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Knotted trajectories of neutral and charged particles in Gaussian light beams
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Making use of the equivalence between the paraxial wave equation and two-dimensional Schrödinger equa-
tion, Gaussian beams of monochromatic light, possessing knotted nodal structures, are obtained in an analytical
way. These beams belong to the wide class of paraxial beams called the hypergeometric-Gaussian beams
[E. Karimi, G. Zito, B. Piccirillo, L. Marrucci, and E. Santamato, Opt. Lett. 32, 3053 (2007)]. Four topologies
are dealt with: the unknot, the Hopf link, the (3, 3)-torus knot, and the trefoil. It is shown in a numerical way
that neutral polarizable particles placed in such light fields, upon precise tuning of the initial conditions, can
be forced to follow identical knotted trajectories. A similar outcome is also valid for charged particles that are
subject to a ponderomotive potential. This effect can serve to precisely steer particles along chosen complicated
pathways exhibiting nontrivial topological character, guide them around obstacles, and, depending on the knot
size, seems to provide help in engineering more complex nanoparticles.
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I. INTRODUCTION

In recent years, it has been proved possible to inves-
tigate and generate beams of light with some complex
structure far from the academic concept of plane waves.
Theoretical and experimental studies of “structured” light
and “non-diffracting” or “accelerating” beams have been
developed [1–8], opening a variety of possible applica-
tions, in particular for trapping and guiding particles, atoms,
molecules, or even micrometer-sized objects. Among beams
that have gained special interest, one can enumerate Laguerre-
Gaussian [9–11], Bessel [11–16], Airy [4,17,18], and
Mathieu [19,20] beams.

A relatively new idea is that of the “knotted” light,
although topological concepts have long been present in
physics [21–23]. The term “knot” refers to the characteris-
tics of electric or magnetic field lines [24–29], which can
get entangled, or of the nodal lines of the wave intensity,
or of optical vortex lines [30–35]. It has become possible
from the experimental point of view to generate such knotted
beams [36–39], thus creating the opportunity for practical use.

It is well known that the nonhomogeneities of the electric
field can provide gradient forces for trapping atoms due to the
Stark effect [40] or, equivalently, due to the polarizability of
atoms. This phenomenon provides the basis for a trap called
the optical tweezer [41,42]. Assuming the atomic dipole mo-
ment to be proportional to the external electric field, the
atomic polarizability α (in general depending on the driving
frequency) can be introduced as

d = αE. (1)

*t.radozycki@uksw.edu.pl

This leads to the equation of motion of an atom in the form

mr̈ = (d · ∇)E = 1
2 α∇(E2). (2)

From the theory of the Stark effect in atoms it is known
that for a blue-detuned beam the polarizability α becomes
negative [43]. This causes particles to be dragged into an area
with a lower value of E2. A natural question arises whether
the knotted nodal lines spoken of above can serve as traps for
this kind of particle [38]. One might expect that the considered
knots constituting regions of weaker field should attract atoms
with α < 0. A similar effect should be observed for charged
particles, (e.g., electrons), moving in the ponderomotive po-
tential, where the coefficient α is negative as well [15]. So,
one can ask an important question: Can all these particles be
forced to move along previously chosen and designed knotted
paths? To our knowledge, this interesting issue has not been
studied so far. Some simpler trajectories such as rings or
helices have already been shown to be actually realized, for in-
stance in Bessel beams [16]. It seems worthy of some attention
to verify whether the knotted structure can be transferred from
the field to particles. This might open a variety of applications
including the guidance of particles around special kinds of ob-
stacles, the engineering of complex nanoparticles (if knots are
made small enough), or the generation of knotted nanocircuits
(e.g., for electrons that are subject to ponderomotive force).

The manipulation of particles has become an extremely
topical and important issue in recent years due to the signifi-
cant applications in physics, chemistry, biology, and medicine
(see for instance [44–50]). The knotted trajectories would con-
stitute a new and potentially widely applicable family and we
hope that current work adds a tiny contribution in this regard.
Motion of charged particles in the knotted electromagnetic
field (but in the sense of the field-lines’ knots) was dealt
with in [51].
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As mentioned above, knots understood as nodal lines cre-
ate some kind of potential valleys for particles in question.
Their guidance along these lines is, however, a highly nontriv-
ial issue, since the tightly knotted lines disturb the structure of
these valleys and make them substantially shallower, which
can knock particles out of their designed trajectories. In this
work it is shown that the particles can still follow knotted
paths if the initial conditions are carefully tuned.

Let us express the complex electric field of a monochro-
matic wave through an envelope �(r):

E(r, t ) = E0ei(kz−ωt )�(r), (3)

where E0 is a constant vector. Below it will be convenient to
make use of the dimensionless coordinates

ξx = kx, ξy = ky, ξ =
√

ξ 2
x + ξ 2

y , ζ = kz, (4)

where k = ω/c. In our approach, the third component plays
a special role, so we prefer to denote it with the symbol ζ

instead of ξz. These variables turned out to be convenient in
our previous papers dealing with trapping of particles by light
beams. However, for the convenience of the reader some of
the knotted beams finally obtained in the subsequent sections
will be given more traditional form as well.

In what follows, the bold mathematical symbols refer to
two-dimensional vectors, for instance ξ = [ξx, ξy]. Similarly
r = [x, y].

After having averaged the potential on the right-hand side
of (2) over fast optical oscillations, one gets the smoothed
equations of motion in the form

ξ̈ = −β∂ξ |�|2, ζ̈ = −β∂ζ |�|2, (5)

where β = |α||E0|2/4mc2 and ∂x denotes ∂/∂x. For laser in-
tensities in the range of 107–108 W/cm2 one can achieve a
depth of the appropriate potential valley of the order of a
couple of meV, depending also on the atomic polarizability.
The trap then still remains perturbative in the sense that it
does not significantly interfere with the internal structure of
atomic energy levels. The figures below are of illustrative
character and are performed for the value of β equal to 10−2

for reasons of clear visualization. For smaller values of β the
trap is still operative, but the particles require very precise
preparation of the initial states, particularly with respect to
the transverse velocities. For electrons subject to ponderomo-
tive force the value of β may be increased, which corresponds
to proportionally stronger laser fields.

In the following sections we first describe how to theoreti-
cally construct Gaussian beams with a given knotted topology
and then, using (5), the results of the numerical integration,
demonstrating particle trajectories for four special knots [the
unknot, the Hopf link, the (3, 3)-torus knot, and the trefoil],
are presented.

II. GAUSSIAN BEAMS WITH NODAL KNOTS

One can treat a knot as a closed curve in R3, i.e., a curve
that constitutes a homeomorphic image of S1. It then forms a
loop. This curve may be a nodal line of a certain complex-
valued function of the spatial variables x, y, z (in our case
ξx, ξy, ζ ). Of course, a knot can also be composed of several

disjoint loops, that are tangled up forming a link (e.g., the
Hopf link, the Borromean rings, and so on).

The construction leading to the required specific knots or
links can be found elsewhere [32,52–54]. The details remain
beyond the scope of this work and we will limit ourselves
to mentioning the main steps only. First, one constructs a
polynomial q(u, v) of two complex variables u and v which
satisfy the condition for the three-dimensional sphere: |u|2 +
|v|2 = 1. The examples of such polynomials are given in the
following section. All points where q(u, v) = 0 represent an
algebraic knot.

Since we are concerned about knots in R3 rather than on S3,
the next step is to use the stereographic projection by means
of the relations

u(ξ, ζ ) = ξ2 + ζ 2 − 1 + 2iζ

ξ2 + ζ 2 + 1
, (6a)

v(ξ, ζ ) = 2(ξx + iξy)

ξ2 + ζ 2 + 1
, (6b)

and to require q(u(ξ, ζ ), v(ξ, ζ )) = 0. In that way the
knot curve becomes an intersection of two surfaces
in three-dimensional space: Re q(u(ξ, ζ ), v(ξ, ζ )) = 0 and
Im q(u(ξ, ζ ), v(ξ, ζ )) = 0. Since q(u, v) is a polynomial,
q(u(ξ, ζ ), v(ξ, ζ )) can again be treated as a polynomial (called
the Milnor polynomial [55]), upon removing the common
denominator stemming from (6). For the appropriate Milnor
polynomial the symbol qM (ξ, ζ ) is reserved below.

The knot lines obtained that way cannot, however, con-
stitute nodal lines of light waves since, in general, the wave
equation would not be satisfied. We are rather interested in
special superpositions of Gaussian beams which, on one hand,
satisfy the paraxial equation

��(ξ, ζ ) + 2i∂ζ�(ξ, ζ ) = 0, (7)

with � denoting the two-dimensional Laplace operator in
variables ξ, and, on the other hand, exhibit knotted nodal lines.
In order to construct such waves the obvious equivalence
of (7) to the two-dimensional Schrödinger equation for a free
particle,

− h̄2

2m
��(r, t ) = ih̄∂t�(r, t ), (8)

can be made use of. These two equations become identical
upon the identifications

mc2 = h̄ω, ξ = kr, ζ = ωt . (9)

Therefore, instead of talking about waves satisfying the
paraxial equation one can consider the time evolution of a
free-particle’s wave function in two dimensions. The time-
dependent (or ζ -dependent) wave function which coincides
with the relevant Milnor polynomial (eventually with a Gaus-
sian factor) at t = 0 (i.e., on the surface ζ = 0) and evolves
according to Eq. (8) will inherit from that polynomial the
topological structure of the nodal lines.

The evolution of a free particle in quantum mechanics is,
obviously, well known and is determined by the Schrödinger
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propagator which, in two spatial dimensions, has the form

K (r, t ; r′, t ′) = −im

2π h̄(t − t ′)
exp

[
i

m(r − r′)2

2h̄(t − t ′)

]
. (10)

It follows then that the function �(ξ, ζ ),

�(ξ, ζ ) =
∫

d2ξ ′K (ξ, ζ ; ξ′, 0)e−κξ′2
qM (ξ′, 0), (11)

where κ > 0 and

K (ξ, ζ ; ξ′, ζ ′) = −i

2π (ζ − ζ ′)
exp

[
i

(ξ − ξ′)2

2(ζ − ζ ′)

]
, (12)

fulfills the paraxial equation (7), while maintaining the desired
knotted structure of the nodal lines and the Gaussian character
(at least for a mild Gaussian). Apparently K (ξ, ζ ; ξ′, ζ ′) does
not satisfy the paraxial condition due to the divergence as ζ →
ζ ′, but one should remember that this behavior is smoothed
out thanks to the integration in (11).

III. KNOTTED TRAJECTORIES OF PARTICLES

In this section four specific examples of such knotted lines
are dealt with: the unknot (i.e., the ring), the Hopf link, the
(3, 3)-torus knot, and the trefoil. The first three examples are
generated from the polynomial q(u, v), which can be written
in the general form

q(u, v) =
n−1∏
k=0

(
u − ε(k)

n v
)
, (13)

where ε(k)
n , k = 0, 1, 2, . . . , n − 1, denote the subsequent nth

roots of unity.

A. The unknot

The polynomial q(u, v) to generate a ring is obtained by
inserting n = 1 into (13), which leads to

q(u, v) = u − v. (14)

Substituting u and v in the form of (6), the Milnor polynomial
at ζ = 0 is obtained as

qM (ξ, 0) = −1 + ξ 2
x + ξ 2

y − 2(ξx + iξy). (15)

In order to keep the possibility of modifying the spatial size
of the knot, here, and in the following examples, an additional
scaling factor γ will be introduced wherever the powers ξx

and ξy occur. This procedure does not change the topology of
the knot, but offers the possibility to adjust its size to the di-
mensions achievable in an experiment and to those needed in
for a particular application. There are, therefore, experimental
limits for the admissible values of γ . The value adopted in this
work (i.e., γ = 2 × 10−2) fully satisfies these requirements.
Consequently, instead of (15) we will use

qM (ξ, 0) = −1 + γ 2
(
ξ 2

x + ξ 2
y

) − 2γ (ξx + iξy). (16)

This leads to the paraxial envelope in the form

�(ξ, ζ ) = −i

2πζ

∫ ∞

0
dξ ′ξ ′

∫ 2π

0
dφ′e

i
2ζ

[ξ 2+ξ ′2−2ξξ ′ cos(φ−φ′ )]

× e−κξ ′2
(−1 + γ 2ξ ′2 − 2γ ξ ′eiφ′

), (17)

where polar coordinates have been introduced. The subse-
quent integrals over φ′ and ξ ′ can be easily calculated with
the use of the formulas in the Appendix, with the following
result:

�(ξ, ζ ) = i

ζ
e

i
2ζ

ξ 2
∫ ∞

0
dξ ′e−(κ− i

2ζ
)ξ ′2

× [ξ ′(1 − γ 2ξ ′2)J0(ξξ ′/ζ ) − 2ieiφγ ξ ′2J1(ξξ ′/ζ )],

(18)

with Jn denoting the Bessel functions, and then

�(ξ, ζ ) = e− κξ2

c(ζ )

( −1

c(ζ )
+ 2iγ 2ζ

c(ζ )2
+ γ 2ξ 2

c(ζ )3
− 2γ ξ

c(ζ )2
eiφ

)
,

(19)

where c(ζ ) = 2iκζ + 1. As can be easily verified, the function
�(ξ, ζ ) obtained above satisfies the paraxial equation (7).
The role of the factors γ introduced in (16) merely reduces
to fixing the relative intensities when superimposing various
Gaussian beams in (19). This expression may be rewritten
in more traditional but less convenient indications, if it is
noticed that

c(ζ ) = 1 + i
z

zR
, (20a)

κ = 1

k2w2
0

, (20b)

1

c(ζ )
= w0

w(z)
e−iψ (z), (20c)

where zR is the Rayleigh length, w0 denotes the beam
waist, w(z) = w0

√
1 + (z/zR)2 is the beam radius, R(z) =

z[1 + (zR/z)2] stands for the wavefront curvature and ψ (z) =
arctan(z/zR) is the Gouy phase. Expression (19) then takes the
form (r refers to the transverse coordinates only)

�(r, z) = w0

w(z)
exp

[
− r2

w(z)2
− i

r2k

2R(z)
− iψ (z)

]

×
(
−1+ 2iγ kz

1 + iz/zR
+ γ 2k2r2

(1 + iz/zR)2
− 2γ kreiφ

1 + iz/zR

)
,

(21)

This beam belongs to the wide class of the so-called
hypergeometric-Gaussian beams, theoretically described
in [56] and experimentally created with the use of a
computer-generated hologram and spatial light modulator.
All beams representing more complicated knots obtained in
the following subsections can be given the similar form.

Coming back to (19), one should consider two special lim-
its. For κ → 0 one has c(ζ ) → 1, and the appropriate paraxial
polynomial is recovered

qp(ξ, ζ ) = −1 + 2iγ 2ζ + γ 2ξ 2 − 2γ (ξx + iξy). (22)

It still constitutes the solution of the paraxial equation and
possesses the same knotted structure, but cannot represent the
true light wave due to its spatial divergence at infinity. In turn,
letting ζ → 0 the function (16) tempered with the Gaussian
is obtained. This is obvious from the very construction of
the envelope �, since the Schrödinger propagator satisfies
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FIG. 1. The nodal line of the light wave representing the simplest
“knot” (upper plot), and the trajectory of the injected particle (lower
plot). The values of parameters are κ = 10−8, β = 10−2, γ = 0.02.
The quantities on axes are dimensionless according to (4).

the condition

lim
t→t ′

K (r, t ; r′, t ′) = δ(2)(r − r′). (23)

With this form of �(ξ, ζ ) the equation of motion (5) of the
particle can be numerically solved. The results for the value
γ = 2 × 10−2 are presented in Fig. 1. It is visible that the
particle exactly follows the nodal line of the wave, thereby
moving along the knotted trajectory. The obtained trajectory
is limited to the size of order 102λ–5 × 103λ, which justifies
the adoption of the paraxial approximation spoken of below.
This applies to all trajectories obtained in this work.

In order to discuss the relevance of the paraxial approx-
imation for the trajectory of Fig. 1 (and for those of the
subsequent figures as well), consider as an example the He-
Ne laser with the wavelength of the emitted light of λ =
632.8 nm and the beam waist w0 = 1 mm. The Rayleigh
length for such a beam equals zR = πw2

0/λ ≈ 4.96 m. The
quantity κ is connected with the beam waist [see (20b)] and
in these conditions κ ≈ 10−8. This small value is merely
due to the units chosen (the length is measured in λ/2π ).
Since λ/w0 ≈ 6.3 × 10−4, then the radial extension of the
trajectory is of order 102λ/2π ≈ 10−2w0. For the longitudinal
extension, one has 5 × 103λ/2π ≈ 10−4zR. These estimations
justify the use of the paraxial approximation and equally, or
even better, hold for all the trajectories obtained in this work
and stay in agreement with the approximations used [57].
If necessary, the knotted structures and particle trajectories

can be reduced to nanoscale sizes by increasing the value
of γ (or enlarged by decreasing it). The results have been
numerically tested up to γ = 10, which allows one to shrink
the size of knots to the extreme value of 0.2λ. It turns out
that the values of the parameters may be changed within wide
limits, without significant modifications of the outcome (in the
topological sense).

Apart from the motion along the nodal line of the electro-
magnetic wave, the particle performs an oscillatory motion
perpendicular to it. The amplitude of these oscillations de-
pends on the depth of the binding-potential valley, i.e., on the
intensity of the wave, and on the initial tuning of the position
and velocity.

B. The Hopf link

In order to obtain the Hopf link, one has to set n = 2
in (13), obtaining

q(u, v) = (u − v)(u + v). (24)

The appropriate Milnor polynomial, found by substituting u
and v according to (6) and reduced to the plane ζ = 0, has
now the form

qM (ξ, 0) = (
1 − ξ 2

x − ξ 2
y

)2 − 4(ξx + iξy)2. (25)

Following the procedure outlined in the case of the unknot and
introducing the scale parameter γ , one finds

�(ξ, ζ ) = −i

2πζ

∫ ∞

0
dξ ′ξ ′

∫ 2π

0
dφ′e

i
2ζ

[ξ 2+ξ ′2−2ξξ ′ cos(φ−φ′ )]

× e−κξ′2
[(1 − γ 2ξ ′2)2 − 4γ 2ξ ′2e2iφ′

], (26)

and consequently

�(ξ, ζ ) = −i

ζ
e

i
2ζ

ξ 2
∫ ∞

0
dξ ′e−(κ− i

2ζ
)ξ ′2

[ξ ′(1 − γ 2ξ ′2)2

× J0(ξξ ′/ζ ) + 4e2iφγ 2ξ ′2J2(ξξ ′/ζ )], (27)

where again the integrals collected in the Appendix have been
used. This leads to the paraxial wave function

�(ξ, ζ ) = e− κξ2

c(ζ )

(
1

c(ζ )
− 4iγ 2ζ

c(ζ )2
− 2γ 2ξ 2

c(ζ )3
− 8γ 4ζ 2

c(ζ )3

+ 8iγ 4ζ ξ 2

c(ζ )4
+ γ 4ξ 4

c(ζ )5
− 4γ 2ξ 2

c(ζ )3
e2iφ

)
, (28)

possessing nodal lines representing the Hopf link. Using the
relations (20), the expression (28) can be easily given the form
of a superposition of the Hypergeometric-Gaussian modes
similar to (21):

�(r, z) = w0

w(z)
exp

[
− r2

w(z)2
− i

r2k

2R(z)
− iψ (z)

]

×
(

1 − 4iγ 2kz

1 + iz/zR
− 2γ 2k2r2

(1 + iz/zR)2
− 8γ 4k2z2

(1 + iz/zR)2

+ 8iγ 4k3r2z

(1 + iz/zR)3
+ γ 4k4r4

(1 + iz/zR)4
− 4γ 2k2r2e2iφ

(1 + iz/zR)2

)
.

(29)
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FIG. 2. The nodal line of the light wave representing the Hopf
link (upper plot) and the trajectories of two injected particles (lower
plot). The values of parameters are the same as in Fig. 1.

If κ → 0, the paraxial polynomial is obtained as

qp(ξ, ζ ) = 1 − 4iγ 2ζ − 2γ 2(ξ 2
x + ξ 2

y

) − 8γ 4ζ 2

+ 8iγ 4ζ
(
ξ 2

x + ξ 2
y

) + γ 4(ξ 2
x + ξ 2

y

)2

− 4γ 2(ξx + iξy)2. (30)

The trajectories of two particles moving according to
Eqs (5) with �(ξ, ζ ) given by (28) are drawn in Fig. 2. As can
be seen, each particle follows one of the two rings constituting
the Hopfian.

Looking closely at the trajectories, one can again recognize
the oscillatory motion in perpendicular directions. Upon pre-
cise examination, the amplitude of these oscillations turns out
to increase in places where both rings are passing each other
(the apparent broadening of the trajectories appears); this is
due to the local flattening of the particle-binding potential. By
this we mean the effect that as two potential minima approach
each other the barrier between them gets lower. These are
also places where a possible jump of the particle between
the rings can eventually occur if the initial conditions are not
sufficiently tuned. For more complex knots, this effect sets
higher requirements regarding the preparation of the initial
states of the particles. A more detailed discussion is given in
the next section and at the end of Sec. III D.

C. The (3,3)-torus knot

The link known as the (3, 3)-torus knot is composed of
three loops, and, therefore, one has to set n = 3 in (13),
obtaining

q(u, v) = (u − v)(u − e2π i/3v)(u − e4π i/3v). (31)

Consequently

qM (ξ, 0) = ( − 1 + ξ 2
x + ξ 2

y

)3 − 8(ξx + iξy)3, (32)

and, similarly as before,

�(ξ, ζ ) = −i

2πζ

∫ ∞

0
dξ ′ξ ′

∫ 2π

0
dφ′e

i
2ζ

[ξ 2+ξ ′2−2ξξ ′ cos(φ−φ′ )]

× e−κξ′2
[(−1 + γ 2ξ ′2)3 − 8γ 3ξ ′3e3iφ′

]. (33)

Using the integrals listed in the Appendix, we first come to

�(ξ, ζ ) = −i

ζ
e

i
2ζ

ξ 2
∫ ∞

0
dξ ′e−(κ− i

2ζ
)ξ ′2

[ξ ′(−1 + γ 2ξ ′2)3

× J0(ξξ ′/ζ ) − 8ie3iφγ 3ξ ′3J3(ξξ ′/ζ )], (34)

and finally get the paraxial envelope as

�(ξ, ζ ) = e− κξ2

c(ζ )

( −1

c(ζ )
+ 6iγ 2ζ

c(ζ )2
+ 3γ 2ξ 2

c(ζ )3
+ 24γ 4ζ 2

c(ζ )3

− 48iγ 6ζ 3

c(ζ )4
− 24iγ 4ξ 2ζ

c(ζ )4
− 72γ 6ξ 2ζ 2

c(ζ )5

− 3γ 4ξ 4

c(ζ )5
+ 18iγ 6ξ 4ζ

c(ζ )6
+ γ 6ξ 6

c(ζ )7
− 8γ 3ξ 3

c(ζ )4
e3iφ

)
.

(35)

This envelope could again be represented as a combination of
hypergeometric-Gaussian beams in an obvious way, but there
is no need to write down the explicit formula here [and after
formula (42)].

The corresponding paraxial polynomial has the form

qp(ξ, ζ ) = −1 + 6iγ 2ζ + 3γ 2
(
ξ 2

x + ξ 2
y

) + 24γ 4ζ 2

− 48iγ 6ζ 3− 24iγ 4
(
ξ 2

x + ξ 2
y

)
ζ − 72γ 6

(
ξ 2

x + ξ 2
y

)
ζ 2

− 3γ 4
(
ξ 2

x + ξ 2
y

)2 + 18iγ 6
(
ξ 2

x + ξ 2
y

)2
ζ

+ γ 6
(
ξ 2

x + ξ 2
y

)3 − 8γ 3(ξx + iξy)3. (36)

Now one can pass to the motion of atoms accurately
injected into the electromagnetic field (35). The numerical
calculations show again that trajectories of three particles,
presented in Fig. 3, replicate the knotted structure, although
it is much more challenging from the numerical (and, conse-
quently, experimental) point of view, due to the presence of
almost “intersecting” lines.

063101-5
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FIG. 3. The nodal line of the light wave representing the
(3, 3)-torus knot (upper plot) and the trajectories of three injected
particles (lower plot). The values of parameters are the same as
before.

The broadening of the trajectories of particles close to the
passing points is less visible and depends on the precision
of tuning their initial states, which has been successfully
implemented in the numerical calculations. Due to the com-
plicated nodal structure, the potential becomes relatively
shallow (and with many local minima). Far from the passing
points the amplitude of the perpendicular oscillatory motion
is strongly suppressed due to the steeper potential valley.
The initial conditions satisfied by particles have to be fine
tuned so as to appropriately place them in the field and
to avoid chaotic motion. This is reflected in the numeri-
cal calculations, where trajectories become sensitive to the
initial states.

It is difficult to provide a general recipe for the precision
of the initial position of the particle so that it runs along the
knot line, as this depends on the particular location, especially
for more complex structures. For simpler knots, the accuracy
of a few wavelengths is sufficient, and, for more sophisticated
ones, mostly close to the passing points, it needs to be im-
proved 10 times or even more. This depends to a large extent
on the initial cooling of particles. For those with energies
measured in neV, the precision can be relaxed; however, this

leads to a longer travel time along the nodal line. Generically,
most of the kinetic energy is related to very dense oscilla-
tions and not to the translational motion of the particle. For
instance the whole trajectories of Fig. 3 are realized within the
time of order of 107ω−1. These conditions can be relaxed by
using more intense beams, which produces a deeper binding
potential.

In the absence of sufficient precision, completely chaotic
motion or jumps between nodal lines are probable to occur,
examples of which will be presented below. However, even if
high accuracy is required to realize a knotted trajectory, it is
much easier to achieve it at one (initial) point than to control
the motion of the particle with this high accuracy over the
entire complex trajectory.

D. The trefoil

A very nontrivial knot known as the trefoil is generated
from a polynomial other than the types described with the
formula (13). This time it has the form

q(u, v) = u2 − v3, (37)

leading to

qM (ξ, 0) = (
1 + ξ 2

x + ξ 2
y

)(
1 − ξ 2

x − ξ 2
y

)2 − 8(ξx + iξy)3,

(38)
and belongs to the larger family of knots obtained from the
expression

q(u, v) = u2 − vn, (39)

with n ∈ N [53], like the cinqefoil knot (n = 5) or the
septafoil knot (n = 7), etc.

The wave envelope is constructed from qM (ξ, 0) as in the
previous subsections. We define

�(ξ, ζ ) = −i

2πζ

∫ ∞

0
dξ ′ξ ′

∫ 2π

0
dφ′e

i
2ζ

[ξ 2+ξ ′2−2ξξ ′ cos(φ−φ′ )]

× e−κξ′2
[(1 + γ 2ξ ′2)(1 − γ 2ξ ′2)2 − 8γ 3ξ ′3e3iφ′

]

(40)

and integrate first with respect to φ′,

�(ξ, ζ ) = −i

ζ
e

i
2ζ

ξ 2
∫ ∞

0
dξ ′e−(κ− i

2ζ
)ξ ′2

[ξ ′(1 + γ 2ξ ′2)

× (1 − γ 2ξ ′2)2J0(ξξ ′/ζ ) − 8ie3iφγ 3ξ ′3J3(ξξ ′/ζ )],

(41)

and finally over ξ ′,

�(ξ, ζ ) = e− κξ2

c(ζ )

(
1

c(ζ )
− 2iγ 2ζ

c(ζ )2
− γ 2ξ 2

c(ζ )3
+ 8γ 4ζ 2

c(ζ )3

− 8iγ 4ξ 2ζ

c(ζ )4
− 48iγ 6ζ 3

c(ζ )4
− γ 4ξ 4

c(ζ )5
− 72γ 6ξ 2ζ 2

c(ζ )5

+ 18iγ 6ξ 4ζ

c(ζ )6
+ γ 6ξ 6

c(ζ )7
− 8γ 3ξ 3

c(ζ )4
e3iφ

)
. (42)
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FIG. 4. The nodal line of the light wave representing the trefoil
(upper plot) and the trajectory of the injected particle (lower plot).
The values of parameters are the same as before.

The corresponding paraxial polynomial may be obtained in
the form

qp(ξ, ζ ) = 1 − 2iγ 2ζ − γ 2(ξ 2
x + ξ 2

y

) + 8γ 4ζ 2

− 8iγ 4
(
ξ 2

x + ξ 2
y

)
ζ − 48iγ 6ζ 3 − γ 4

(
ξ 2

x + ξ 2
y

)2

− 72γ 6(ξ 2
x + ξ 2

y

)
ζ 2 + 18iγ 6(ξ 2

x + ξ 2
y

)2
ζ

+ γ 6
(
ξ 2

x + ξ 2
y

)3 − 8γ 3(ξx + iξy)3. (43)

The results of the numerical calculations of the atom tra-
jectory in this case are presented in Fig. 4. It exactly follows
the trefoil line, again performing the perpendicular oscillatory
motion. The conclusions are similar to those of the (3, 3)-torus
knot. Comparable effects can be obtained for the cinquefoil
and other knots.

Figure 5 presents the possible jumping of a particle be-
tween various nodal lines. The left illustration shows the area
of mutual passing of the three rings of the (3,3)-torus knot
at some magnification. In this magnification the amplitude of
the oscillatory motion appears very high. A particle moving
along the first ring, entering the area of the potential valley
flattening, increases this amplitude to the extent that there
occurs a jump (at the point marked with the arrow) to the
second of the rings. After some time, another jump to the third

FIG. 5. Jumps between different rings of the (3, 3)-torus knot
(upper plot) and different foils of a trefoil (lower plot). Jumping
places are marked with arrows.

ring takes place. Similarly, the right picture shows the region
of multiple jumps between separate trefoil leaves.

In the case of the (3,3)-torus knot, the modification of the
initial position in relation to the stable trajectory from Fig. 1
was about 0.5λ, while the initial speed changed by about 50%.
However, these values should be treated only as illustrative
ones, as they strongly depend on the type of a knot, on the
position on it, on the direction of velocity relative to the
position vector, and also on the beams’ intensities. Lowering
the value of β for instance by 2n orders of magnitude requires
reducing the initial velocity by n orders. The increased im-
precision may lead to chaotic motion, although the generic
behavior of a particle is rather to maintain a stable trajectory
on the nodal line, but not to follow it entirely. This is due
to the fact that the depth of the potential valley is varying in
different places and the particle can “bounce” and turn back
during the translational motion along the nodal line, but still
remains on it.

IV. SUMMARY

In conclusion, the paper presents a simple analytical way
of obtaining Gaussian light beams with a given knotted topol-
ogy of the nodal lines starting from the Milnor polynomials
with an additional scaling factor. The method is based on
the similarity between the paraxial wave equation and the
two-dimensional Schrödinger equation. Then it is shown in
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a numerical way that neutral, polarizable particles, such as
atoms, but also charged particles (electrons) subject to pon-
deromotive potential, can be forced to follow these knot lines.
In all considered cases this result turned out to be feasible
upon very precise tuning of the initial positions and velocities
of particles. The more braided the nodal structure is, the shal-
lower the created potential is (especially close to the passing
points), and more redundant minima appear and more accurate
preparation of particles is required.

Various effects are possible in the absence of adequate
precision in setting the initial conditions satisfied by a parti-
cle: from completely chaotic motion, through jumps between
different knot branches, to a stable motion, but only along a
section of the knot line.

The results of this work seem applicable, for instance,
for precise guiding of particles along prescribed complicated
pathways, particularly with the presence of obstacles, for
the generation of knotted nanocircuits, or for engineering
complex nanoparticles. One potential very important appli-
cation might be also transferring of the knotted topology
of the light beams to the Bose-Einstein condensate and
creating stable quantum knots [58–60]. From the theoret-
ical point of view it could be achieved by incorporating
the optical potential created by the appropriate superpo-
sition of Gaussian beams into the Gross-Pitaevskii equa-
tion [61,62]. However, mathematically this seems to be quite a
challenge.
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APPENDIX

In this Appendix several integrals needed to find knotted
solutions of the paraxial equation are collected:∫ 2π

0
dφ′e−iβ cos(φ−φ′ )einφ′ = 2π (−i)neinφJn(β ),

× for n = 0, 1, 2, . . . . (A1)
∫ ∞

0
dx x e−ax2

J0(bx) = 1

2a
e− b2

4a , (A2)

∫ ∞

0
dx x3 e−ax2

J0(bx) =
(

1

2a
− b2

8a3

)
e− b2

4a , (A3)

∫ ∞

0
dx x5 e−ax2

J0(bx) =
(

1

a3
− b2

2a4
+ b4

32a5

)
e− b2

4a , (A4)
∫ ∞

0
dx x2 e−ax2

J1(bx) = b

4a2
e− b2

4a , (A5)

∫ ∞

0
dx x3 e−ax2

J2(bx) = b2

8a3
e− b2

4a , (A6)

∫ ∞

0
dx x4 e−ax2

J3(bx) = b3

16a4
e− b2

4a . (A7)
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