm are used

in Eq. (34), this congruence matrix transformation of Eq. (23)
does not change the eigenvalues, and the eigenvectors are re-
lated to each other by a nonsingular matrix in Eq. (32), so the
spurious states are not removed. The key point is to calculate
the operator product analytically before the discretization is
applied. For the kinetic and rest energy part of the Hamilto-
nian Tm the result is as follows:

Q†
mTmQm = mec2

∥∥∥∥∥∥∥∥
12 + 3WmW †

m

(2mec)2
−2WmW †

mWm

(2mec)3

−2W †
mWmW †

m

(2mec)3
−12 − 3W †

mWm

(2mec)2

∥∥∥∥∥∥∥∥. (35)

The operator product WmW †
m = W †

mWm is a block-diagonal
matrix:

WmW †
m =

⎛⎜⎜⎝−�ρz + m2

ρ2
0

0 −�ρz + (m + 1)2

ρ2

⎞⎟⎟⎠, (36)

where �ρz is a part of the Laplace operator:

�ρz = ∂2

∂ρ2
+ 1

ρ

∂

∂ρ
+ ∂2

∂z2
. (37)

Upon discretization, this operator is not expressed through a
simple matrix product of the derivative matrices (28) and (29).
The zero boundary conditions at r = 0 and r = Rb presumed
by the matrices (28) and (29) may not be satisfied upon
the first differentiation; for the same reason, the centrifugal
terms in Eq. (36) cannot be correctly reproduced by numerical
differentiation with the matrices (28) and (29). The correct
discretized form of �ρz reads as

(�ρz )i j,i′ j′ = − δ j j′√
r′

i r
′
i′

Nx+1∑
k=0

dx
kid

x
ki′

r′
k

− δii′

r2
i

√
ϑ ′

jϑ
′
j′

√(
1 − y2

j

)(
1 − y2

j′
)

sin ϑ j sin ϑ j′

×
Ny∑

k=1

sin ϑkdy
k jd

y
k j′

ϑ ′
k

(
1 − y2

k

) . (38)

Note that the summation for the radial part of this matrix in-
cludes the endpoints k = 0 and k = Nx + 1, which are omitted
in the first derivative matrices (28) and (29) because of the
zero boundary conditions imposed on the wave function.

With the Laplace operator in the product WmW †
m , one may

hope that spurious states disappear from the solution of the
discretized eigenvalue problem; this is the case for the time-
independent Schrödinger equation where the kinetic energy is
expressed through the Laplace operator: the discretized eigen-
value problem returns no spurious states. Calculation of the
operator product WmW †

m according to Eq. (36) is indeed crucial
for removal of spurious states, but only in the diagonal blocks
of the matrix (35). The off-diagonal blocks with the product
of three Wm matrices can be calculated by matrix multipli-
cation with the discretized first-derivative matrices. Upon this
transformation of the Hamiltonian, spurious eigenstates do not
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emerge when solving the eigenvalue problem (34). However,
Eq. (34) is not a standard but generalized eigenvalue problem.
The nuclear potential term is also transformed, making it not
very convenient to solve both the time-independent and time-
dependent problems. To avoid such complications, we now
apply the inverse transformation with the discretized matrix
Qm:

T̃m = [
Q̄−1

m

]†
[Q†

mTmQm]Q̄−1
m . (39)

We emphasize that the discretized kinetic and rest energy
matrix T̃m on the left-hand side of Eq. (39) is not equal to
the discretized version of the original matrix (16) because the
transformation on the right-hand side of Eq. (39) is not an
identical one. The product Q†

mTmQm is first calculated ana-
lytically according to Eq. (35) and then discretized while the
matrix Q̄−1

m is obtained numerically by the matrix inversion
procedure from the discretized Qm. After all these manipu-
lations, the Hamiltonian H (m)

0 is modified from its original
form. The new discretized Hamiltonian is a sum of T̃m and
the potential term:

H̃ (m)
0 = T̃m + U (r)

∥∥∥∥12 02

02 12

∥∥∥∥, (40)

and we go back to the standard eigenvalue problem for the
wave functions � (m)

n :

H̃ (m)
0 � (m)

n = E (m)
n � (m)

n . (41)

Compared to the directly discretized original eigenvalue prob-
lem (23), Eq. (41) returns the physical eigenstates but no
spurious states.

C. Extended nucleus potential and vector potential
of the laser field

For the hydrogen atom, we neglect the finite size of the
nucleus and use the Coulomb interaction potential:

U (r) = −Z

r
, (42)

with the charge Z equal to 1. For heavier hydrogenlike ions,
however, more realistic extended nucleus models should be
used where the interaction potential is determined by the
distribution of the nuclear charge ρn(r):

U (r) = −
∫

d3r′ ρn(r′)
|r − r′| . (43)

In this study, we make use of the spherical-symmetric Fermi
nuclear charge distribution [47,48]:

ρn(r) = ρ0
1 + exp[−r0/b]

1 + exp[(r − r0)/b]
, (44)

where the parameter b is set to 2.3/(4 ln 3) fm (see Ref. [47])
and parameters ρ0 and r0 are calculated given the total
nucleus charge Z and experimental values of the nucleus
root-mean-square radius [49]. Note that the potential (43)
with the smooth nuclear charge distribution (44) does not
have a Coulomb singularity at r = 0, hence the Dirac wave
function is also regular there. This is important for numerical
calculations with highly charged nuclei; in this case, when the
Coulomb potential (42) is used, the accuracy may not be good

enough if one does not specifically account for the singularity
of the wave function.

Interaction with the external electromagnetic field is de-
scribed by Eq. (12). The field is linearly polarized along the z
axis and propagates along the x axis; we adopt the Gaussian
shape of the laser pulse:

A(r, t ) = cF

ω
exp

[
−2 ln 2

(
t − x/c

τ

)2]
sin

(
ωt − ωx

c

)
,

(45)
where F is the peak electric-field strength, ω is the carrier
frequency, and τ has a meaning of the full width at half max-
imum (FWHM) in the intensity (or A2) profile. Equation (45)
describes the general case beyond the dipole approximation.
In the dipole approximation, the dependence of the vector
potential on the coordinate x is dropped:

A(t ) = cF

ω
exp

[
−2 ln 2

(
t

τ

)2]
sin ωt . (46)

III. RESULTS AND DISCUSSION

A. Hydrogenlike ions and nonrelativistic scaling
with respect to the nuclear charge

We have performed calculations of the ionization probabil-
ities for the hydrogen atom and two hydrogenlike ions Ne9+

and Ar17+ subject to strong pulses of electromagnetic radia-
tion. It is well known that the TDSE for one-electron atomic
ions where the interaction of the electron with the nucleus
is described by the exact Coulomb potential satisfies exact
scaling relations with respect to the nuclear charge Z . This is
true not only for unperturbed Coulomb systems but also for
hydrogenlike ions interacting with external electromagnetic
fields in the dipole approximation [50]. A proper scaling of the
spatial and time variables as well as pulse parameters in the
equation will convert the equation for the ion with the nuclear
charge Z into the equation for the hydrogen atom (Z = 1).
This nonrelativistic scaling is achieved by the following sub-
stitutions:

r = r̃/Z, t = t̃/Z2, ω = ω̃Z2, F = F̃Z3, (47)

where the variables and parameters with tilde correspond to
the H atom. Without the external field (F = 0), the electronic
energy eigenvalues of the unperturbed ions with different Z
scale as Z2. Exact scaling with the nuclear charge does not
hold for relativistic systems described by the TDDE, although
some approximate relations have been suggested [9,13].
Strictly speaking, the scaling (47) does not hold exactly even
for the TDSE, if the electron-nucleus interaction is described
within the extended nucleus model, and not by the exact
Coulomb potential. However, because of the large difference
between the electronic and nuclear length scales, the effect of
the finite nucleus dimension on the electronic motion is very
small, therefore the deviation from the nonrelativistic scaling
relations caused by the finite nucleus size is insignificant.
Then any differences between the TDDE results for the scaled
systems (within the dipole approximation) may be attributed
to relativistic effects, which are expected to grow with the
increase of the nuclear charge Z . As discussed in Ref. [9]
for multiphoton ionization of hydrogenlike ions, the main

063109-6



RELATIVISTIC IONIZATION DYNAMICS OF … PHYSICAL REVIEW A 102, 063109 (2020)

TABLE I. Energies of the ground and low-lying excited states of
Ar17+ (in a.u.) for the total angular-momentum projection M = 1/2.
Column A gives the original Dirac Hamiltonian (15), spurious states
show up; column B gives the modified Dirac Hamiltonian (40), no
spurious states; column C give the relativistic exact Coulomb (point-
like nucleus) eigenvalues; column D gives the nonrelativistic exact
Coulomb (point-like nucleus) eigenvalues. The grid size is 128×16,
the computation box size Rb = 3.33 a.u.

State A B C D

1s1/2 −162.70453 −162.70453 −162.70486 −162.0
Spurious −41.027318
2p1/2 −40.720364 −40.720364 −40.720364 −40.50
2s1/2 −40.720322 −40.720322 −40.720364 −40.50
2p3/2 −40.543767 −40.543767 −40.543767 −40.50
Spurious −22.721053
3p1/2 −18.078284 −18.078284 −18.078284 −18.00
3s1/2 −18.078271 −18.078271 −18.078284 −18.00
3p3/2 −18.025940 −18.025940 −18.025940 −18.00
3d3/2 −18.025940 −18.025940 −18.025940 −18.00
3d5/2 −18.008635 −18.008635 −18.008635 −18.00
Spurious −13.726728

effect is the downshift of the ground-state energy level in
the relativistic case resulting in somewhat smaller ionization
probabilities obtained for the scaled systems with larger Z .

For the GPS discretization of the radial coordinate, we
apply Eq. (24) with the following values of the parameters:

Rm = 30/Z a.u., Rb = 60/Z a.u., δ = 0.02. (48)

For each hydrogenlike target, the length parameters Rm and
Rb are scaled according to Eq. (47), and the dimensionless
parameter δ is not scaled.

In Table I, we present the binding energies of the ground
and low-lying excited states with the total angular-momentum
projection M = 1/2 of Ar17+ to illustrate how spurious states
are removed when using the modified Dirac Hamiltonian (40).
The calculations are performed with 128 radial and 16 angular
(ϑ) grid points. We note that the spurious eigenvalues in
column A correspond to the specific numerical parameters
listed in Eq. (48) and coordinate grid used. Unlike the true
eigenvalues, they are very sensitive to variations of the pa-
rameters. The effect of the extended nucleus model (splitting
between the s1/2 and p1/2 energy levels along with the upshift
of the s states) is seen when comparing columns B and C
(the latter contains exact relativistic energies for the point-like
nucleus). The magnitude of the relativistic corrections can be
estimated by comparison with the values in column D, which
are exact nonrelativistic energies of the electron bound in the
exact Coulomb potential. In all the calculations we use the
speed of light c = 137.035999084 a.u. (2018 CODATA [51]
recommended inverse fine-structure constant).

B. Strong-filed ionization of hydrogenlike
ions in dipole approximation

In the dipole approximation, we have performed two
sets of calculations and examined the dependence of the

ionization probability on the pulse duration and nucleus
charge. First, we calculate the ionization probabilities of the
hydrogen atom for several pulse durations and peak field
strengths. The carrier frequency of the laser pulse in Eq. (46)
is fixed at 3.5 a.u., the same frequency was used in the recent
studies of the relativistic ionization dynamics of the hydrogen
atom [10,11]. The field strength range is 0 to 90 a.u. In all
our calculations we use 128 radial grid points and 16 angular
(ϑ) grid points. The radial coordinate endpoint Rb = 60 a.u.
is large enough to accommodate all ionization dynamics of
the hydrogen atom even at the strongest fields used in the
calculations. The classical excursion distance of the electron
in the laser field can be estimated as F/ω2; at F = 90 a.u.,
this quantity is equal to 7.35 a.u., that is well below Rb. To
prevent spurious reflections of the electron wave packet from
the box boundary, we use an absorbing layer in the vicinity of
Rb. We checked the convergence with respect to the spatial (r
and ϑ) grid performing numerical tests changing the number
of grid points and the endpoint of the radial grid Rb. Increasing
the number of r grid points to 160 and ϑ grid points to 24 as
well as extending the radial box size to Rb = 70 a.u. changed
the ionization probabilities only slightly (the largest deviation
was in the third significant digit) even for strongest fields
used in the present calculations. We may conclude that with
the 128×16 coordinate grid and Rb = 60 a.u. both the bound
and pseudocontinuum states important for the processes under
consideration are represented well enough. Convergence of
the data with respect to the number of angular-momentum
projections in the calculations beyond the dipole approxima-
tion is discussed below in Sec. III C.

The calculations are performed for three values of the pulse
duration parameter τ in Eq. (46): 2.5, 3.75, and 5 optical
cycles (o.c.). Since we use the Gaussian pulse shape, the pulse
envelope function never turns zero, so the actual propagation
time should be chosen so that the field strength is negligi-
bly small at the beginning and end of the pulse. The actual
propagation times for the three values of the τ parameter
listed above are 10, 15, and 20 o.c., respectively. Finally, we
use 65 536 time steps per optical cycle in the split-operator
propagation method to make sure the results are converged
with respect to this parameter. If the Crank-Nicolson scheme
is used, good results can be obtained with much smaller num-
ber of times steps per optical cycle, 1024 or 2048. In all the
calculations the hydrogen atom is initially in the ground 1s1/2

state, and the ionization probability Pi is calculated as

Pi = 1 − Pb, (49)

where Pb is the total population of bound states at the end of
the time propagation.

Figure 1 displays the ionization probabilities of the hydro-
gen atom versus the peak field strength for different pulse
durations. When the external field is weak, the ionization
probability rapidly increases with the field strength. However,
this pattern ends around F = 10 a.u. All three curves exhibit
a local maximum; the position of the maximum changes only
slightly with the pulse duration: F = 14 a.u. for τ = 2.5 o.c.,
F = 13 a.u. for τ = 3.75 o.c., and F = 12 a.u. for τ = 5 o.c.
As the field strength further increases, the local maximum is
followed by a local minimum. The minimum is very shallow
for the shortest pulse (τ = 2.5 o.c.) and becomes deeper as the
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FIG. 1. Ionization probabilities of the hydrogen atom versus the
peak field strength in the dipole approximation. The laser pulse
is Gaussian with the carrier frequency ω = 3.5 a.u. and different
durations: (a) τ = 2.5 o.c., (b) τ = 3.75 o.c., and (c) τ = 5 o.c.

pulse duration increases. The shape of the curve at τ = 5 o.c.
resembles that in Fig. 1 of Ref. [11] where the laser pulse with
the sin2 shape and duration of 15 o.c. was used. A counterin-
tuitive behavior of the ionization probability, which decreases
as the field strength increases is known as stabilization in
superintense external fields [52]. We also point out another
counterintuitive result shown in Fig. 1. Normally one expects
that for the same carrier frequency and peak field strength the
ionization probability increases with the pulse duration. As
one can see in Fig. 1, this is the case for relatively weak fields
only. Around F = 35 a.u., the pattern in the dependence of the
ionization probability on the pulse duration begins to change;
at the field strengths larger than 60 a.u., it is totally reversed:
the shortest pulse features the largest ionization probability,
and the longest pulse duration results in the smallest ion-
ization probability. Regarding this observation, we have the
following comments: First, such a behavior of the ionization
probability with respect to the pulse duration is not specific
for the relativistic dynamics only. Previously it was also ob-
served in nonrelativistic calculations of the hydrogen atom
subject to superintense laser pulses in the so-called dynamic
stabilization regime [53,54]. Second, its observability depends
strongly on the carrier frequency [53] and pulse shape [54].
A stronger effect is observed for the pulses with sharper
edges, while for flatter pulse shapes a normal behavior of the
ionization probability (increasing with the pulse duration) is
detected. Finally, for the fixed peak field strength and carrier
frequency, the counterintuitive dependence of the ionization
probability on the pulse duration is restricted to some finite
range of pulse durations. For long enough pulses, a normal
dependence of the ionization probability on the pulse dura-
tion is restored [53,54]. As our calculations show, when the
ionization probability decreases with increasing pulse dura-
tion, this happens mostly due to the population trapped in
the excited bound states. Thus we may guess that a kind of
interference mechanism is responsible for this phenomenon if
the laser pulse is relatively short. Contributions to the tran-
sition amplitudes from the leading and trailing edges of the
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FIG. 2. (a) Ionization probability of the hydrogen atom, (b) pop-
ulation of the ground state after the pulse, and (c) population of the
excited bound states after the pulse versus the pulse duration in the
dipole approximation. The pulse shape is Gaussian and the peak field
strength is F = 80 a.u.

pulse may interfere constructively for some interval of the
excited bound-state energies. Then a substantial amount of the
electronic population is trapped in such states and not trans-
ferred to the continuum after the laser pulse is switched off.
In Fig. 2, we show the ionization probability of the hydrogen
atom along with the populations of the ground and excited
bound states after the pulse. The calculations are performed
on a rather wide interval of the pulse duration parameter τ ,
0.75 to 16.25 o.c., for a representative peak field strength of
80 a.u. where the anomalous dependence of the ionization
probability on the pulse duration is detected. As one can see,
the local minimum of the ionization probability at τ ≈ 5 o.c.
corresponds to the local maximum of the excited bound-state
population. Approximately at the same pulse duration, the
ground-state population reaches a local minimum.

In Fig. 3 we show ionization probabilities of the hydrogen
atom and two hydrogenlike ions Ne9+ and Ar17+. For the
H atom we use the same carrier frequency ω = 3.5 a.u. and
peak field strength range as discussed above. For the other
targets, these parameters are scaled according to Eq. (47).
The pulse duration τ is equal to 2.5 o.c. for all three targets.
As one can see, in the weak-field region, approximately up
to F = 15Z3 a.u., the nonrelativistic scaling relations (47)
work very well. The ionization probabilities of all three targets
are very close to each other. Relativistic effects within the
dipole approximation are small, and this is not surprising
given that the nuclear charge of the ions is not very high.
Still, the ionization probability of the ions (especially Ar17+)
is smaller than that of the hydrogen atom. This result can be
understood since the ionization potentials of the relativistic
hydrogenlike ions are larger than the scaled ionization poten-
tial of the nonrelativistic hydrogen atom. The nonrelativistic
scaling apparently breaks down for the field strengths larger
than F = 20Z3 a.u., indicating a transition to the relativistic
dynamics for the hydrogenlike ions in the scaled laser fields.
For the hydrogen atom itself, the relativistic effects remain
small even if the peak field strength is as large as 100 a.u. [11].
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FIG. 3. Ionization probabilities of (a) H, (b) Ne9+, and (c) Ar17+

versus the peak field strength in the dipole approximation. The laser
pulse is Gaussian with the carrier frequency ω = 3.5Z2 a.u. and
duration τ = 2.5 o.c. for each target.

These effects are much more important for the hydrogenlike
ions with sufficiently large nuclear charges. The peak value
of the classical electron momentum in the laser field can be
estimated as F/ω. At F ≈ 48 a.u. it reaches the value 13.7, so
the classical electron velocity v after ionization of the hydro-
gen atom is 10 times smaller than the speed of light. Since the
relativistic dynamic effects are of the order of (v/c)2, they are
not very significant at this field strength. However, if the scal-
ing (47) is applied, the classical electron momentum scales
as Z . Then for Ne9+ it is 10 times larger, and for Ar17+ 18
times larger than that for the hydrogen, taking the ionization
dynamics to the essentially relativistic regime. In this regime,
the stabilization pattern in the dependence of the ionization
probability on the scaled field strength seen in Fig. 3 for Ne9+

and Ar17+ at F > 20Z3 a.u. is apparently different from that
seen for the hydrogen atom. The ions with larger Z (that
is, with larger electron velocities for the same scaled field
strength) are more stable against ionization. We should note,
however, that this range of the laser field strength actually lies
beyond the applicability region of the dipole approximation
for Ne9+ and Ar17+ (see Sec. III C).

C. Strong-field ionization of hydrogenlike ions
beyond the dipole approximation

Increasing the external field strength will eventually lead
to a failure of the dipole approximation. Depending on the
carrier frequency, this approximation may become very in-
accurate even if the external field is not extremely strong. A
breakdown of the dipole approximation is caused mainly by
the magnetic force of the external electromagnetic field; such
nondipole corrections are of the order of v/c, that is much
larger than the dynamic relativistic effects due to the mass
correction. This issue has been widely discussed in the litera-
ture (see, for example, Refs. [25,55–58]). We should note that
the full form (45) of the interaction with the electromagnetic
field beyond the dipole approximation violates invariance with
respect to the nonrelativistic scaling (47) even if the system

is described by the TDSE. The vector potential in Eq. (45)
depends on the variable

η = ωt − ωx

c
. (50)

Upon the scaling transformation (47), the temporal part of this
variable, ωt , remains invariant, while the spatial part (ω/c)x
is multiplied by Z . Therefore one can expect more significant
nondipole effects for the hydrogenlike ions with the larger
nuclear charge Z .

In the other studies of nondipole effects in the relativis-
tic atomic systems [8,10,11], numerical implementation was
based on the separation of the spatial and temporal depen-
dence in the vector potential by either the Fourier expansion or
Taylor expansion in powers of x. With increasing intensity of
the field, more and more expansion terms should be included
to achieve convergence [12]. In our method, we apply the
spatial and temporal dependence of the vector potential as it
is and do not use any expansions. The Cartesian coordinate x,
when expressed through the spherical coordinates,

x = r sin ϑ cos ϕ, (51)

depends on the azimuthal angle ϕ. This angle is discretized on
a uniform grid within the interval [0, 2π ]. In the split-operator
method, the external field propagator (22) is applied in the dis-
cretized ϕ representation. However, the angular-momentum
representation is used to propagate the wave function with the
unperturbed Hamiltonian propagator according to Eq. (20).
To switch between the two representations, we apply the fast
Fourier transform routines. Since we use a one-to-one map-
ping established by the discrete Fourier transform between
the set of the discretized ϕ values and that of the angular-
momentum projections, the number of ϕ grid points is equal
to the number of angular-momentum projections retained in
the wave function (13). The accuracy of the vector potential
representation is thus controlled by the number of angular-
momentum projections used. Of course, if a large number
of ϕ grid points (or angular-momentum projections) is used,
the calculations become very time consuming. However, if
the nondipole corrections are not very large, usually a few m
components in the wave function (13) are enough to obtain
the results with reasonable accuracy.

In Fig. 4 we compare the ionization probabilities of H,
Ne9+, and Ar17+ calculated within and beyond the dipole ap-
proximation. Beyond the dipole approximation, we show the
results for the angular-momentum projections |m| � 2 (BD2),
|m| � 3 (BD3), and |m| � 4 (BD4) retained in the wave func-
tion (13). For the hydrogen atom, the dipole approximation
(DA) is quite accurate for the field strengths up to 40 a.u. Even
at F = 60 a.u., a deviation of BD2 and BD3 from the DA
results is not large. On the other hand, a small discrepancy
between the BD2 and BD3 results indicates that the conver-
gence of the calculations beyond the dipole approximation can
be achieved with relatively moderate number of ϕ grid points
or angular-momentum projections. The situation changes sig-
nificantly for Ne9+ and Ar17+. While for Ne9+ the dipole
approximation is still good at Z−3F = 10 a.u., and BD2 and
BD3 data show only a small deviation from the DA results
at Z−3F = 15 a.u., for Ar17+ a discrepancy between the DA
results on the one hand and BD2 and BD3 results on the other
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FIG. 4. Ionization probabilities of H, Ne9+, and Ar17+ calculated
within and beyond the dipole approximation. Solid black line is the
dipole approximation; red circles are BD2; blue triangles up are
BD3; green triangles down are BD4 (see text for explanation). The
carrier frequency is ω = 3.5Z2 a.u. and pulse duration τ = 2.5 o.c.

hand is already quite large at Z−3F = 15 a.u., indicating a
breakdown of the dipole approximation. A difference between
the BD2 and BD3 ionization probabilities remains small for
the fields Z−3F � 25 a.u. for Ne9+ and Z−3F � 20 a.u. for
Ar17+. For stronger fields, this difference becomes larger. At
the same time, a discrepancy between the BD3 and available

TABLE II. Lorentz deflection parameter �R at the end of the
dipole region of the field strength and scaled field strength Z−3F at
�R = 1.

Scaled field Z−3F �R at end of
Target at �R = 1 (a.u.) dipole region

H 457 2.3×10−3 (Z−3F = 60 a.u.)
Ne9+ 98 3.5×10−3 (Z−3F = 15 a.u.)
Ar17+ 67 3.4×10−3 (Z−3F = 10 a.u.)

BD4 results is still small at Z−3F � 30 a.u., so we may expect
convergence of the ionization probability calculations at the
level BD3 for the scaled peak fields Z−3F less than or equal
to 30 a.u. At stronger fields, convergence of the results beyond
the dipole approximation at the level BD3 is not guaranteed.
However, it is evident that the nondipole effects in these
hydrogenlike ions in strong fields favor ionization. When the
accuracy is improved by including more angular-momentum
projections in the wave function, the ionization probability
generally becomes larger. Since at Z−3F = 50 a.u. for Ne9+

and at Z−3F = 40 a.u. for Ar17+ the BD3 ionization prob-
ability is already close to unity, we may expect almost full
ionization at stronger fields in the converged data as well.

As already mentioned, the nondipole effects in the ioniza-
tion of hydrogenlike ions in strong electromagnetic fields are
mainly caused by the influence of the magnetic force of the
external field. A measure of such an influence was introduced
in Ref. [55] in the form of the Lorentz deflection parameter:

�R =
√

IpU 3
p

3ωc2
, (52)

where Ip is the ionization potential of the target and Up =
F 2/(4ω2) is the ponderomotive potential of the external field.
If �R � 1, then the rescattering electron misses the parent ion
due to deflection by the magnetic force, thus manifesting a
failure of the traditional strong-field ionization picture based
on the dipole approximation. Therefore it is expected that the
dipole approximation works well if �R � 1. It is instructive to
calculate the Lorentz deflection parameter for the targets used
in our calculations and the field strengths where the numerical
results suggest a transition between the dipole and nondipole
ionization regimes. In Table II we present such results. First,
we list the scaled field Z−3F values at �R = 1. As one can
see, these values are extremely large and lie far beyond the
region where the dipole approximation is applicable accord-
ing to our calculations. Therefore, �R = 1 cannot be taken
as a boundary between the dipole and nondipole ionization
regimes. We determine the field strength corresponding to
such a boundary approximately as the strongest field where
the dipole approximation is still reasonably good, as seen in
Fig. 4: F = 60 a.u. for the hydrogen atom, Z−3F = 15 a.u.
for Ne9+, and Z−3F = 10 a.u. for Ar17+. As one can see in
Table II, the resulting �R values for all three targets are close
to each other despite the substantial difference in the nuclear
charge. We may conclude that, for the carrier frequency and
pulse duration used in the present calculations, a region where
the dipole approximation still works is limited to the �R val-
ues of the order of 10−3 or less. At larger �R, a significant
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deviation of the accurate ionization probability from that cal-
culated in the dipole approximation builds up.

IV. CONCLUSION

In this paper, we have performed a study of relativistic hy-
drogenlike ions subject to strong pulses of linearly polarized
electromagnetic fields. To solve both the time-independent
and time-dependent Dirac equations, we apply the generalized
pseudospectral method in spherical coordinates. We suggest
a transformation of the Dirac Hamiltonian in the spirit of
the dual kinetic balance approach that removes the spurious
eigenstates, which usually show up when solving the Dirac
equation with the help of basis-set expansions. We calculate
the ionization probabilities of the hydrogen atom as well as
hydrogenlike neon and argon. For the hydrogen atom, we
explore the dependence of the ionization on the pulse duration
and find that larger ionization probability can be achieved with
shorter pulses if the external field is strong enough. For Ne9+

and Ar17+, the external field parameters in our calculations
such as peak field strength, carrier frequency, and pulse dura-
tion are subject to scaling with respect to the nuclear charge.
If the interaction with the external field is described within
the dipole approximation and a nonrelativistic treatment is
applied, then the same ionization probabilities are obtained
for each hydrogenlike ion upon such a scaling. Deviation
from this prediction indicates the importance of relativistic ef-
fects in the ionization process. All three hydrogenlike systems
exhibit similar patterns in the dependence of the ionization
probability on the peak field strength: a rapid growth of the
ionization signal at weak fields is followed by a region of
relative stabilization where the ionization probability changes
only slightly on a wide range of the field strength. While in
the weak-field region the relativistic effects in the ionization
probability are quite small and can be attributed mostly to the
relativistic increase of the ionization potential, in the strong-
field region they are well pronounced for highly charged ions
Ne9+ and Ar17+. In this region, however, the dipole approx-
imation itself becomes less accurate and eventually breaks
down.

Our calculations beyond the dipole approximation show,
as expected for the fixed carrier frequency and pulse duration,
that the discrepancy between the dipole and nondipole results

builds up as the peak field strength increases. The pattern in
the dependence of the ionization probability on the peak field
strength is changed qualitatively: instead of relative stabiliza-
tion of the atomic system in strong fields seen within the
dipole approximation, ionization probability now increases
with the field strength. In the set of the hydrogenlike ions with
the scaled field parameters, the nondipole corrections to the
ionization probability grow with increasing nuclear charge.
This is also expected since the full form of the interaction
with the electromagnetic field beyond the dipole approxima-
tion violates the nonrelativistic scaling with respect to the
nuclear charge, making the external field more nonuniform
for the scaled system with the larger nuclear charge. While
for the hydrogen atom we still see some stabilization plateau
at relatively moderate field strengths, the highly charged ions
Ne9+ and Ar17+ exhibit a rapid enhancement of the ionization
when the field strength is increased, and the ionization proba-
bility approaches unity. Analysis of the dipole and nondipole
numerical data for the ionization probability can help to set the
limits of the applicability region of the dipole approximation.
In this connection, we calculate the Lorentz deflection param-
eter proposed previously to estimate the nondipole effects due
to the influence of the magnetic component of the external
electromagnetic field. Based on our present results, we find
that the dipole approximation works well if this parameter is
of the order of 10−3 or less. Our analysis of the deflection
parameter in this paper is limited to the specific carrier fre-
quency and pulse duration. Generally, it would be desirable to
perform a similar analysis for various laser pulse parameters.
For example, one may expect that the deflection effect due
to the magnetic field is more significant for longer pulses.
However, such a comprehensive analysis is beyond the scope
of the present paper. It requires large-scale calculations and
could be a subject of further research.
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