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Electrons in intense laser fields with local phase, polarization, and skyrmionic textures
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Laser fields can be shaped on a subwavelength scale as to have a specific distribution in spin angular
momentum, orbital structure, or topology. We study how these various features affect the strongly nonlinear
electron dynamics. Specifically, we derive closed expressions for the wave function of an unbound electron
subject to a generally structured, intense laser field and demonstrate its use for imprinting the orbital angular
momentum of a propagating optical vortex onto photoelectrons emitted from atoms and traveling through the
optical vortex. It is also shown that photoelectrons can be accelerated or momentum textured when moving
through a focused, intense laser field whose spin angular momentum is modulated as to have a radial polarization,
which also implies the presence of a strong electrical longitudinal component. Further results are presented on
the subwavelength spatiotemporal imaging of a laser field topology, as demonstrated explicitly for the field’s
spin and orbital distributions of lossless propagating optical skyrmions sampled by photoelectrons.
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I. INTRODUCTION

The precise shaping of the time structure of laser pulses
has been the basis for time-resolved spectroscopy and ultrafast
science [1,2]. Engineering the local polarization state and/or
the spatial phase of the wave front offers further opportunities
for applications. Such local engineering of optical fields can
be brought about by various means: Appropriately designed
photonic elements such as waveguides [3,4] host eigenmodes
with desirable polarization distribution. Also, specifically
decorated plasmonic structures allow tuning the spatial distri-
bution of the spin (polarization) and orbital (phase) structure
of the electromagnetic field [5–13]. In this way, optical
skyrmions and plasmonic waves carrying orbital angular mo-
mentum were realized. While plasmonic fields overcome the
limitation on the spatial resolution of a diffraction-limited
propagating (laser) wave in free space, the latter offers a
large flexibility in tuning the frequency, intensity, and carrier-
envelope phase at very low power losses. Therefore, much
effort has been devoted to the spatial structuring of the polar-
ization and wave-front phase of freely propagating waves. For
instance, laser pulses with azimuthal and radial polarization
[3,4] were realized in a wide frequency range [14–19].

The topic, in general, is attracting much research recently
due to the great potential for fundamental and applied science
[20]. For instance, orbital angular momentum (OAM) and spin
angular momentum (SAM) carrying pulses can generate uni-
directional charge currents [21–23], which is interesting for
opto- (spin-)electronic applications [24–31]. For molecules
[32–34], structured laser pulses are expected to yield new
information, particularly on chiral and helical molecular ag-
gregates [13,35,36].

For atoms, the electron wave function is extremely local-
ized with respect to variation in the spin or orbital parts of
the optical fields. Thus, at first glance, it seems that the local

structure of the laser field is marginal when considering the
response of a random distribution of noninteracting atoms
in the laser spot [37]. On the other hand, the local spatial
variation of the SAM and phase of the laser field are not
diffraction limited and may change on the subwavelength
scale. However, already in the perturbative regime, one can
identify an optimal position of the atom within the laser spot
where the phase structure of the laser is important, and at
the same time the transition probability is sizable [38]. For
a trapped cold atom, theory and experiment have revealed
many details of which types of bound-bound transitions are
triggered by OAM-carrying light (for instance, [39–43]). The
interaction with OAM-carrying pulses resulting in photoemis-
sion has also been the subject of various theoretical studies
[44–47].

Summarizing the status of knowledge on electrons in
structured propagating fields, one may say that the direct
ionization by an OAM-carrying pulse is relatively well un-
derstood. Continuum-continuum (CC) transitions involving
OAM exchange are less studied, however. The investigation
of the two-photon transition matrix element corresponding to
a conventional XUV field and an IR vortex illustrated the
impact of the (transferred) OAM on the CC phase and the
associated time delay [48]. Recent experimental and theoret-
ical work [49] (cf. in particular the supplemental materials of
[49]) clearly highlights the importance of using the correct
structured-light-matter interaction, including the longitudinal
field component and also the role of the position of the atom
in the laser spot. These two aspects (among others) are inher-
ent features of the interaction of matter with structured light
and will be discussed at length within the framework of our
developed theoretical model.

The interaction with SAM structured fields (vector beams)
with atoms is much less studied. How a spin-orbitally cou-
pled electronic system reacts to vector beams was addressed
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in Refs. [50,51]. High harmonic generation (HHG) upon a
strongly nonlinear driving of atoms with vector beams was
reported in Refs. [19,52,53]. The interaction of atoms with
optical skyrmions was recently formulated in [53], and non-
linear electron dynamics was simulated.

In this study, we will deal with intense propagating (laser)
fields having a spatial variation in the orbital or spin, or in
both (such as in skyrmions) [54–59]. One key goal is to derive
a unified quasianalytical description of nonlinear electron dy-
namics in such structured laser beams. Moreover, the derived
expressions allow for the incorporation of a laser pulse with
an arbitrarily (but reasonably) SAM- and/or OAM-structured
field distribution. Utilizing the strong-field approximation
[60–63], the derived electron state in the presence of struc-
tured light fields is used for the calculations of laser-induced
electron emission in dependence on the optical OAM of
the laser-assisting fields. In addition, it is demonstrated how
intense and tightly focused SAM-structured vector beams
[16] can be employed for linear momentum texturing of
an electronic wave packet. Furthermore, we demonstrate
that (photo)electron dynamics can sample the spatiotemporal
structure of intense propagating optical skyrmions where the
optical OAM and SAM are intertwined [5,6,8,53].

II. MATHEMATICAL DESCRIPTION OF STRUCTURED
PROPAGATING LASER FIELDS

A. General considerations

In the vicinity of the optical axis, Bessel [64] and Laguerre-
Gaussian [54] modes exhibit locally similar functional de-
pendencies [52]. Cylindrical coordinates r = {ρ, ϕ, z} allow a
convenient description of several types of structured beams,
including beams carrying OAM, radially and azimuthally
polarized vector beams, as well as propagating optical
skyrmions. Generally, for these beams, the key ingredient
is the vortex vector field Am(a),σL

OV (r, t ), whose mathematical
expression is given explicitly below. m(a) is the topological
charge with the superscript a = ± signaling the vortex chiral-
ity reflecting the direction of the embodied OAM. σL = ±1
indicates the polarization state (direction of the SAM). For the
behavior of the nonparaxial vector potential employed below,
the direction of the beam’s OAM relative to SAM is important.
We distinguish between the parallel case, i.e., sgn(σL) = a,
and the antiparallel case, i.e., sgn(σL) = −a. Of particular
interest is the region near the optical axis ρ ≈ 0 (on the scale
of the beam waist wL) [65], as discussed, for instance, in [33]
for the case of an OAM-carrying laser beam.

1. Parallel SAM and OAM, sgn(σL) = a

The vector potential in the parallel case can be written as

Am+,+1
OV (r, t ) = A0Fm(ρ)eimϕei(qzz−ωLt )êσL=+1

+ c.c. (1)

and

Am−,−1
OV (r, t ) = (−1)mA0Fm(ρ)e−imϕ

× ei(qzz−ωLt )êσL=−1 + c.c. (2)

A striking feature is the absence of a longitudinal component
so that the approximate (i.e., for ρ ≈ 0) vector potential is
fully transverse. The laser field propagates effectively along
the z axis with the wave vector qz; the amplitude is set by
A0, which determines the laser intensity, and êσL = (êρ +
iσLêϕ )eiσLϕ is the circular polarization vector. The dispersion
relation is

q2
⊥ + q2

z = q2
L = ω2

L/c2,

and the radial distribution reads

Fm(ρ) = (qrρ)m.

The transverse wave vector q⊥ is related to the beam waist
wL as q⊥ � 1/wL. The parallel class vector potentials are
fully transverse (within the adopted approximation) so that
OAM and SAM are separable [56]. The carried total angular
momentum is h̄(m + σL).

2. Antiparallel SAM and OAM, sgn(σL) = −a

For the antiparallel case, one finds

Am+,−1
OV (r, t ) =

[
Fm(ρ)êσL=−1 + i2m

q⊥
qz

Fm−1(ρ)e−iϕ êz

]

× A0eimϕei(qzz−ωLt ) + c.c. (3)

and

Am−,+1
OV (r, t ) =

[
Fm(ρ)êσL=+1 + i2m

q⊥
qz

Fm−1(ρ)e+iϕ êz

]

× (−1)mA0e−imϕei(qzz−ωLt ) + c.c. (4)

These equations evidence the presence of a longitudinal com-
ponent, whose strength (relative to the transverse component)
is determined by the focusing condition.

For the following discussion, it is important to note that the
longitudinal component scales as rm−1 in the antiparallel case.
Consequently, for m = 1, the on-axis field does not vanish
along the propagation direction. The accuracy of the chosen
approximation is demonstrated in Fig. 1 (first row), where
the Cartesian components of the vector potential function for
both classes are presented. Up to distances of 25/q, an optical
vortex is well described by the approximation given in Eqs. (1)
and (3). Note that the presence of a longitudinal component
does not invalidate ∇ · Am(a),σL

OV (r, t ) = 0 for all vector poten-
tials in Eqs. (1)–(4). Due to the nonvanishing longitudinal
component, OAM and SAM are not separable [56].

B. Optical vortices, polarization structured beams, and
propagating optical skyrmions

Propagating optical fields with the desired polarization and
spatial phase textures can be constructed as a linear combina-
tion of the vector functions Am(a),σL

OV (r, t ):
(i) A linearly polarized beam carrying the OAM value

m(a)h̄ can be viewed as an optical vortex with topolog-
ical charge m(a) and is expressible as the superposition
Am(a),+1

OV (r, t ) ± Am(a),−1
OV (r, t ). The vector field does not trans-

fer a net SAM during the interaction.
(ii) An azimuthally polarized vector beam [16] (AVB) can

be written as the coherent sum A+1,−1
OV (r, t ) + A−1,+1

OV (r, t ).
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(d)

(units of ) (units of )

FIG. 1. (a),(b) Spatial distributions of the vector potential com-
ponents corresponding to the parallel and antiparallel OAM and
SAM. The vortex topological charge is +1, while the laser focus is
set by α = arctan(q⊥/qz ) and is chosen to be 1◦. (c),(d) The gradients
in both cases of the vector potentials along the x axis.

The explicit expression of the vector potential is given by [50]

AAVB(r, t ) = A0q⊥ρ sin(qzz − ωIRt )êϕ. (5)

Note the absence of the longitudinal component.
(iii) A radially polarized vector beam (RVB) is expressible

as A+1,−1
OV (r, t ) − A−1,+1

OV (r, t ) [52]. For a tightly focused beam
[66], it is sometimes useful to Taylor expand the spatial radial
distributions Fm=0 to second or higher orders. For instance,
F0(ρ) ≈ 1 − (q⊥ρ0)2/4 and F1(ρ) = q⊥ρ0 − (q⊥ρ0)3/8. The
corresponding vector potential then reads

ARVB(r, t ) = A0

{
[q⊥ρ − (q⊥ρ0)3/8] cos(qzz − ωIRt )êρ

−2
q⊥
qz

[1 − (q⊥ρ0)2/4] sin(qzz − ωIRt )êz

}
,

(6)

where a longitudinal field is present at the optical axis, and
still ∇ · ARVB(r, t ) = 0 is sustained. As for AVB, the radially
polarized vector beam does not exhibit a net OAM or SAM.
Yet, the well-defined spatial structuring of SAM does affect
the electron dynamics in a unique way. For instance, the AVB
can act on electrons as a gauge-invariant vector potential,
leading to a transient Aharonov-Bohm-type, nondissipative
current (meaning, AVB triggers a time-dependent orbital mag-
netic moment even if the net SAM of the field vanishes) [50].

(iv) An optical propagating skyrmion [53] reveals a
rich phase and position-dependent polarization landscape.

A convenient mathematical representation is αAm+
1 ,+1

OV (r, t ) +
βAm−

2 ,−1
OV (r, t ) (α, β are real numbers) resulting in the vector

potential

Am+
1 ,m−

2
OS (r, t ) = A0ei[qzz−ωIRt−(m2+1)ϕ]

×{[αei(m1+m2+2)ϕ (q⊥ρ)m1 + β(−q⊥ρ)m2 ]êρ

+ i[αei(m1+m2+2)ϕ (q⊥ρ)m1 − β(−q⊥ρ)m2 ]êϕ}
+ c.c. (7)

The vector potential is not transverse and the carried OAM
and SAM [56] are intertwined in a way that may be charac-
terized by a topological quantity in analogy to the skyrmion
number of a magnetic skyrmion (for details on magnetic
skyrmions, we refer the reader to Ref. [67] and references
therein). In Ref. [53], we discussed a possible definition of
an optical skyrmionic topological index, but we should note a
key difference to magnetic skyrmions. In [68], for example,
we discussed how, by increasing the radius of a magnetic
disk (corresponding to changing the beam waist in the laser
beam), the magnetic ordering transforms from a vortex to
a skyrmionic state, eventually reaching a uniform magnetic
ordering; an OAM-carrying wave [69] may also occur. This
behavior can be described within one unified, mathemati-
cally consistent picture. In contrast to optics, in magnetism
we are dealing with a static vector field stabilized by in-
ternal interactions. For linear materials, the time average of
propagating (or plasmonic) electromagnetic fields vanishes,
regardless of their spatial or spin structure. The relevance of
the geometry or topology of optical fields is manifested by the
type of processes they trigger when interacting with matter
[13,19,50,52,53,70], as illustrated below.

III. LIGHT-MATTER INTERACTION

The interaction of an electron with an arbitrarily structured
laser field propagating in free space with the wave vector
k and described by the vector potential AL follows from a
minimal coupling scheme. The Lagrangian density is cast as
L = Lmech + Lfield + j · AL − ρc�L, where Lmech and Lfield

are the mechanical and field parts, and j and ρc are the
current and charge densities, respectively. �L is the scalar
potential. Thus, the interaction of matter with the field de-
livers, in general, two contributions to the Hamiltonian. The
current-current coupling term yields [atomic units (a.u.) are
used, unless stated otherwise]

ĤCC−int = 1
2

[−i∇ · AL(r, t ) − 2iAL(r, t ) · ∇ + A2
L(r, t )

]
.

(8)
Even in free space, the charge density couples to the laser
scalar potential �L, where ∂t�L(r, t ) = −c2∇ · AL. It is pos-
sible to transform from this Lorenz gauge to an instantaneous
(Coulomb) gauge [49,71] (which is adopted henceforth) by
introducing the vector potential A = ∇(∇ · AL)/k2 + AL. In
this gauge, �(r, t ) does not appear in the light-matter in-
teraction; however, the longitudinal component of the vector
potential A can be decisive [52,53], affecting ρc via nondipolar
transitions. Thus, denoting with p̂i the momentum operator
of the ith electron, and with A(r, t ) = ∑

j Aj(r, t ) the total
(sum) vector potential of all present fields Aj, we may write,
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in general, for the light-matter interaction,

Ĥint (t ) =
∑

i

A(ri, t ) · p̂i + 1

2
A2(ri, t ). (9)

The expression is formally similar to the case of uniform
fields, but physically leads to the same effects as in a Lorenz
gauge, such as the possible excitation of volume charge-
density modes [50].

Figure 1 shows the local gradient of the vector poten-
tial (for parallel and antiparallel classes) in the vicinity of
the optical axis. In contrast to the transversal components,
the corresponding gradient remains finite when approaching
ρ = 0. Consequently, the dynamics around the optical axis
in the parallel case is mainly driven by this gradient. Note
that ∇Am+,+1

OV points into the ϕ direction, which is associated
with the intrinsic phase structure of the vortex field and is
proportional to m/ρ. In the antiparallel case, the near-axis
dynamics is dominated by the longitudinal component (also
on the level of the gradient).

A. Volkov-type states in arbitrarily structured laser field

Let us consider the simplest example of a unbound electron
subject to a strong structured laser field. In the case of a spa-
tially homogeneous vector potential, such a state is described
by a Volkov wave [72]. Analytical (Volkov-like) solutions
for the unbounded electron motion in generally structured
fields have not been reported. Below we derive, under certain
conditions, a “structured-light Volkov wave” (SL-VW). From
the discussion so far and considering Figs. 1(c) and 1(d), we
conclude that reasonable approximations should capture the
action of the vector potential gradient, ∇Am(a),σL

OV .
An atom at the position r0 = (x0, y0, 0)T in the laser focal

plane experiences a vector potential at r0 that varies smoothly
in space. Suppressing, for clarity, sub- and superscripts of A
and Taylor expanding around r0 yields, for the jth component
to a first order, Aj (r, t ) = Aj (r0, t ) + ∑

i riMi j or, equiva-
lently (ri is the ith component of r),

A(r, t ) = A(r0, t ) + r · M(t ). (10)

The matrix elements of M(t ) are Mi j = ∂ri A j (r, t )|r=r0
. The

treatment of the first-order term enables the inclusion of
nondipolar effects [73,74]. In the presence of A(r, t ), the
Hamiltonian of an electron bound by the potential V (r) then
reads

Ĥ (t ) = 1
2 [ p̂ + A(r0, t ) + r · M(t )]2 + V (r). (11)

With E = −∂t A(r0, t ) being the electric field and us-
ing the gauge transformation |
L〉 = eir·A(r0,t )|
〉, one
obtains

ĤL(t ) = 1
2 [ p̂ + r · M(t )]2 + r · E (t ) + V (r). (12)

Noting that [ p̂, r · M(t )]− = 0 and neglecting higher-order
terms in the local variation of A (i.e., [r · M(t )]2 ≈ 0), we
write

ĤL(t ) = ĤVolkov(t ) + V (r),
(13)

ĤVolkov(t ) = 1
2 p̂2 + r · M(t ) · p̂ + r · E (t ).

There is an opportunity for a nonperturbative analytical treat-
ment if considering ĤVolkov(t ) and V to act separately, which
is the basis of the strong-field approximation [60–62] (strong
means that the field terms dominate V when considering
the unbound electron dynamics). Such an approximation is
worthwhile to do, for a series of important phenomena and
experiments can be described reasonably well within this
strong-field approximation [75]. For us, the key issue here is
to find the function |
 (V)

p (t )〉 obeying

i∂t

∣∣
 (V)
p (t )

〉 = ĤVolkov

∣∣
 (V)
p (t )

〉
. (14)

To derive the expression for this state, which we termed above
SL-VW, one may proceed at first as for the conventional
Volkov state by writing the ansatz [72,76]∣∣
 (V)

p (t )
〉 = e− i

2

∫ t
π2(p,τ )dτ |π(p, t )〉. (15)

The states |π(p, t )〉 are plane waves propagating with
the kinematic momenta π(p, t ), meaning p̂|π(p, t )〉 =
π(p, t )|π(p, t )〉. Thus, Eq. (14) amounts to integrating

∂π(p, t )

∂t
+ E (t ) = −M(t ) · π(p, t ). (16)

Recalling that
∫

t M(t )dt ∼ (q/ω)A(r0, t ) = (1/c)A(r0, t ), we
write π(p, t ) = p + A(r0, t ) + δπ(p, t ) and seek a solution to
first order in (1/c), which yields

π(p, t ) = p + A(r0, t ) −
∫ t

dτM(τ ) · [p + A(r0, τ )]. (17)

As detailed below, even in regions where A(r0, t ) is very
small, M may be large enough such that the last term in
Eq. (17) may even dominate the behavior of the Volkov
phases (Aj and gradient of Aj are independent). Such a case
is encountered when an atom resides in the vicinity of the
optical vortex core in the parallel class, described by Am+,+1

OV

or Am−,−1
OV .

The key quantity of SL-VW is its phase SV (p, t, r0) =
1
2

∫ t dτ π(p, τ, t ′)2 or, explicitly,

SV (p, t, r0) = Ept + 1

2

∫ t

dτA2(r0, τ ) + p ·
∫ t

dτ

{
A(r0, τ ) −

∫ τ

dt ′′M(t ′′) · [p + A(r0, t ′′)]
}
, (18)

where Ep = p2/2. The second term is related to the ac-
tion of the local ponderomotive potential [terms containing
higher powers of A(r0, t ) are neglected]. In principle, having
Eq. (18), one may in retrospect insert the determined SL-VW

into Eq. (14), and assures the consistency of the approxima-
tions. The explicit form of the SL-VW depends on the type
of vector potentials and is discussed below for some typical
cases.

063105-4



ELECTRONS IN INTENSE LASER FIELDS WITH LOCAL … PHYSICAL REVIEW A 102, 063105 (2020)

B. Electrons in a strong OAM-carrying laser field

Let us consider the phase of SL-VW for the case where an optical vortex of the parallel class acts on an electron that has been
released from an atom residing at r0 = (ρ0 cos ϕ0, ρ0 sin ϕ0, 0)T . It reads

S(m+,+1)
V (p, t, r0) = 1

2

[
p2 + A2

0(q⊥ρ0)2m
]
t + αm sin ϑp

[
m

ρ0

pqz

ωq⊥
sin ϑp cos(2ϕp − ωt ) −

(
1 + qz p cos ϑp

ω

)
sin(ϕp − ωt )

]
. (19)

We expressed p with its amplitude p and the spherical angles ϑp, ϕp. In Eq. (19), αm = A0 p(q⊥ρ0)m/ω characterizes the
displacement of the electron at the position r0 in the structured laser field. Note that M(t ) · A(r0, t ) ∝ qA2

0 and was therefore
neglected. In the antiparallel case which occurs, for instance, for a topological charge m− and σL = +1 (opposite chiralities of
SAM and OAM), the most relevant contributions to the SL-VW phase are

S(m−,+1)
V (p, t, r0) =1

2

[
p2 + A2

0(q⊥ρ0)2m
]
t + αm

{
(−1)m+1 m

ρ0

[
2

qz
cos ϑp + p

2ω
(1 + 3 cos2 ϑp)

]
cos ωt

−
(

1 + qz p cos ϑp

ω

)
sin ϑp sin(ϕp − ωt )

}
.

(20)

The influence of the orbital angular momentum m of the laser
fields enters the SL-VW for both cases as terms which scale
as m/ρ0. For very large (compared with q−1

z ) axial distances

ρ0 =
√

x2
0 + y2

0, the differences between Eqs. (19) and (20)
vanish, and the SL-VW converges to the conventional Volkov
wave for spatially uniform circularly polarized light. This is
to be expected, as m is related to the optical axis. Hence,
for an atom at large ρ0, the phase of the vector potential
is basically constant. This observation can be exploited for
spatially resolved photoemission on the scale below the op-
tical diffraction limit: Photoelectrons that show dependence
on m must have started from regions around the optical axis

or, in general, from regions where the spatial phase of the
vector potential varies significantly on the scale of the atomic
wave functions [47]. This argument may also serve for us-
ing the photoelectrons to map the structure of the optical
fields, as demonstrated below. The independence of the SL-
VW given by (19) and (20) on the atom-position polar angle
ϕ0 = arctan(−y0/x0) reflects the symmetry of the considered
system (the vector potential and the atom).

C. Electrons driven by polarization textured vector beams

For an unbound electron in a vector beam with azimuthal
polarization, we find, for the SL-VW phase, the form

SAVB
V (p, t, r0) =1

2
[p2t + (A0q⊥ρ0)2]t + α1

(
1 + pqz

ω
cos ϑp

)
sin ϑp sin(ϕp − ϕ0) cos(ωt ). (21)

For a radially polarized vector beam, the expression is markedly different, encompassing the influence of the longitudinal
component which becomes more important for tighter focusing. We infer the expression

SRVB
V (p, t, r0) = 1

2

{
p2 + A2

0

[
q2

⊥ρ2
0 + q2

⊥
q2

z

(
4 − q2

⊥ρ2
0

)]}
t + α1

{(
1 − q2

⊥ρ2
0

8
+ pqz

ω
cos ϑp

)
sin ϑp cos(ϕp − ϕ0) sin(ωt )

− 2

qzρ0
[1 − (q⊥ρ0)2/4] cos ϑp cos(ωt )

}
. (22)

D. Electron quantum dynamics in intense optical
skyrmionic fields

In the case of an optical propagating skyrmion, some prop-
erties of the modified Volkov phase can be inferred from the

two vortices with different topological charges m+
1 and m−

2
that form the skyrmion, but the cylindrical symmetry cannot
be exploited as in previous cases and the expression is thus
more involved:

SOS
V (p, t, r0) = 1

2

{
p2 + [α2(q⊥ρ0)2m1 + β2(q⊥ρ0)2m2 ] A2

0

}
t

+ A0 p sin ϑp

ωL
{β(q⊥ρ0)m2 sin[m2(π + ϕ0) + ϕp + ωLt] − α(q⊥ρ0)m1 sin[m1ϕ0 + ϕp − ωLt]}

+ A0 p2 sin2 ϑp

ω2
L

{
α

m1

ρ0
(q⊥ρ0)m1 cos[2ϕp − ωLt − (m1 − 1)ϕ0]

+β
m2

ρ0
(q⊥ρ0)m2 cos[2ϕp + ωLt − m2(π + ϕ0) − ϕ0]

}
. (23)
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The meaning of the various terms entering SOS
V (p, t, r0) fol-

lows from the discussions of Eq. (20), as the skyrmionic
field receives contributions from two vortices with wind-
ing numbers m1,2. Whether terms associated with m1

or m2 are locally more important depends on the ratio
[α(q⊥ρ0)m1 ]/[β(q⊥ρ0)m2 ].

IV. APPLICATIONS

Having derived the electronic wave function in the pres-
ence of a structured intense laser field, we utilize it for the
description of selected physical processes, namely, (a) pho-
toionization assisted by structured intense laser fields, (b) for
steering and momentum texturing of electronic wave packets
with a radially polarized vector beam, and (c) for spatiotem-
poral mapping of skyrmionics optical fields. For concreteness,
we use, in all calculations below, a He atom as a typical target.
The potential V confining the electrons to the atom is modeled
within the effective single-particle approach, discussed and
mathematically detailed in Ref. [77].

A. Photoionization of atoms assisted by intense optical vortices

Let us consider the liberation of a valence-shell electron
upon the absorption of one (X)UV photon with energy h̄ωX.
In addition, an intense structured laser field L with frequency
h̄ωL is present. This laser L strongly affects the photoelectron
wave-packet dynamics in a way that can be quantified as
follows: The photoionization amplitude in the presence of the
two laser fields reads [61,78]

Ap(r0) = −i
∫ ∞

−∞
dt ′〈
−

p,SV(r0, t ′)|ĤX(t ′)|
i(t
′)〉. (24)

Here, ĤX(t ′) is the interaction Hamiltonian of the valence-
shell electron with the (X)UV field and |
i(t )〉 is the initial
state. The time-dependent final state is

|
 (−)
p,SV(r0, t )〉 = ei[A(r0,t )−K (p,t )]·r |
 (−)

p 〉e−iSV (p,t,r0 ),

(25)
where K (p, t ) = ∫ t dτ M(τ ) · [p + A(r0, τ )] and |
 (−)

p 〉 sat-
isfies the time-independent Schrödinger equation for the
atomic Hamiltonian Ĥat = p̂2/2 + V (r) for the kinetic en-
ergies Ep > 0. The Volkov phase SV(p, t, r0) is given in
Eq. (18). In contrast to Eq. (15), we use the full scattering
states in the atomic potential V (r) instead of plane waves.
The justification of using the final states |
 (−)

p,SV(t )〉 follows the
formal steps when deriving the Coulomb-Volkov ansatz, given
in Refs. [78,79]. Similarly, it can be shown that Eq. (24) is the
zeroth-order amplitude corresponding to the integral equation
describing the time evolution operator,

Û (t, t ′) = ÛSV(t, t ′) − i
∫ t

t ′
dτ ÛSV(t, τ )V̂SV(τ )Û (τ, t ′),

(26)
which involves the full Hamiltonian Ĥ (t ) [cf. Eq. (11)]. We
note that |
 (−)

p,SV(t → ∞)〉 = |
 (−)
p 〉, where t → ∞ is the

time when the measurement is conducted (at the photoelectron
detector) while all laser fields are off.

While the formulation applies to all types of structured
fields, we select the case when the assisting laser field L is
an infrared intense (IR) optical vortex carrying OAM and it

(a)

(c)

(b)
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FIG. 2. XUV photoionization assisted with an optical vortices
laser pulse. (a) Spatial distributions of both laser fields in the focal
plane where (b) a gas of atoms is located. The extent of the inter-
action region is set by the profile of the x-ray field, which ionizes
an atom directly upon absorption of one photon. (c) Acquired OAM
by the photoelectron for circularly polarized optical vortices with
winding numbers mOAM = ±1 (solid lines) and mOAM = ±3 (dashed
lines). The detected energy belongs to the first sideband.

propagates collinearly with the homogeneous (on the scale of
the atoms), weaker XUV field, a situation which has been
experimentally realized recently [49,80]. Our focus here is
on the theoretical aspects. Details of the experiments and
comparison with theory are discussed at length in Ref. [49],
where the target was a thermal gas cell of helium atoms [81].

During detection, via the photoelectron energy selection,
we may zoom to those events where one photon from the
XUV laser and one IR photon are involved. Interestingly, we
may even achieve a time ordering on which photon is absorbed
first by choosing a tightly focused XUV and less focused IR
laser beam, in which case our photoelectrons first absorb the
XUV photon in the region where the IR laser has a very low
(or vanishing) intensity and then experience the IR laser on
their way out to the detector [cf. Figs. 2(a) and 2(b)]. This
scenario also implies a spatial resolution on the position of
the involved atom on the scale of the laser spot of the XUV
laser. In a way, our setting resembles the case of stimulated
emission depletion (STED) microscopy [82]. In fact, if we
would investigate few XUV photon processes (that we can
select via the photoelectron energy), we would increase the
spatial dependence to around the intensity peak of the XUV
laser.

Generally, if we are interested in the effects related to the
spatial structure of the laser, the photoelectron should be slow
enough such that the first kinetic energy term in Eq. (13)
does not completely overwhelm the field terms. Interestingly,
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the slow photoelectrons that take notice of the local phase
structure of the IR laser absorb the IR photon in the vicinity
of the optical axis and not at the IR field maximum (where the
local field resembles, for the atom, a Gaussian field). Hence,
our approach in deriving Eqs. (1)–(4) is indeed useful.

For concreteness, we choose the XUV photon energy to
be h̄ωX = 30 eV. The durations of both laser fields are as-
sumed to be very long (short pulses can be associated with
the streaking regime [83]), in which case on both sides of the
main photon line, additional lines are well developed and are
separated by h̄ωL = 1.55 eV.

The spatial phase of the IR pulse is reflected in the dif-
ference of the photoelectron yields corresponding to the IR
pulses with m+ or m−, meaning an OAM-induced dichroism.
The conventional circular dichroism and how it relates to
the target’s orientation and/or alignment is well established
in the literature (for example, in Refs. [84,85] and refer-
ences therein), where similar arguments apply to circularly
polarized optical vortices [45,46]. The circular dichroism in
photoexcitation by using optical vortices was presented in
Ref. [86], where transitions involving higher multipolarity
revealed a strong difference.

We consider an XUV field with a fixed helicity of σX = +1
so that the ejected photoelectron is orbitally oriented. The
XUV laser field spatial distribution is assumed to be Gaus-
sian, f (ρ0) = e−[ρ0/(2wX )]2

, where wX is the effective width of
the focal spot. In the rotating wave approximation [87], the
x-ray interaction Hamiltonian can be expressed as ĤX(t ) =
HXe−iωXt with HX ∝ rY1,1(�r ), which can be inserted into
Eq. (24).

To trace the transfer of the optical OAM to the electrons,
we investigate the angular momentum acquired by the photo-
electron,

〈Lz〉 = 〈ψSB|L̂z|ψSB〉
〈ψSB|ψSB〉 , (27)

where L̂z = −i∂ϕ and the wave function belonging to a spe-
cific sideband (SB) is found by the projection

ψSB(r, t ) =
∫

SB
d pAp


(−)
p (r)e−iEpt . (28)

Here, the integration is performed (numerically) around the
nth sideband’s energy, En = h̄(ωX + nωL) + Ei, i.e., Ep ∈
[En − ε, En + ε], where ε is determined by the energy width
of sideband.

Figure 2(c) shows the acquired OAM of the photoelectrons
for final energies in the first sideband (i.e., one IR vortex
photon is absorbed) depending on the IR laser field’s winding
number and on the atom’s distance ρ0 to the optical axis.
Let us inspect the case m = 1: At ρ0 → 0, the OAM transfer
converges against (m(a) + σL + σX)h̄, meaning that in the par-
allel case (m+, σL = +1), the vortex field boosts the angular
momentum of the photoelectron. This can be explained by

the modified selection rules [44], i.e., |1s2〉 X−→ |Y11〉 L−→ |Y33〉
by absorption of one photon from each of the X and the L

laser fields. For the antiparallel case, (m−, σL = +1), |1s2〉 X−→
|Y11〉 L−→ α|Y31〉 + β|Y11〉, indicating that no total angular mo-
mentum is transferred to the photoelectron.

Increasing the axial distance ρ0, we verify that 〈Lz〉 con-
verges to (σL + σX)h̄ = 2h̄, i.e., the L laser field is locally
homogeneous and circularly polarized (the vortex helicity σL

is spatially independent).
We note the different “decay rates” of the OAM transfer,

which can be traced back to the spatial components of the
vector potential: In the antiparallel case, the decay is slower
due to the emergence of the longitudinal component. How-
ever, OAM transfer in the parallel case is mediated by the first
derivative of Am+,σL=+1

OV , whose effective distance is limited. In
Fig. 2(c), we demonstrate that the decay rates can be slowed
down by increasing the topological charge, as presented by
the dashed curves. We recall, however, that the behavior of the
curves for m > 1 and ρ0 → 0 is not correctly described by our
theory in the full range because the theory accounts for up to
the first derivative in Eq. (10). For m > 1, higher derivatives
of the order of m are necessary for a correct description (the
transverse component scales like ρm). In those cases, however,
the ionization probabilities at the origin are negligibly small,
which justifies our restriction to the first order in the series
expansion of AOV.

1. OAM-dependent dichroism

The theory presented so far proves the OAM transfer in
vortex laser-assisted photoionization. On the other hand, in a
photoionization experiment, typically, differential cross sec-
tions (DCS) ∝ W (p) are measured. The question is then
whether the laser-matter OAM transfer may show up in
angular- or energy-resolved ionization probability. To quan-
tify the answer, two different measurements with a fixed SAM
state σL and pulse parameters (A0,wL) are mandatory. On this
basis, we define the orbital dichroism DσL

m as the normalized
difference in the (measured) photoelectron yields using two
OAM-carrying lasers that have oppositely directed orbital chi-
ralities, while the polarization state is fixed. More precisely,
we define

DσL
m = WσL

m+ (p) − WσL
m− (p)

WσL
m+ (p) + WσL

m− (p)
. (29)

Here, the ionization probabilities are statistically averaged
over a macroscopic distribution of atoms (gas sample),

WσL
m (p) = 2π

∫ ∞

0
dρ0 ρ0

∣∣Am,σL
p (ρ0)

∣∣2
. (30)

In Fig. 3, we present the results for the dichroism in the
laser-assisted photoionization by circularly polarized opti-
cal vortices (σL = +1). We concentrate here on the first
sideband in the electron spectra, which corresponds to the
absorption of one photon from the vortex laser L yielding
a continuum-continuum transition. Figure 3(a) shows the
dichroism depending on the size of the interaction region
[determined by the width wX of the ionizing laser (X) field
for different (asymptotic) directions ϑp of the photoelectrons
in the case of m = 1]. The limited (spatial) range of the
dichroism is ubiquitous: similar to the OAM transfer mediated
by the modified Volkov phases, we observe a fast decay of
the dichroism in all directions by increasing the effective
interaction region. The dichroism represents the different ac-
tions of the transversal and longitudinal field components:
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(a) (b)

(c) (d)

FIG. 3. Dichroism in the photoionization probability corre-
sponding to circularly polarized optical vortices. (a) Dichroism
dependence on the width wX of the ionizing x-ray field spot for
m = 1. (b) The same as (a) for m = 3. (c) Angular-resolved, averaged
(over x-ray spot) DCS and dichroism for w = 1 μm and m = 1.
(d) The same as (c) for m = 3.

the ionization probability WσL=+1
m+ (p) belongs to the vortex in

the parallel class [cf. Eq. (1)], while WσL=+1
m− (p) is associated

with the antiparallel class, where the longitudinal component
dominates the dynamics near the optical axis. Therefore, it is
not surprising that we find a positive dichroism in the transver-
sal plane, which we can trace back to the transversal field
component of the parallel class vector potential Am+,σL=+1

OV .
Detecting, however, the photoelectron more in the direction
of the light propagation axis, i.e., in the vicinity of ϑp = 0,
results in a negative dichroism, which we attribute to the
action of the longitudinal component present in the antipar-
allel vector potential Am−,σL=+1

OV . Hence, similar trends as in
the OAM transfer can be inferred: the angular dependence
of the dichroism can be related to a smooth transition be-
tween the short-range effect of the transversal component
(around the transverse plane) and the long-range effect of the
longitudinal component.

Figure 3(c) shows the angular-resolved DCS and the cor-
responding dichroism for an interaction region w = 1 μm.
Both probabilities peak in the transverse plane, which is usual
for laser-assisted photoionization. The dichroism is positive
around ϑp = π/2, changing sign rapidly when the photoelec-
trons emerge near the optical axis.

Figures 3(b)–3(d) present the same results for a higher
winding number, i.e., m = 3. Increasing the vortex’s carried
orbital momentum increases the dichroism and the range,
which is particularly apparent when comparing the blue
curves, belonging to ϑp = π/2, between Figs. 3(a) and 3(b).
Furthermore, the domain where DσL=+1

m=3 > 0 is increased.
This is in line with our observation of the acquired angular

momentum, as highlighted in Fig. 2(a) and by the inspection
of Eqs. (19) and (20). The terms representing the impact of
the OAM are proportional to m/ρ0 so that increasing the
topological charge enhances the effect. The results so far
underline that the OAM transfer can be linked to the different
behaviors of the corresponding photoionization probabilities,
particularly when compared to the photoelectron yield in the
transverse plane. Increasing the photoelectron’s angular mo-
mentum by the absorption of a vortex photon with a suitable
OAM direction (i.e., parallel to the photon’s helicity) results
in an enlarged photoionization probability in the transverse
plane. The absorption of a vortex photon carrying antiparallel
OAM (relative to the helicity) decreases the cross section in
the transverse direction giving rise to a dichroism.

2. Coherence and thermal average

As schematically depicted in Fig. 2(b), the atoms are
stochastically distributed in the laser spot [red ring in
Fig. 2(b)] and have an extension way below the optical wave-
length. The spatial phase of the OAM-carrying laser is related
to the spatial angular coherence of the laser wave front. Any
spatial fluctuations of the laser phase blur the value of the
carried OAM. So why can a phase of a classical field defined
on such a length scale be imprinted on a thermally distributed,
extremely localized electronic quantum state [49]? In princi-
ple, we may pose the same question regarding the sensitivity
of photoelectrons to circular polarization of a homogeneous
field, for such a polarization is simply the coherent oscillation
(in time) of two independent (but equal in strength) transverse
components which are phase shifted by ±π/2. This phase
shift is everywhere the same. Each of the independent and
thermally distributed atoms hence reacts locally in the same
way to this phase shift and therefore the thermal average
does not affect the circular dichroism. This same argument
applies to the spatial phase of the laser. What is constant
here (for OAM-carrying fields, for instance) is the angular
gradient of the vector potential (which is proportional to m).
The additional caveat, however, is that the radial distribution
is not homogeneous (in contrast to the case of a circular
polarization) and m is defined with respect to the optical axis.
On the other hand, right on the optical axis, the intensity
is very low or vanishing so that the light-matter interaction
is very weak. Substantially away from the optical axis, the
atoms are insensitive to m [38]. Thus, contributions to the
orbital dichroism in m stem from a narrow ring around the
optical axis (whose radius for weak fields is discussed in [38]),
where the OAM transfer is independent of the atom’s angular
position and hence unaffected by thermal averaging. In fact, a
denser gas cell is more favorable for an experimental observa-
tion (note that the absorption-emission time is instantaneous
on the scale of the thermal atomic motion).

B. Steering and momentum texturing of electronic wave packet
via radially polarized vector beams

By focusing a radially polarized vector beam, we can re-
alize a transition from a dominating longitudinal component
in the vicinity of the optical axis to a transversal compo-
nent for the outer radii [52]. This transition occurs on the
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FIG. 4. Schematic representation of a laser-assisted photoioniza-
tion setup with a tightly focused RVB. A focused z-linearly polarized
XUV field ionizes a valence-shell electron into the external IR RVB.
Depending on the region from which the electron wave packet is
launched, the photoelectron experiences the distribution of the longi-
tudinal and the transversal field components of the vector beam. The
double-headed arrows represent the local polarization directions of
the RVB fields.

subwavelength scale. An example of the individual field com-
ponents is shown in Fig. 5(a).

Depending on the atom’s position within the laser spot,
the liberated photoelectron is exposed to an external laser
field with different spatial components and varying (local)
amplitude, as presented schematically in Fig. 4. For a demon-
stration, we picked up two positions, which are represented
by 1 and 2 in Fig. 5. By absorbing IR photons of the assisting
vector beam, the photoelectron wave packet is accelerated,
which is visible in the (measured) momentum distribution.
Moreover, the direction of the acceleration is crucially depen-
dent on which field component is locally dominating.

In the following example, the ionizing XUV field is z-
linearly polarized with h̄ωX = 30 eV, while the focusing of
the assisting RVB is determined by tan α = q⊥/qz (α = 28◦).
For this condition, the IR laser spot size diameter in the
focal plane is around the wavelength λL. A rather high ampli-
tude of A0 = 0.15 a.u. together with an infinitely long pulse
length enable the emergence of higher sidebands [83], as
highlighted by Figs. 5(b) and 5(c). A photoelectron liberated
from an atom located in the vicinity of the optical axis is
exposed to the strong longitudinal component of the external
IR vector beam, and—upon absorption of IR photons—it is
accelerated into the propagation direction. Moreover, boost-
ing the photoelectron wave packet’s kinetic energy results in
a pronounced concentration of ionization probability around
ϑp = 0. As mentioned before, the relative strengths between
the longitudinal and the transversal field components of the
tightly focused RVB vary very quickly on a subwavelength
scale. Hence, for an atom located further away from the opti-
cal axis, the measured photoelectron’s characteristics change
strongly. If the electron wave packet is ejected into the z
direction by the XUV field, the transversal component forces
the photoelectron into a transverse trajectory, as illustrated in
Fig. 5(c), where higher sidebands corresponding to the ex-
change of several IR photons are visible. The spectrum reveals

(a)

(d)

(b) (c)

FIG. 5. Laser-modified photoelectron wave-packet motion in a
tightly focused RVB. (a) The dependence of the longitudinal and
transversal field components on the axial distance ρ0. (b),(c) Pho-
toionization spectra in the dependence on the final momenta px and
pz for two different launching positions within the laser spot. p0

belongs to the sole absorptions of an XUV photon with h̄ωX = 30 eV
(zeroth sideband). Higher sidebands belong to the absorption or
emission of several IR photons. (d) Photoionization probability for a
fixed asymptotic direction within the first sideband (SB I) as a func-
tion of the extent of the laser spot (given by the waist wL = 1/q⊥).

that the center of the respective angular-dependent ionization
probability wanders more and more towards the vicinity of
ϑp = π/2.

Therefore, the direction of the photoelectron wave packet’s
acceleration can be manipulated by the vector beam com-
ponents via focusing: Keeping all the laser parameters
unchanged, the photoionization probability exhibits a strong
dependence on the laser spot size determined by wL = 1/q⊥.
This connection is demonstrated in Fig. 5(d), where the ion-
ization probability for the first sideband (SB I) is presented
for two fixed asymptotic directions and positions of the atoms.
Interestingly, for a tightly focused RVB, W (p1, ϑp = 0) (be-
longing to 1) related to the longitudinal component is larger
than the one (position 2) related to the transverse compo-
nent. Broadening the beam waist changes the situation: While
both probabilities decrease with increasing wL, the individual
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decay rates are different. As a consequence and as a general
rule, for larger extents of the focal spots, interaction with
the assisting vector beam is much more probable via the
transversal field component. For weakly focused RVBs, with
a waist in the range of 10 microns, the acceleration due to the
longitudinal component is practically not present.

Coherence and role of atom spatial distribution

In Sec. IV A 2, we argued why the OAM transfer to a
stochastic atom distribution is not washed away by configura-
tional averaging. For an AVB and RVB, the situation has some
subtleties. For a strongly focused RVB, the longitudinal com-
ponent is dominant and its action resembles the case of a linear
polarized field (along the propagation direction). Therefore,
the response of the atom distribution in the focus is linearly
related to the response of a single atom [we suppressed, so far,
the well-established propagation and phase-matching issues
related to a finite length (along the z direction) of the sam-
ple]. For defocused vector beams, the intensity distribution is
similar to vortex beams. Let us, for concreteness, consider
an AVB, as given by Eq. (5). Alternatively, we can also
write, for this beam, AAVB(r, t ) = i/(2σL) A0q⊥ρ(ê−σL eiσLϕ −
êσL e−iσLϕ ) sin(qzz − ωLt ). The coherence in the time oscilla-
tions of the transverse field components is reflected by the
value of êσL . In an AVB (or RVB), êσL is everywhere the same
except for a fixed spatial rotation angle as ϕ evolves [signified
by e±iσLϕ in AAVB(r, t )]. Therefore, the response of a strongly
inhomogeneous atomic distribution will be different from that
of a statistically distributed one. Indeed, this fact is reflected in
the nontrivial dependence of the SL-VW phases in Eqs. (21)
and (22) on the atom angular position ϕ0 from which the
electron is launched. Clearly, one can reverse the argument
and retrieve from the photoelectron distributions information
on the spatial structure of the atom distribution in the vector
beam laser spot, on a scale below the optical wavelength.
Similar arguments also apply to optical skyrmions.

C. Reconstruction of an optical propagating skyrmionic field
via attosecond streaking

Let us consider, as an example, the optical skyrmion
Am1=3,m2=−1

OS (r, t ) (α = 7, β = 1) with a moderate focusing of
wL = 7 μm. The corresponding radial component of the vec-
tor potential is shown in Fig. 6(a), revealing a strong azimuthal
variation. Note that the optical skyrmion is shown only in
the range where our approximation of the spatial distribution
function Fm(ρ) is valid. Our goal is to sample the local struc-
ture of the skyrmionic field via a traversing electronic wave
packet. Generally, one may use the attosecond streaking tech-
nique [2,88,89], which has been established as a key element
of attosecond spectroscopy. If the XUV laser field is a short
pulse, its large bandwidth allows for several quantum paths,
involving absorption and emission of several IR photons, to a
final energy state. Interference between those quantum paths
results in a modulation of the final momentum, which depends
on the temporal delay �t between both pulses (in our case,
�t refers to the temporal difference between the maxima
of both pulses) [90]. Classically, the detected momentum of
the photoelectron (in a specific asymptotic direction, �p =
{ϑp, ϕp}) follows p(�t ) ≈ √

2(ωX + Ei ) − ÃL(�t ), where ÃL

(a)

(b)

(c)

FIG. 6. Photoelectrons traversing an optical skyrmion. (a) Radial
component of the vector potential in the focal plane. (b) Setup:
An XUV radial vector beam with variable focusing liberates an
photoelectron at its intensity maximum with high probability, where
the local spatiotemporal IR optical skyrmion is present. (1) and (2)
present two different XUV focusing. (c) Streaking spectrum for a
photoelectron detected in the asymptotic direction ϑp = π/2 and
ϕp = 0. The center of energy (COE) represents the maximum of the
photoionization probability depending on the delay time �t .

is the projection of the vector potential in the direction of
the (measured) asymptotic momentum. For low amplitudes
of the external laser (L) field, the above-mentioned classical
relationship is an excellent approximation.

The temporal relation between the photoelectron’s final
momentum and the vector field’s amplitude at the moment
of ionization allows for the imaging of the optical skyrmion
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FIG. 7. Schematic representation of the light field-detector ge-
ometry. Photoelectrons are primarily emitted in the focal plane due
to the radially polarized XUV field and are streaked by the local IR
optical vortex, which is characterized by a varying polarization and
phase landscape. The photoelectrons are measured in the directions
{ϑp = π/2, ϕp}.

using the photoemission streaking measurements. If the pho-
toemission spectra are recorded in every asymptotic direction
ϕp in the focal plane (ϑp = π/2), a phase shift should be
visible since the streaking field (the optical skyrmion) has
an internal phase structure along the azimuthal direction. In
other words, for fixed delay times �t , the final asymptotic
momentum in the presence of both laser fields becomes ex-
plicitly directionally dependent, reflecting the unique phase
structure of the optical skyrmion, as shown in Fig. 6(a). More-
over, the phase variation of the structured field depends on
the axial distance. To deal with this feature, one may use a
radially polarized vector beam [19], as shown schematically
in Fig. 6(b). By adjusting the focus of the donut-shaped in-
tensity distribution, we can select atoms within the laser spot
that are photoionized in the radial direction in the transverse
plane (with respect to the optical axis). Only atoms near the
intensity maximum of the XUV field have a sizable ioniza-
tion probability via one-photon processes. Once liberated, the
photoelectrons are affected (streaked) by the local field of
the IR optical skyrmion. Measuring now the photoelectron in
the asymptotic direction {ϑp = π/2, ϕp} exploits the radial
field component A+3,−1

OS · êρ of the optical skyrmion in the
photoemission spectrum. A schematic representation is given
in Fig. 7.

Mathematically, we gain access to the streaking spectrum
by numerical integration of Eq. (24) and by calculating the
modified Volkov phases for A+3,−1

OS (r, t ), given in Eq. (23). In
addition, we introduce the delay time �t in the Hamiltonian
describing the interaction between the XUV photon and an
atom located at the axial distance ρ0 within the laser spot,

ĤX(ρ0, t − �t ) = ρERVB(ρ0) f (t − �t ) cos[ωX(t − �t )].
(31)

Here, ERVB(ρ0) = E0(ρ0/wX) exp(−ρ2
0/w2

X) is the radial dis-
tribution function of the vector beam, where wX determines
the focusing. The action of the longitudinal component can
be neglected since the XUV beam is weakly focused [cf.
Fig. 6(b)]. The temporal envelope of the short pulse is given
by f (t ) = cos[ωXt/(2n)]2 for t ∈ [−nπ/ωX, nπ/ωX] (and
zero otherwise). In our simulations, we chose h̄ωX = 60 eV
and a number of n = 7 optical cycles, which means we are in

(a)

(b)

(c) (d)

FIG. 8. Reconstructed information retrieved from the photoemis-
sion spectra. (a),(b) Directionally dependent COEs for two different
focusing setups of the ionizing XUV RVB revealing the tempo-
ral information about the local field of the IR optical skyrmion.
(c),(d) Reconstructed phase variation for a fixed delay time �t . The
curves follow from an interpolation of the data points with periodic
boundary conditions.

the streaking regime [83]. For the setups shown in Fig. 6(b),
wX = 2.4 μm (case 1) and wX = 5.3 μm (case 2) were cho-
sen. The fixed peak intensity (at the maximal field amplitude)
of 2 × 1014 W/cm2 ensures that the single-photon processes
are initiated by the radially polarized XUV field.

In Figs. 8(a) and 8(b), we present the center of energy
(COE), extracted from the corresponding streaking spectra,
for different asymptotic directions ϕp and two different focus-
ing setups of the ionizing XUV pulse. Due to the spatial extent
of the XUV field, we can “scan” the IR field characteristics
in the radial direction, whereas the azimuthal dependencies
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can be retrieved from rotating the photoelectron detector (cf.
Fig. 7). By varying ϕp, the COEs reveal modulation both in
the amplitude and on the time axis. This is, in particular,
evident in the second focusing setup presented in Fig. 8(b).
A further important aspect is the 2π -periodicity revealing the
imprinting of the optical field’s phase onto the photoelectron
distributions. By fixing the time delay �t , we can reconstruct
the phase information of the optical skyrmion, as shown in
Figs. 8(c) and 8(d). As anticipated, the phase structure of a
skyrmion is very involved due to the interplay of the two
contributing vortices with different orbital angular momenta.
By varying the focusing of the XUV field (i.e., adjusting the
waist parameter wX), the full radial field component of the op-
tical skyrmion can be scanned. The other spatial components
A+3,−1

OS · êϕ and A+3,−1
OS · êz can be retrieved from Maxwell’s

equations. Usually, plasmonic optical skyrmions are mapped
via photoemission electron microscopy (PEEM) [5–8]. The
complementary method proposed here can also map the spa-
tiotemporal structure of freely propagating optical skyrmions.

V. CONCLUSIONS

The goal has been to derive quasianalytical expressions for
the electron motion in an intense laser field that exhibits a
nontrivial distribution in space of the spin and/or the wave
front. In addition, we aim to exploit the derived expression for
describing physical processes such as laser-assisted ionization
of atoms, particle acceleration, or spatiotemporal mapping
of topological photonic fields. The well-known Volkov wave
fully describes the motion of an unbound electron in an un-
structured laser field. In contrast, we were able to obtain
the structured laser field Volkov state (SL-VW) only under
certain approximations that can be, in principle, improved
systematically, but such improvements were not treated here.
Fortunately, for a number of physical processes of interest, the
derived approximate SL-VW is valid and useful. Generally,
the SL-VW is fundamentally different from the conventional

Volkov state since it receives contributions from the spin-
angular momentum spatial distribution as well as from the
space structure of the vector potential. Notably, the field scalar
potential also affects the SL-VW, and its influence can be
encapsulated in a longitudinal component of the vector po-
tential. As a demonstration, we considered photoionization
assisted by propagating optical vortices, meaning a field with
a well-defined spatial phase structure (but no spin-angular
momentum structure). Orbital angular momentum of the laser
field is related to this phase and is found to be transferable
to the photoelectrons, even for atoms that are stochastically
distributed in the laser spot. The assisting laser pulse may
carry no orbital angular momentum, but its spin angular mo-
mentum can be structured, as for a radially polarized laser
pulse. In this case, we found that this beam can be employed to
manipulate the momentum distribution of the electronic wave
packet. Thereby, the longitudinal component of the laser’s
vector potential is decisive. A further application in photonics
concerns topology. An electronic wave packet traversing a
topologically no-trivial optical field such as optical skyrmions
samples spatiotemporal information on the skyrmionic field,
which enables a mapping of the phase and the spin-angular
momentum texturing in the skyrmion, even if it is not in the
form of a localized plasmonic field. Rich important phenom-
ena results from applying a combination of time-delayed or
frequency-shifted structured fields. For example, applying a
RVB and a time-delayed linearly polarized pulse to a torus
generates a field-free toroidal moment as (excited) electronic
eigenstates [70]. In addition to application in electronics and
magnetism, future applications include understanding high
harmonic emission in arbitrarily structured fields as well as
field-assisted particle trapping and stabilization.
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