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The energy interval (3S-1S) in muonic hydrogen is calculated on the basis of quasipotential approach in
quantum electrodynamics. We take into account different corrections of orders α3–α6, which are determined
by relativistic effects, the effects of vacuum polarization, nuclear structure, and recoil, as well as combined
corrections including the above. Nuclear structure effects are expressed in terms of the charge radius of the
proton in the case of one-photon interaction and the proton electromagnetic form factors in the case of two-
photon exchange interaction. The value of the energy interval (3S-1S) can be used for a comparison with future
experimental data and determining the proton charge radius with greater accuracy.
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I. INTRODUCTION

At present, four complementary methods are used to obtain
the charge radii of light nuclei: elastic scattering of electrons
on nuclei, elastic scattering of muons on nuclei, spectroscopy
of electron atoms, and high-precision laser spectroscopy in
muonic atoms [1–4]. Traditionally, elastic electron scattering
was the first method to determine internal structure of nuclei.
Elastic scattering of leptons by a nucleus target is described
by form factors included in the theoretical expression for the
scattering cross section. A proton or other light nucleus is a
compound particle, and its size is determined by the charge
radius rp. It is related to the slope of the electric form factor
of the proton GE at q2 = 0. Since GE is a nonperturbative
function of q2, its slope should be extracted from experimental
data. The most direct way to measure rp is to extract the
electric form factor GE from lepton-proton scattering and de-
termine its slope at q2 = 0. Experimental data provide detailed
information on the distribution of electric charge and mag-
netic moment inside the proton. They are used to determine
the absolute values of the proton charge rp and magnetic rM

radii, usually with a percentage accuracy or slightly better. At
present, experiments are being carried out on the scattering of
electrons and muons by protons. By simultaneously determin-
ing the form factors for electron and muon scattering, these
experiments will allow an accurate test of the universality of
the lepton, thus contributing to the solution of the “puzzle”
with the proton radius in the near future [5,6].

Atomic spectroscopy of hydrogen is an indirect way of
determining the charge radius rp of a proton from precision
measurements of certain energy intervals. While electron scat-
tering and spectroscopy of electron atoms were available for

a long time, muon spectroscopy became available only in
2010 due to the work of the CREMA collaboration. As a
result of the first CREMA experiments that year, the value
rp = 0.84184(67) fm was obtained, which was 10 times more
accurate than all previous values from experiments with elec-
tronic systems. Moreover, this value was significantly less
than the CODATA value, rp = 0.8768(69) fm. This difference
is called the “puzzle” of the proton radius. It is safe to say
that the past decade has been CREMA’s decade. Let us list
the main experimental results obtained during this time and
published:

(1) The measurement of transition frequency
(2SF=1

1/2 -2PF=2
3/2 ) in muonic hydrogen in 2010 [7].

(2) The measurement of two transition frequencies
(2SF=1

1/2 -2PF=2
3/2 ) and (2SF=0

1/2 -2PF=1
3/2 ) in muonic hydrogen and

the measurement of hyperfine structure of the 2S state in
2013 [8,9].

(3) The measurement of three transition frequen-
cies between energy levels 2P and 2S in muonic
deuterium: (2SF=3/2

1/2 -2PF=5/2
3/2 ), (2SF=1/2

1/2 -2PF=3/2
3/2 ),

(2SF=1/2
1/2 -2PF=1/2

3/2 ) [10].
The performed studies with muonic hydrogen showed that

there is a significant discrepancy in the values of the charge
radius of the proton and deuteron, which are obtained from
experiments with electronic and muonic atoms. In the case
of other light nuclei (helium), the results are preliminary and
have so far been reported only at conferences.

During 2017–2019 different experimental results were
obtained, with both electronic and muonic systems, which
made it possible to extract the value of the charge ra-
dius of the proton. In Ref. [11] the frequency of the
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TABLE I. Corrections to energy interval (3S-1S) in muonic hydrogen.

No. Contribution to the interval (3S-1S) (μ p), meV

1 Fine structure correction (1) 2 247 582.5823
2 Vacuum polarization correction in 1γ 1834.5535

interaction of order α(Zα)2

3 Muon VP correction in 1γ 0.1276
interaction of order α(Zα)4

4 Wichman-Kroll correction −0.0110
5 Light-by-light correction 0.0044
6 Two-loop VP correction in 1γ 12.8432

interaction of order α2(Zα)2

7 Three-loop VP correction in 1γ 0.0246
interaction of order α3(Zα)2

8 Relativistic corrections with −0.1804
the account of one-loop VP in FOPT

9 Relativistic corrections with −0.0010
the account of two-loop VP in FOPT

10 Relativistic corrections with 0.2900
the account of one-loop VP in SOPT

11 Relativistic corrections with −0.0012
the account of two-loop VP in SOPT

12 Two-loop VP correction in 1.9955
second-order PT of order α2(Zα)2

13 Three-loop VP correction in 0.0294
second-order PT of order α3(Zα)2

14 Three-loop VP correction in 0.0032
third-order PT of order α3(Zα)2

15 Nuclear structure correction of order (Zα)4 −28.31 ± 0.04
16 Correction to the nuclear structure with −0.1705

the account of vacuum polarization of order α(Zα)4

17 Correction to the nuclear structure with −0.0017
two-loop VP of order α2(Zα)4

18 Nuclear structure correction from 0.180 ± 0.005
2γ amplitudes of order (Zα)5

19 Nuclear structure and VP correction in 0.0033
2γ interaction of order α(Zα)5

20 Radiative corrections in muon line 0.0045
with nuclear structure of order α(Zα)5

21 Proton polarizability correction 0.10 ± 0.02
22 Recoil correction of order (Zα)5 −0.2879
23 Recoil correction of order (Zα)6 0.0013
24 Correction to muon self-energy −5.0876

and muon form factors
25 Radiative-recoil corrections of order −0.0724

α(Zα)5 and proton form factor correction Z2α(Zα)4

26 Nuclear structure correction of order (Zα)6 −0.0088
27 Contribution of muon form factors F ′

1 (0), F2(0) −0.0112
28 VP correction with muon self-energy −0.0294
29 Hadronic vacuum polarization correction 0.0830
30 Contribution of one-meson exchange −0.1059
31 Radiative corrections of order α(Zα)6 0.0021
32 Summary contribution 2 249 398.5478

(2S-4P) transition in hydrogen was measured: �ν2S−4P =
616 520 931 626.8(2.3) kHz, and the extracted value rp =
0.8335(95) fm turned out to be in agreement with the CREMA
results [9].

To investigate the puzzle of the proton radius, the PRad
experiment was proposed in 2011 (JLAB E12-11-1062) and
was successfully carried out in 2016 at the Thomas Jeffer-

son National Accelerator Facility with electron beams with
energies of 1.1 and 2.2 GeV. In the experiment, the elastic
scattering cross sections (e-p) were measured at unprecident-
edly low values of the square of the momentum transfer with
an accuracy of 1% . The value of the charge radius of the
proton was rp = 0.831 ± 0.007(stat ) ± 0.012(syst ) fm [12],
which is less than the average value of rp from previous
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(a) (b) (c) (d)

FIG. 1. Effects of one- and two-loop vacuum polarization in one-
photon interaction.

experiments on elastic scattering (e-p) but is consistent with
spectroscopic results for the muonic hydrogen atom within
experimental uncertainties.

A new measurement of the Lamb shift in hydrogen (n =
2) was reported in Ref. [13]: �ELs = 1057.8298(32) MHz
[909.8717(32) MHz]. The value of the proton charge radius,
which was obtained from this experiment, rp = 0.833(10) fm,
agrees with the spectroscopic data for muonic atoms.

To solve the problem of the proton charge radius, the
MUSE collaboration is planning an experiment to simultane-
ously measure the cross sections for scattering of electrons
and muons by protons [14]. This experiment will make it
possible to determine the charge radii of the proton inde-
pendently in two reactions and test lepton universality with
an accuracy of an order of magnitude superior to previous
scattering experiments.

It should be noted that in the recent experiment [15], a new
measurement of the frequency of the two-photon transition
(1S-3S) in hydrogen was carried out with a relative error 9 ×
10−13: �ν2017

1S−3S = 2 922 743 278 671.0(4.9) kHz. The value
of the charge radius extracted from this experimental result,
rp = 0.877(13) fm, is in good agreement with the value rec-
ommended by the CODATA [16].

The experimental accuracy of measuring the energy in-
tervals between the S levels of the hydrogen atom is very
high [17]. The frequency interval between 1S and 2S states
was measured in muonium [18] in good agreement with the
QED prediction [19]. A new experiment with muonium MU-
MASS (muonium laser spectroscopy) [20] is aiming for a
1000-fold improvement in the determination of the 1S-2S
transition frequency (with accuracy 10 kHz or 4 ppt). An
analogous experiment for the helium ion is now at the final

FIG. 3. Effects of three-loop vacuum polarization with two
fermionic cycles in one-photon interaction.

stage [21]. There is a clear prospect of using such intervals
to search for the effects of New Physics beyond the Stan-
dard Model. Spectroscopy of purely lepton systems, as well
as light muonic atoms, can help in assessing the possible
manifestations of spin-dependent and spin-independent forces
of dark matter. The result of the experiment [15] in electron
hydrogen posed, in our opinion, two problems. First, it is nec-
essary to reanalyze the theoretical calculation of the various
contributions to the (3S-1S) interval in hydrogen in order to
obtain the total theoretical value for the (3S-1S) transition
frequency and extract the proton charge radius (see the recent
work [22]). The situation with the experiment [15], which
gives a different magnitude for the charge radius of the proton
in comparison with [11–13], requires a new consideration.
The discrepancy in the proton charge radii of 0.03 fm can be
due to contributions of order 100 kHz. Second, it is useful to
have a precise theoretical calculation of the (3S-1S) energy
interval in muonic hydrogen as a guideline for possible future
experiments with muonic hydrogen. This work is aimed at
solving the second problem.

The investigations with muonic hydrogen atoms in
Refs. [23,24] show that two quenching channels affect the
long-lived μp(2S) atoms. During a collision with a H2

molecule, the 2S state can be mixed with the 2P state
allowing an electric dipole transition to the ground state
with emission of a Kα photon: μp(2S) + H2 → μp(α|2S >

+β|2P >) + H2 → μp(1S) + H2 + Kα . The second quench-
ing channel relevant for the μp(2S) atoms is a nonradiative
de-excitation mechanism to the 1S ground state: during the
resonant formation of an excited muonic molecule followed
by its autodissociation μp(2S) + H → μp(1S) + and, the
(2S-1S) transition energy (1.9 keV) is distributed among the
μp atom and the proton as kinetic energy. Similar studies of
the (3S → 2P) transitions would make it possible to deter-
mine the frequency of the (3S-1S) transition. In this work,
we assume that experimental measurement of the transition
frequency (3S-1S) is possible.

FIG. 2. Effects of three-loop vacuum polarization with one fermionic cycle in one-photon interaction.
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(a) (b) (c)

FIG. 4. Effects of three-loop vacuum polarization in one-photon
interaction and third-order perturbation theory.

II. EFFECTS OF VACUUM POLARIZATION
IN ONE-PHOTON INTERACTION

The main parameters of nuclei, such as the charge radius,
quadrupole moment, magnetic octupole moment, etc., are
known primarily from experiments on scattering of leptons
on nuclei, which have been carried out for many years. The
accuracy of their determination is not very high. Another
approach to the study of these parameters is related to the
measurement of various spectroscopic intervals in electronic
or muonic atoms and ions with such nuclei. We consider one
of such basic intervals (3S-1S), which is measured for the
electron hydrogen atom with very high accuracy. One of the
leading contributions to this energy interval is determined by
the proton charge radius, and, therefore, the charge radius can
be extracted from the corresponding experimental data. For
this to be possible, it is necessary to perform a theoretical
calculation of the interval (3S-1S) with high accuracy.

Our approach to the precision calculation of the energy
range (3S-1S) is based on the quasipotential method in quan-
tum electrodynamics [25–27]. The two-particle bound state is
described by the Schrödinger equation, and the main contri-
bution to the particle interaction operator is determined by the
Breit Hamiltonian. A number of important results in the study
of the energy levels of muonic atoms have been obtained in

(a) (b) (c)

FIG. 6. Three-loop vacuum polarization corrections in the
second-order PT. G̃ is the reduced Coulomb Green’s function.

Refs. [28–30] (see Ref. [19] for other references). The main
contribution to the fine structure of the S-wave spectrum of
hydrogen-like atoms consisting of particles with masses m1

(the muon mass) m2 (the proton mass) can be represented
with an accuracy of O((Zα)6) (μ is the reduced mass) in the
following form [19]:

En = m1 + m2 − μ(Zα)2

2n2
− μ(Zα)4

2n3

(
1 − 3

4n
+ μ2

4m1m2n

)

− m1(Zα)6

16n6
(2n3 + 6n2 − 12n + 5). (1)

This formula correctly takes into account the recoil correction
m2

1/m2
2(Zα)4 for nuclei with spin 1/2 [19] (see Sec. IV).

Recoil effects of order (Zα)6 are not taken into account in
formula (1) and are discussed in Sec. V.

To extract the charge radius of a proton with high accuracy
from the measurement of some spectroscopic interval, it is
necessary to calculate corrections of a high order of smallness
in terms of the fine structure constant and the particle mass
ratio. Numerical values of the same effects presented in the
Feynman diagrams differ significantly in the case of electronic
and muonic hydrogen. In what follows, we consider the cal-
culation of contributions to the (3S-1S) interval in order of
importance for muonic hydrogen. Numerical values of contri-
butions are shown in separate lines of Table I. In the second

(a) (b)

(c) (d) (e) (f)

FIG. 5. Effects of one- and two-loop vacuum polarization in second-order perturbation theory. G̃ is the reduced Coulomb Green’s function.
The dashed line represents the Coulomb photon. The wavy line denotes the Breit potential (relativistic correction).
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(a) (b) (c)

FIG. 7. Corrections to the nuclear structure and the polarization
of vacuum in the first-order PT (FOPT) and the second-order PT
(SOPT).

column of Table I we indicate the order of the considered
contribution for muonic hydrogen.

An important class of corrections to energy levels are
corrections for the vacuum polarization (VP). Although their
value decreases with an increase in the number of loops in
the polarization operator, it is necessary to take into account
contributions up to three loops inclusively to achieve a high
calculation accuracy. The one-loop vacuum polarization leads
to a modification of the Coulomb potential and is determined

in the coordinate representation by the following expression
(the subscript vp denotes here and below the electronic polar-
ization of the vacuum, and the superscript C the contribution
of the Coulomb interaction):

V C
vp(r) = α

3π

∫ ∞

1
dξρ(ξ )

(
−Zα

r
e−2meξr

)
,

ρ(ξ ) =
√

ξ 2 − 1(2ξ 2 + 1)

ξ 4
. (2)

In the first-order perturbation theory (PT), it is necessary
to calculate the matrix elements of the operator (2) from the
wave functions of 1S and 3S states, which have the following
form:

ψ100(r) = W 3/2

√
π

e−W r, W = μZα,

ψ300(r) = W 3/2

3
√

3π
e−W r/3

[
1 − 2

3
W r + 2

27
(W r)2

]
. (3)

Analytical calculation of matrix elements gives the follow-
ing shifts of energy levels 1S and 3S (b1 = me/W , W = μZα,
Z = 1 is the charge of the proton):

�Evp(1S) = −4μ(Zα)2α

3π

√
b1

2 − 1
(
12πb1

3 − 24b1
2 + 9πb1 − 22

)− 6
(
4b1

4 + b1
2 − 2

)
sec−1(b1)

6
√

b1
2 − 1

, (4)

�Evp(3S) = −4μα(Zα)2

81π

1

16
(
9b2

1 − 1
)9/2

{√
9b2

1 − 1
{
9b1
[−7 243 344b9

1 + 3 006 396b7
1 − 447 768b5

1

+ 27 999b3
1 + 18π

(
1 − 9b2

1

)4(
92b2

1 + 1
)− 224b1

]− 64
}− 3i

[
81b2

1

(
27
{[

108b2
1

(
828b4

1 − 405b2
1 + 76

)
− 703

]
b2

1 + 26
}
b2

1 + 4
)− 8

]
ln

(
3ib1√

9b2
1 − 1 − i

)}
. (5)

It is useful to note that the 1/b1 = μZα/me = 1.356, so the parameter 1/b1 cannot be used as an expansion parameter, since
it is not small. The corresponding numerical value of these contributions for the (3S-1S) interval is presented in Table I (line
2). It is written for definiteness with an accuracy of up to four digits after the decimal point, since the errors connected with
errors in the determination of fundamental physical constants are significantly less. The expressions (4) and (5) can also be
used to numerically estimate the contribution of muon vacuum polarization in muonic hydrogen, replacing the electron mass
with the muon mass. In this case, numerical value of the contribution decreases sharply, which is connected with an increase in
general order of such contribution due to the factor α2 (see line 3 in Table I). Numerical value of this correction is somewhat
different from that which is obtained using an analytical expression in leading order �Emvp(3S-1S) = 104α(Zα)4μ3/405πm2

1 =
0.1298 meV. It appears in (4) and (5) due to corrections of higher order and must be taken into account if we want to use this
interval for more accurate obtaining of the proton charge radius. The operator (2) also makes contributions in higher orders of
perturbation theory, which are considered below. In one-photon interaction there are also contributions of two- and three-loop
vacuum polarization (see Figs. 1–4).

In the case of contributions from the fourth-order polarization operator (Fig. 1), one can construct the interaction potential
of particles and the shift of energy levels in integral form using the replacement in the photon propagator in the momentum
representation [31]:

1

k2
→ 2

3

(
α

π

)2 ∫ 1

0

f (v) dv

4m2
e + k2(1 − v2)

,

f (v) = v

{
(3 − v2)(1 + v2)

[
Li2

(
−1 − v

1 + v

)
+ 2Li2

(
1 − v

1 + v

)
+ 3

2
ln

1 + v

1 − v
ln

1 + v

2
− ln

1 + v

1 − v
ln v

]

+
[

11

16
(3 − v2)(1 + v2) + v4

4

]
ln

1 + v

1 − v
+
[

3

2
v(3 − v2) ln

1 − v2

4
− 2v(3 − v2) ln v

]
+ 3

8
v(5 − 3v2)

}
, (6)
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where Li2(z) is the Euler dilogarithm. Then, in the coordinate representation, the particle interaction operator takes the form
convenient for the subsequent calculation of the energy shift:

�V C
1γ ,2−loop vp(r) = −2Zα

3r

(
α

π

)2 ∫ 1

0

f (v) dv

1 − v2
e
− 2mer√

1−v2 . (7)

The numerical contribution (7) is included in Table I together with another contribution of the two-loop vacuum polarization
with two successive loops, which is denoted below by the subscript vp-vp. In the momentum representation, the corresponding
particle interaction potential has the form

V C
vp-vp(k2) = −4π (Zα)

α2

9π2

∫ ∞

1
ρ(ξ ) dξ

∫ ∞

1
ρ(η) dη

k2(
k2 + 4m2

eξ
2
)(

k2 + 4m2
eη

2
)

= −2α2(Zα)

9π

∫ ∞

1
ρ(ξ ) dξ

∫ ∞

1
ρ(η) dη

[
1

k2 + 4m2
eξ

2
+ 1

k2 + 4m2
eη

2
− (ξ 2 + η2)

(η2 − ξ 2)

(
1

k2 + 4m2
eξ

2
− 1

k2 + 4m2
eη

2

)]
.

(8)

After the Fourier transform, (8) takes the form of a superposition of the Yukawa potentials, distributed with a certain density:

V C
1γ ,vp-vp(r) = α2

9π2

∫ ∞

1
ρ(ξ ) dξ

∫ ∞

1
ρ(η) dη

(
−Zα

r

) 1

(ξ 2 − η2)
(ξ 2e−2meξr − η2e−2meηr ). (9)

When calculating the matrix elements (7) and (9), the integration over the particle coordinates is performed analytically, and the
subsequent integration over the spectral parameters is numerical. The contributions (7) and (9) are of order α2(Zα)2 for muonic
hydrogen and are numerically large (see line 6 in the table), so it is necessary to consider corrections of the next order in α. In
the case of muon vacuum polarization, the two-loop contributions (7) and (9) are equal to 0.0011 meV have the order α2(Zα)4

and are determined by the well-known analytical formula (see Sec. IV [19]). We have included it also in the full result in line 6.
Turning to the contributions of the sixth-order polarization operator (in this case, the number 6 means the number of

interaction vertices in the vacuum loop), we note that they were studied in the case of the Lamb shift (2P-2S) in Refs. [32,33].
It is convenient to divide this contribution into two parts with one (1 f ) and two (2 f ) fermionic cycles. It is useful to note
that in Ref. [34] a general parametric formula was obtained for the contributions in Figs. 2 and 3, but it is difficult to use it to
obtain numerical estimates due to the remaining multiple integrals over the Feynman and spectral parameters, as well as the
renormalization procedure. A more convenient formula for practical use was obtained in Refs. [32,35] for the contribution of
eight diagrams:

�
(1)
3 (z) = �̃

(1)
3 (z) − 4�2(z) − (1 − z)G(z)

(
9

4
G(z) + 31

16
+ 229

32z
+ 229

32z
+ 173

96

)
,

�̃
(1)
3 (z) = �̃

(1)
3 (z)(−∞) + (1 + ω)2

(1 − ω)

(ã0 + ã1ω + ã2ω + ã3ω)

(b̃0 + b̃1ω + b̃2ω + b̃3ω)
, (10)

and the explicit form of the functions involved and their asymptotic values can be found in Refs. [32,35]. The Padé approximation
coefficients ãi, b̃i are written out in Ref. [33]. The general formula for the contribution of the polarization operator (10) (the
contribution of eight diagrams in Fig. 2) to the shift (3S-1S) has the following form:

�E1 f
1γ (3S − 1S) = 64

π

(
α

π

)3

μ(Zα)2
∫ ∞

0

s2ρ1(s)

(4 + 9s2)6(4 + s2)2
�

(1)
3

(
s2

4b2
1

)
,

ρ1(s) = (69 632 + s2{−71 936 + 3s2[239 360 + 81s2(3296 + 2688s2 + 1053s4)]}), (11)

and the numerical value of the contribution to the (3S-1S) interval in muonic hydrogen is

�E1 f
1γ (3S − 1S) = 0.0169 meV. (12)

The diagrams with two fermionic cycles in Fig. 3 can be considered as corrections to the mass and vertex operators. In this
case, the dispersion relation can be used for the second-order polarization operator. The effective propagator of a virtual photon
in these diagrams can be represented as

−i

k2 + i0

(
gμλ − ξ

kμkλ

k2

)
�λσ (k2)

−i

k2 + i0

(
gνσ − ξ

kνkσ

k2

)
, (13)

which, taking into account the transverse character of the polarization operator �λσ (k2), means that the result is gauge invariant.
Taking into account such contributions is important for achieving high accuracy in calculating the anomalous magnetic moment
of the lepton [36,37]. The imaginary part of the polarization operator in Fig. 3 was initially represented in the form of a two-
dimensional spectral integral [38], and then in an analytical form in Ref. [39], and the final formula is rather cumbersome. In
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our calculations, we use the last representation of the polarization operator from Ref. [39], and the calculation formula for the
contribution is

�E2 f
1γ (3S − 1S) = −64

π

(α

π

)3
μ(Zα)2

∫ ∞

0

s2ρ1(s) ds

(4 + s2)2(4 + 9s2)6

∫ ∞

1

ρ2 f (t, s) dt

t
(
t + s2

4β2

) , (14)

where two-fermion spectral density ρ2 f (s, t ) is taken from Ref. [39], and the numerical value (14) for muonic hydrogen
(−0.0158 meV) differs in sign from (11). The sum of corrections (11) and (14) is equal to 0.0246 meV.

The remaining three-loop contributions in Fig. 3 with successive loops can be calculated in the same way as the two-loop
ones in Fig. 1, by constructing the interaction potentials as was done in (8) and (9). General expressions for these potentials in
the coordinate representation are the following [25,40]:

V C
vp-vp-vp(r) = −Zα

r

α3

(3π )3

∫ ∞

1
ρ(ξ ) dξ

∫ ∞

1
ρ(η) dη

∫ ∞

1
ρ(ζ ) dζ

×
[

e−2meζ r ζ 4

(ξ 2 − ζ 2)(η2 − ζ 2)
+ e−2meξr ξ 4

(ζ 2 − ξ 2)(η2 − ξ 2)
+ e−2meηr η4

(ξ 2 − η2)(ζ 2 − η2)

]
, (15)

V C
vp2-loop vP = −4μα3(Zα)

9π3r

∫ ∞

1
ρ(ξ ) dξ

∫ ∞

1

f (η) dη

η

[
e−2meηr η2

η2 − ξ 2
− e−2meξr ξ 2

η2 − ξ 2

]
. (16)

The corrections in the energy spectrum corresponding to these interactions are presented in integral form over three spectral
parameters and calculated numerically. The total numerical value of the three-loop contribution of the vacuum polarization from
the 1γ -interaction is presented in Table I in a separate line 7. In the case of muon vacuum polarization, the contribution of the
third-order polarization operator obtained by formula (58) [19] is negligible small.

III. EFFECTS OF VACUUM POLARIZATION AND RELATIVISTIC CORRECTIONS

The Breit potential contributes to the energy of S -states in the leading order (Zα)4. The effect of vacuum polarization leads
to a change not only in the Coulomb potential, but also in other terms in the Breit potential, which will contribute to the energy
spectrum of order α(Zα)4. This order of contribution suggests that the numerical values of the corrections can be significant. The
modification of the Breit potential due to the one-loop vacuum polarization is determined in the case of S-states by the following
terms (the superscript B denotes the Breit potential) [30,40,41]:

�V B
vp(r) = α

3π

∫ ∞

1
ρ(ξ ) dξ

3∑
i=1

�V B
i,vp(r), (17)

�V B
1,vp = Zα

8

(
1

m2
1

+ 1

m2
2

)[
4πδ(r) − 4m2

eξ
2

r
e−2meξr

]
, (18)

�V B
2,vp = −Zαm2

eξ
2

m1m2r
e−2meξr (1 − meξr), (19)

�V B
3,vp = − Zα

2m1m2
pi

e−2meξr

r

[
δi j + rir j

r2
(1 + 2meξr)

]
p j . (20)

The largest numerical contribution (more than 80%) comes from the term �V B
1,vp, whose matrix elements are calculated

analytically for 1S and 3S states:

�EB
1,vp(1S) = α(Zα)4μ3

18π

(
1

m2
1

+ 1

m2
2

)[(
1 + 6b2

1 − 3b3
1π
)+ 1√

1 − b2
1

(
6 − 3b2

1 + 6b4
1

)
ln

1 +
√

1 − b2
1

b1

]
, (21)

�EB
1,vp(3S) = α(Zα)4μ3

1944π
(
1 − 9b2

1

)4
(

1

m2
1

+ 1

m2
2

)(
9
(
9b1
{
3b1
[
6
(
972b4

1 − 414b2
1 − 5

)
b2

1 + 19
]

−4π
(
1 − 9b2

1

)4}− 116
)
b2

1 + 32 + 1(
1 − 9b2

1

)1/2

{
3
[
81
(
9b2

1

{[
162b2

1

(
36b4

1 − 18b2
1 + 5

)− 89
]
b2

1

+ 10
}− 4

)
b2

1 + 8] ln

(
3b1

√
1 − 9b2

1

−1 + 9b2
1 +

√
1 − 9b2

1

)})
. (22)
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The total contribution of relativistic corrections taking into account the one-loop vacuum polarization is presented in line 8 of
Table I. In order to increase the accuracy of the calculation we also take into account the contribution of relativistic corrections
with effects of two-loop vacuum polarization of order α2(Zα)4. The main term in the interaction potential is

�V B
1,2loop−vp = α2(Zα)

12π2

(
1

m2
1

+ 1

m2
2

)∫ 1

0

f (v) dv

1 − v2

[
4πδ(r) − 4m2

e

r(1 − v2)
e
− 2mer√

1−v2

]
, (23)

and the calculation of matrix elements is carried out similarly to (21) and (22).
In the second order of perturbation theory, there are a number of contributions in which the potentials �V C

vp, �V B (Breit
potential), �V B

vp are considered as perturbation operators (the subscript sopt denotes the second-order PT contribution):

�EB,vp
sopt = 〈ψ |�V C

vpG̃�V C
vp|ψ〉 + 2〈ψ |�V BG̃�V C

vp|ψ〉
+ 2〈ψ |�V B

vpG̃�V C
vp|ψ〉 + 2〈ψ |�V BG̃�V C

vp,vp|ψ〉, (24)

�V B = − p4

8m3
1

− p4

8m3
2

+ πZα

2

(
1

m2
1

+ 1

m2
2

)
δ(r) − Zα

2m1m2r

[
p2 + r(rp)p

r2

]
. (25)

Such contributions, presented for a clarity in the diagrams in Fig. 5, can be considered as one- and two-loop vacuum
polarization corrections with account for relativistic effects. The reduced Coulomb Green’s function of 1S and 2S states has the
well-known form [42]. To derive the Green’s function for the 3S state, we used the general expression for the Coulomb Green’s
function [43,44] in terms of the product of Whittaker’s functions. After subtracting the pole term, the following expression is
obtained for the reduced Green’s function of the 3S state:

G3S (r1, r2) = − Zαμ2

13 122πr1r2
e− 1

3 (x1+x2 )g3S (x1, x2),

g3S (x1, x2) = 18x<[2(x< − 9)x< + 27][2(x> − 9)x> + 27]x>

[
Ei

(
2x<

3

)
− ln(x<) − ln

(
4x>

9

)]

− 4x<[2(x< − 9)x< + 27]x4
> + 2

(−27e
2
3 x<[x<(2x< − 15) + 9] + x<{−36γ [2(x< − 9)x< + 27]

− 2x<[x<(2x< − 135) + 891] + 1701} + 243
)
x3
> + 18

(
27e

2
3 x<[x<(2x< − 15) + 9]

+ x<{36γ [2(x< − 9)x< + 27] + 2x<[x<(2x< − 99) + 567] − 729} − 243
)
x2
>

+ 27
(−27e

2
3 x<[x<(2x< − 15) + 9] + x<{−2(x< − 27)x<(2x< − 9) − 36γ [2(x< − 9)x<

+ 27] − 243} + 243
)
x> + 243x<[2(x< − 9)x< + 27], (26)

where x< = min(x1, x2), x> = max(x1, x2), xi = W ri, γ is the Euler constant.
When calculating corrections in the second-order PT, it is also necessary to know the reduced Coulomb Green’s function with

one zero argument, which is obtained from (26) by expanding at r2 = 0 in the form

G3S (r) = Zαμ2

3πx
e− 1

3 x

[
4x4 − 144x3 + 648x2 + 18γ (2x2 − 18x + 27)x + 18(2x2 − 18x + 27)x ln

(
2x

3

)
− 243

]
, (27)

where the dimensionless variable x = W r.
Among the amplitudes in Fig. 5, the largest contribution of order α2(Zα)2 is given by the amplitude (c), which contains two

Coulomb potentials corrected for the vacuum polarization. An integration over coordinates can also be carried out analytically
and over spectral parameters numerically. Since, after the integration over coordinates, the result has a cumbersome form, we
present here the initial integral expression for this correction and its numerical value in the shift (3S-1S):

�E vp,vp
sopt (1S) = −16μα2(Zα)2

9π2

∫ ∞

1
ρ(ξ ) dξ

∫ ∞

1
ρ(η) dη

∫ ∞

0
x1e−x1(1− 2meξ

W ) dx1

∫ ∞

0
x2e−x2(1− 2meη

W )g1S (x1, x2) dx2, (28)

�E vp,vp
sopt (3S) = − 8μα2(Zα)2

1 594 323π2

∫ ∞

1
ρ(ξ ) dξ

∫ ∞

1
ρ(η) dη

×
∫ ∞

0

(
1 − 2x1

3
+ 2x2

1

27

)
e−x1(2/3− 2meξ

W ) dx1

∫ ∞

0

(
1 − 2x2

3
+ 2x2

2

27

)
e−x2(2/3− 2meη

W )g3S (x1, x2) dx2, (29)

�E vp,vp
sopt (3S − 1S) = 1.9955 meV. (30)
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When calculating other corrections in the second-order PT with the Breit potential, transformations of the original matrix
elements are used to bring them to a form convenient for the integration. So, for example, when calculating the contribution of
the amplitude in Fig. 5(b), the following matrix element (n is the principal quantum number) appears:

MnS = 〈ψnS| p4

(2μ)2

∑′
m

|ψm〉〈ψm|
En − Em

�V C
vp|ψnS〉 = 〈ψnS|

(
En + Zα

r

)(
Ĥ0 + Zα

r

)

×
∑′

m

|ψm〉〈ψm|
En − Em

�V C
vp|ψnS〉 = 〈ψnS|

(
En + Zα

r

)2

G̃�V C
vp|ψnS〉

− 〈ψnS|Zα

r
�V C

vp|ψnS〉 + 〈ψnS|Zα

r
|ψnS〉〈ψnS|�V C

vp|ψnS〉. (31)

After integration over coordinates we obtain an integral expressions of the following form:

M1S = μ2α(Zα)4

12π

∫ ∞

1

ρ(s) ds

(b1s + 1)3
[13 + 25b1s + 8b2

1s2 + 8(1 + b1s) ln(1 + b1s)], (32)

M3S = μ2α(Zα)4

972π

∫ ∞

1

ρ(s) ds

(3b1s + 1)7

[
52 488b6

1s6 + 50 301b5
1s5 + 23 571b4

1s4 + 21 546b3
1s3

+ 1998b2
1s2 + 72

(
729b5

1s5 + 243b4
1s4 + 162b3

1s3 + 54b2
1s2 + 3b1s + 1

)
ln(3b1s + 1) + 651b1s + 37

]
. (33)

Another term in the Breit potential, proportional to δ(r), gives the Green’s function with one zero argument G̃nS (r, 0) when
calculating the matrix elements. The structure of the resulting expression after coordinate integration is quite similar to (32)
and (33):

�EB,vp
2 (1S) = μ3α(Zα)4

6π

(
1

m2
1

+ 1

m2
2

)∫ ∞

1

ρ(s) ds

(1 + b1s)3
[2b1

2s2 + 7b1s + 2(b1s + 1) ln(b1s + 1) + 3], (34)

�EB,vp
2 (3S) = μ2α(Zα)4

3π

(
1

m2
1

+ 1

m2
2

)∫ ∞

1

ρ(s) ds

(1 + 2b1s)7

{− 2(3b1s + 1)
(
243b4

1s4 + 54b2
1s2 + 1

)
× ln(3b1 + 1) − 3b1s[6b1s(b1s{3b1s[9b1s(3b1s + 2) + 4] + 28} + 1) + 5] − 1

}
. (35)

Finally, the third term from (25) gives, in the second order, the correction for recoil, which we represent in integral form
as (32), (33), (34), and (35):

�EB,vp
3 (1S) = −μ3α(Zα)4

3πm1m2

∫ ∞

1

ρ(s) ds

(1 + b1s)3
[5b1s + 4(b1s + 1) ln(b1s + 1) + 3], (36)

�EB,vp
3 (3S) = −μ3α(Zα)4

3πm1m2

∫ ∞

1

ρ(s) ds

(1 + 2b1s)7

[
1701b5

1s5 − 567b4
1s4 + 1998b3

1s3 + 54b2
1s2

+ 12
(
729b5

1s5 + 243b4
1s4 + 162b3

1s3 + 54b2
1s2 + 3b1s + 1

)
ln(3b1s + 1) + 69b1s + 5

]
. (37)

Numerical values of the contributions in Fig. 5 are shown in several lines: 10, 11, 12. Since the contribution of the interaction
in Fig. 5(c) has the order α2(Zα)2, then the addition of one VP loop leaves such a correction potentially important. The
contribution of the three-loop VP in the second-order PT is shown in Fig. 6 (all perturbation potentials are the corrections
of the vacuum polarization to the Coulomb potential). Omitting the details of the calculation of this contribution (see Ref. [26]),
since they are similar to the calculation of the amplitude in Fig. 5(c), we present its numerical value in Table I (line 13).

The contribution of the three-loop vacuum polarization in the third-order PT is shown in Fig. 4(c). It is determined by the
sum of two terms [45]:

�EnS = 〈ψnS|�V CG̃�V CG̃�V C |ψnS〉 − 〈ψnS|�V C |ψnS〉〈ψnS|�V CG̃G̃�V C |ψnS〉. (38)

The corrections of this type are presented in the form of multiple integrals over spectral parameters as in Ref. [27] and calculated
numerically (see line 14 of Table I). Numerical integration is performed with good accuracy and accepted in this work.

IV. CORRECTIONS TO THE NUCLEAR STRUCTURE AND VACUUM POLARIZATION

A decrease in the value of the Bohr radius of orbits in muonic atoms in comparison with electronic ones leads to the fact that
the wave function of the muon overlaps strongly with the region of the proton. Expanding the charge form factor of the proton
at small momentum transfers, we find that in the leading order the effect of the nuclear structure is determined in the energy
range (3S-1S) by the following correction proportional to the square of the charge radius r2

p [19] [see Fig. 7(a)] (the subscript str
denotes here and below a correction for the nuclear structure; hereinafter, for the proton charge radius, we use the notation rp):

�Estr (3S-1S) = −52μ3(Zα)4

81
r2

p = −40.039631 r2
p = −28.3105 meV, (39)
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where we have extracted the coefficient at r2
p, and the value of the charge radius itself is taken in fm. For a numerical estimate of

the contributions (39), the value of the proton charge radius from Ref. [9] is used. The next most important correction for muonic
hydrogen is the correction for the structure of the nucleus of order (Zα)5 of two-photon exchange amplitudes (see Fig. 8), which
is expressed in terms of the Dirac F1 and Pauli F2 form factors of the proton. Neglecting the relative momenta of particles in the
initial and final states, one can represent this contribution to the shift of S levels in the integral form:

�E2γ
str (3S-1S) = 26μ3(Zα)5

27π
δl0

∫ ∞

0

dk

k
V2γ (k), V2γ (k) = 2

(
F 2

1 − 1
)

m1m2
+ 8m1[F2(0) + 4m2

2F ′
1 (0)]

m2(m1 + m2)k

+ k2

2m3
1m3

2

[
2
(
F 2

1 − 1
)(

m2
1 + m2

2

)+ 4F1F2m2
1 + 3F 2

2 m2
1

]+
√

k2 + 4m2
1

2m3
1m2
(
m2

1 − m2
2

)
k

×
{

k2
[
2
(
F 2

1 − 1
)
m2

2 + 4F1F2m2
1 + 3F 2

2 m2
1

]− 8m4
1F1F2 + 16m4

1m2
2

(
F 2

1 − 1
)

k2

}

−
√

k2 + 4m2
2m1

2m3
2(m2

1 − m2
2 )k

{
k2[2(F 2

1 − 1
)+ 4F1F2 + 3F 2

2

]− 8m2
2F1F2 + 16m4

2

(
F 2

1 − 1
)

k2

}
. (40)

In numerical integration in (40), we use the parametrization of the proton form factors from [46]. Numerical result of the
correction for the nuclear structure from two-photon exchange amplitudes (40) is included in Table I in line 18. The error in
calculating this contribution is estimated at 1%, therefore the result is given with an accuracy of two digits after the decimal
point. The magnitude of this correction in muonic hydrogen increases significantly in comparison with electron hydrogen. The
contribution of two-photon exchange amplitudes in the case of a point proton is known from the calculation in muonium and is
presented in the next section.

The contributions of the fifth order in α are given also by the amplitudes of particle interactions, which contain both the effects
of the nuclear structure and vacuum polarization (see Fig. 7). The particle interaction operator in the coordinate representation
corresponding to the diagram in Fig. 7(b) has the following form:

�V vp
str (r) = 2

3
πZαr2

p

α

3π

∫ ∞

1
ρ(ξ ) dξ

[
δ(r) − m2

eξ
2

πr
e−2meξr

]
. (41)

Using the expression (41), we can perform analytical integration over all variables when calculating the matrix elements. For 1S
and 3S states, the energy level shifts are equal:

�E vp
str (1S) = 2α(Zα)4r2

pμ
3

27π

√
1 − b2

1

⎡
⎣(6b4

1 − 3b2
1 + 6

)
ln

⎛
⎝
√

1 − b2
1 + 1

b1

⎞
⎠+

√
1 − b2

1

(−3πb3
1 + 6b2

1 + 1
)⎤⎦, (42)

�E vp
str (3S) = α(Zα)4r2

pμ
3

1458π
(
1 − 9b2

1

)9/2

{√
1 − 9b2

1

[
32 + 9b2

1(−116 + 9b1{3b1[19 + 6b2
1(−5 − 414b2

1 + 972b4
1

)]

− 4
(
1 − 9b2

1

)4
π
)]}+ 3

[
8 + 81b2

1

(− 4 + 9b2
1

{
10 + b2

1

[− 89 + 162b2
1

(
5 − 18b2

1 + 36b4
1

)]})]
ln

3b1

1 −
√

1 − 9b2
1

}
.

(43)

The contribution to the energy spectrum of the same order α(Zα)4 is determined by the same effects in the second order of
the perturbation theory [see Fig. 7(c)] by the following integral expressions:

�E vp
str,sopt (1S) = 2α(Zα)4μ3r2

p

9π

∫ ∞

1

ρ(ξ ) dξ

(b1ξ + 1)3
[2b1

2ξ 2 − 7b1ξ − 2(b1ξ + 1) ln(b1ξ + 1) − 3], (44)

�E vp
str,sopt (3S) = −4α(Zα)4μ3r2

p

81π

∫ ∞

1

ρ(ξ ) dξ

(2b1ξ + 1)7

[
ln(1 + 3b1ξ )2(1 + 3b1ξ )

(
1 + 54b2

1ξ
2 + 243b4

1ξ
4
)

+{1 + 3b1ξ [5 + 6b1ξ (1 + b1ξ{28 + 3b1ξ [4 + 9b1ξ (2 + 3b1ξ )]})])}]. (45)

In Table I, line 16 includes the total contribution of (42) and (44) and (43) and (45). Since (42)–(45) are multiplied by r2
p

and are numerically large, they can be combined with (39) to increase the accuracy of extracting the proton charge radius in
the presence of experimental data. The corrections for the two-loop vacuum polarization taking into account the structure of the
proton are calculated in the same sequence. In one-photon interaction, they are shown in Fig. 9. The particle interaction operators
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corresponding to these amplitudes are constructed in the integral form:

�V vp-vp
str (r) = 2

3
Zαr2

p

( α

3π

)2
∫ ∞

1
ρ(ξ ) dξ

∫ ∞

1
ρ(η) dη

[
πδ(r) − m2

e

r(ξ 2 − η2)
(ξ 4e−2meξr − η4e−2meηr )

]
, (46)

�V 2-loop vp
str (r) = 4

9
Zαr2

p

(α

π

)2
∫ 1

0

f (v) dv

1 − v2

[
πδ(r) − m2

e

r(1 − v2)
e
− 2mer√

1−v2

]
. (47)

In the second-order PT, the contributions of the two-loop vacuum polarization with the effect of the nuclear structure of order
α2(Zα)4 are shown in Fig. 10. When calculating the contribution in Fig. 10(a), it is convenient to split it into two parts when
integrating over the coordinates of particles in accordance with the two terms of the potential (41). Each of them diverges upon
integration over spectral parameters, but their sum is finite. Other corrections in Figs. 10(b)–10(d) are calculated in the same
way, and their sum is presented in Table I (line 17). Integral expressions for these corrections before integration over spectral
parameters are rather cumbersome and are not presented here (see, for example, Ref. [27]).

We also take into account in our calculation the combined sixth-order α correction for the nuclear structure and vacuum
polarization, which appears in two-photon exchange amplitudes as a result of the modification of the photon propagator (see
Fig. 11). The corresponding particle interaction operator differs from V2γ (k) from (40) with an additional functional factor. The
integral expression for the correction of this type is [25,40,47]

�E2γ
str,vp(nS) = −2μ3α(Zα)5

9π2n3

∫ ∞

0

V2γ (k)Fvp(k) dk

k4
,

Fvp(k) =
[
−5k3 + 6

(
k2 − 2me

2
)√

k2 + 4me
2 tanh−1

(
k√

k2 + 4me
2

)
+ 12kme

2

]
, (48)

and its numerical value for the (3S-1S) interval is given in Table I (line 19). Other radiative corrections to the muon line
[self-energy correction (se), vertex correction, and correction with an enveloping photon] with a nuclear structure of the same
order α(Zα)5 are determined by the amplitudes in Fig. 12. Their calculation is performed for S-states in light muonic atoms in
Ref. [48]. The total contribution, expressed in terms of the nuclear charge radius, is

�Eα(Zα)5

str,rad (3S − 1S) = 13μ3α(Zα)5r2
p

81
(23 − 16 ln 2), (49)

and numerical values are shown in line 20 of Table I.

V. RECOIL CORRECTIONS, MUON SELF-ENERGY, AND
VACUUM POLARIZATION CORRECTIONS

So far, we have considered corrections of various orders
in the (3S-1S) interval, which are specific for each muonic
atom. Such contributions were obtained either analytically or
in the form of integral expressions and calculated numerically.
In muonic atoms, expansion in terms of the characteristic
parameter μZα/me = 1.356 cannot be used. For the electron
hydrogen atom, one can also use these expressions, replacing
me → mμ. But there is also another set of contributions that
are known in analytical form and were obtained in the study
of the hydrogen atom fine structure energy spectrum [19].

They can be used to estimate numerically the contributions
in the case of muonic atoms. Let us briefly list the main
contributions required to obtain a complete result with good
accuracy [19,27–30].

There is a group of recoil corrections (the subscript rec
is used) of various orders in (Zα), obtained in the case of a
point nucleus. The recoil contribution of order (Zα)4m2

1/m2
2

arises when calculating the matrix elements of the Breit po-
tential. For the hydrogen atom, such corrections are taken into
account in the original formula (1). The recoil correction of
order (Zα)5m1/m2 for S-states is determined by two-photon
exchange amplitudes, in which the proton is considered as a
point particle [19]:

�E (Zα)5

rec = μ3(Zα)5

m1m2πn3

[
2

3
ln

1

Zα
− 8

3
ln k0(n, 0) − 1

9
− 7

3
an − 2

m2
2 − m2

1

(
m2

2 ln
m1

μ
− m2

1 ln
m2

μ

)]
, (50)

where ln k0(n, 0) is the Bethe logarithm, which has the following values for 1S, 3S states [19]:

ln k0(1S) = 2.984128555765498, ln k0(3S) = 2.767663612491822, (51)

an = −2

[
ln

2

n
+
(

1 + 1

2
+ · · · + 1

n

)
+ 1 − 1

2n

]
. (52)

The numerical value (50) for the interval (3S-1S) is large for both muonic and electron hydrogen (line 22, Table I).
The recoil correction of order (Zα)6m1/m2 has been studied in many works [49–51], and in Ref. [52] the corrections for the

recoil of a higher order m2
1(Zα)7/m2 are calculated. Since in our work we limited ourselves to contributions to the sixth order in
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Zα, we use the following expression to obtain a numerical estimate (see Ref. [19]):

�E (Zα)6

rec (3S − 1S) = 26(Zα)6m2
1

27m2

(
7

2
− 4 ln 2

)
. (53)

In the case of muonic hydrogen, the numerical value of the correction of order m2
1(Zα)7/m2 is negligible [52].

For the energy contributions obtained from amplitudes with radiative corrections to the muon line (se), from the Dirac and
Pauli form factors (ff) of the muon, there is a compact analytical representation [19]:

�Ese, f f (nS) = α(Zα)4

πn3

μ3

m2
1

{
4

3
ln

m1

μ(Zα)2
− 4

3
ln k0(n, 0) + 10

9

+ α

π

[
−9

4
ζ (3) + 3

2
π2 ln 2 − 10

27
π2 − 2179

648

]
+ 4πZα

(
427

384
− ln 2

2

)}
. (54)

A discussion of higher-order contributions in α can be found in Ref. [53] (see also references to other articles in this paper).
Radiative corrections with recoil of orders α(Zα)5 and (Z2α)(Zα)4 from Table 9 [19] have the following form for nS states:

�Erad−rec(nS) = α(Zα)5μ3

m1m2n3

[
6ζ (3) − 2π2 ln 2 + 3

4
π2 − 14

]
+ α(Zα)5m2

1

m2n3π2

(
2π2

9
− 70

27

)

+ 4(Z2α)(Zα)4μ3

πm2
2n3

[
1

3
ln

�(Zα)−2

μ
+ 11

72
− 1

24
− 7π

32

�2

4m2
2

+ 2

3

(
�2

4m2
2

)2

− 1

3
ln k0(n, 0)

]
. (55)

The formulas (54) and (55) contribute to the shift (3S-1S) (parameter � =
√

12/r2
p), which is shown in Table I on lines 24

and 25.
The correction for the proton structure in the energy spectrum of order (Zα)6, obtained in Ref. [28] for a muonic hydrogen-like

atom with various parametrizations of the nuclear form factors, has the following form:

�E (Zα)6

str (nS) = 2μ(Zα)6

3n3
(μ2Frel + μ4Fnr ), (56)

Frel = −〈r2〉
[
ψ (n) + 2γ + 9

4n2
− 1

n
− 13

4
+
〈

ln
2W r

n

〉]
− 1

3
〈r3〉
〈

1

r

〉
+ I rel

2 + I rel
3 , (57)

Fnr = 2〈r2〉
3

[
〈r2〉
(

ψ (n)+ 2γ − 1

n
− 4

3

)
+
〈
r2 ln

2W r

n

〉]
+ 〈r4〉

10n2
+ 〈r3〉〈r〉 + 〈r5〉

〈
1

r

〉
+ Inr

2 + Inr
3 , (58)

where the quantities I rel
2,3 and Inr

2,3, as well as the moments of the
charge distribution density, are written explicitly in Ref. [28]
for various parametrizations. Based on the expressions ob-
tained in Ref. [28], one can estimate the contributions to the
shift (3S-1S) for muonic hydrogen atom (line 26 of the table).

Another numerically important contribution of the sixth
order in α to the shift (3S-1S) [see Fig. 13(b)] is expressed
in terms of the slope of the Dirac form factor F ′

1 (0) and Pauli
form factor F2(0) [19], which are calculated analytically in

(a) (b)

FIG. 8. Corrections to the nuclear structure of order (Zα)5. The
bold point denotes the vertex operator of the proton.

Ref. [54] (see line 27 of Table I):

�Erad+vp = −7α2(Zα)4μ3

8π2m2
1

[
3me

2

m2
1

− 4me
2 ln m1

me

m2
1

+ π2me

4m1

+ 4

9
ln2 m1

me
− 20

27
ln

m1

me
+ 2π2

27
+ 85

162

]
.

(59)

(a) (b) (c)

FIG. 9. Nuclear structure effects and two-loop vacuum polariza-
tion in one-photon interaction. The bold point denotes the proton
vertex operator.
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(a) (b) (c) (d)

FIG. 10. Nuclear structure and two-loop vacuum polarization
effects in the second order of perturbation theory. The bold point de-
notes the proton vertex operator. G̃ is the reduced Coulomb Green’s
function.

In the case of electron hydrogen, a numerically large con-
tribution is giving by radiative corrections of order α(Zα)6

(see Table 5 in Ref. [19]). We have included it in our Table I
for muonic hydrogen in line 31.

To estimate the contribution of the muon self-energy (mse)
taking into account the vacuum polarization, the following
expression was obtained in the logarithmic approximation in
Ref. [30]:

�E vp
mse(n) = α

3πm2
1

ln
m1

μ(Zα)2

[
〈ψn|� · �V C

vp|ψn〉

+ 2〈ψn|�V C
vpG̃�

(
−Zα

r

)
|ψn〉

]
. (60)

Assuming as in calculating relativistic corrections p2 =
2μ(H + Zα/r) and calculating numerous matrix elements
in (60), we obtain a correction in the interval (3S-1S)
(line 28).

Taking into account the accuracy of the calculation, we
have included in the complete result for the shift (3S-1S) the
contribution of hadronic vacuum polarization (hvp), which
was investigated in Refs. [55–57] in the case of muonic hy-
drogen.

Figure 14 shows four amplitudes of light-by-light scat-
tering. The amplitude in Fig. 14(a) denotes the contribution
known as the Wichmann-Kroll correction (see the approxima-
tion potential in Ref. [19]). It is shown in Table I on line 4. In
Refs. [58,59] it was shown that the contribution of the ampli-
tude in Fig. 14 differs from the Wichmann-Kroll contribution
by the factor 1/Z2. The interaction potential in Figs. 14(c)
and 14(d) was obtained in Ref. [58] using the Padé approx-
imation in a convenient form for numerical calculations of
corrections in the energy spectrum (the coefficients si, ti are
written in Ref. [58]; index ll corresponds to the abbreviation

(a) (b)

FIG. 11. Nuclear structure and vacuum polarization effects in
two-photon exchange diagrams. The bold point denotes the proton
vertex operator.

(a) (b) (c)

FIG. 12. Two-photon exchange amplitudes with radiative correc-
tions to the muon line, contributing to the order α(Zα)5. The bold
point shows the proton vertex operator.

light-by-light):

�V ll (r) = −α2(Zα)2

r

(s0+ s1x+ s2x2)

(t0+ t1x + t2x2 + t3x3 + t4x4 + t5x5)
,

x = mer. (61)

Numerical value of the corresponding correction [see line 5, in
which the total contribution of the amplitudes in Figs. 14(b)–
14(d) is written out] is important for refining the complete
result.

There is one more effect of light-by-light scattering, which
leads to the appearance of an effective one-meson interac-
tion between a muon and a proton (scalar, pseudoscalar,
axial-vector, and tensor). Studies of such a mechanism in
Refs. [60–62] have shown that in muonic hydrogen, the ex-
change of a scalar meson gives a significant shift of the
S-energy levels �E (3S − 1S) = −0.1059 meV. Therefore, it
was also included in the final Table I for muonic hydrogen.

VI. NUMERICAL RESULTS AND CONCLUSION

In this work, we continue our studies [25–27,40] of low-
lying energy levels of muonic hydrogen, which have been
intensively studied in recent years experimentally and the-
oretically. The (3S-1S) transition was chosen as the energy
interval for a precision calculation, the measurement accuracy
of which in the case of electron hydrogen is very high [15].
Various potentially important interactions in muonic hydro-
gen are analyzed and their contribution to the structure of
S-states is calculated within the framework of the quasipoten-
tial method in quantum electrodynamics. We have calculated
the energy interval (3S-1S) in muonic hydrogen taking into
account corrections of the fifth and sixth orders in α and

(a) (b)

FIG. 13. Radiative corrections with vacuum polarization effects.
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(a) (b) (c) (d)

FIG. 14. The amplitudes of light-by-light scattering.

taking into account the effects of recoil and the structure of
the proton. We also used numerous results of calculations of
other corrections performed by different authors and took into
account numerically important effects of higher order in α.

The interest in the transitions between the S-energy levels
in the hydrogen atom is due to the fact that the study of such
transitions opens up yet another possibility of refining the
value of the charge radius of the nucleus (proton). As noted
earlier, experiment [15] is quite consistent with the CODATA
result for the proton charge radius, unlike all other new ex-
periments with both muonic and electronic systems. In this
regard, it was useful to calculate the energy interval (3S-1S)
in muonic hydrogen, bearing in mind the possible perspective
of its measurement in the future.

In recent years, different groups have performed calcula-
tions of new corrections in the fine and hyperfine structure
of the spectrum of muonic atoms, including for the S-
energy levels. Since the number of such papers is significant,
references to many other papers can be found in the re-
view papers [9,10,19,29,63]. Although these works did not
directly calculate the energy interval (3S-1S), some com-
parison with the results obtained earlier can be made. Most
of the corrections we calculated for vacuum polarization
(Uehling, Källén-Sabry, Wichmann-Kroll corrections) are in
good agreement with previous calculations [9,10,29,64,65],
but in this work these corrections are not presented in
summary form, but in more detail. Our calculations of three-
loop VP effects in one-photon interaction are based on
the Kinoshita-Nio interpolation formula (eight diagrams in
Fig. 2), which gives the known result for the Lamb shift
from Ref. [32]. For the interval (3S-1S), this contribution
was obtained, as well as the contribution of the three-loop
polarization operator with two fermionic cycles in Fig. 3,
calculated on the basis of the analytical formula for the po-
larization operator from Refs. [38,39]. We have worked out
in detail the calculation of combined corrections for the vac-
uum polarization with relativistic effects. We have written
the corresponding potentials and matrix elements in the first
and second orders of the perturbation theory. We obtain an
expression for the reduced Coulomb Green’s function of the
3S-state with two nonzero arguments, which is necessary for
calculating corrections in the second and third orders of the
perturbation theory. General expressions for calculating the
effects of a three-loop VP in the third order of perturbation
theory agree with Refs. [64,65], and numerical results them-
selves are unique to this study to the best of our knowledge,

as well as are numerous corrections for the proton structure.
Note that to calculate the effects of light-by-light scattering,
we use the formula for the potential obtained in Ref. [58].
The calculation of corrections in Sec. V is based on well-
known analytical expressions (see Ref. [19]), and the results
are presented in detail in Table I.

The calculated contributions are presented in the work in
the form of analytical formulas, integral expressions that can
be integrated numerically, as well as in numerical form in
Table I. Most of the results for muonic hydrogen in Table I
are presented with an accuracy of four digits after the decimal
point in meV, since the errors in their determination due to
the errors of fundamental physical constants are much smaller.
But there are contributions to the proton structure, which are
determined by the strong interaction and have been obtained
so far with a significant error. The total theoretical result for
the energy interval (3S-1S) in muonic hydrogen has the form
�E (μp) = 2 249 398.5478 meV. The error in calculating the
main contribution (see line 1 in Table I) due to the uncertain-
ties of the fundamental physical constants does not exceed
0.0015 meV. A rough estimate of the contribution of order
mα7 gives a value 0.0001 meV. It is impossible to calculate
the proton form factors with the required accuracy in quantum
chromodynamics, and the use of experimental data on the
form factors obviously gives its part of the error. Our esti-
mate of such an error in calculating the two-photon exchange
amplitudes is shown directly in Table I (line 18). An estimate
of the contribution to the proton polarizability is taken from
the work [66]. The total error in calculating the proton polar-
izability contribution and nuclear structure correction of order
(Zα)5 0.025 meV leads to an error in determining the charge
radius of the proton 0.00035 fm. The theoretical error in the
calculation of the interval (3S-1S) connected with the calcu-
lation of the QED corrections is, according to our estimates,
about 0.005 meV. The largest contribution to the structure of
the proton is connected with a correction of order (Zα)4 (line
15 of Table I). Its numerical value is obtained with the proton
charge radius from [9]. If we do not fix numerical value of
the correction (39), then the total result from Table I can be
presented as

�E tot (3S-1S) = 2 249 426.8578(250)

− 40.039631(3) r2
p meV, (62)

where the value of the charge radius rp is taken in fm. Thus,
a precision measurement of the frequency of the (3S-1S)
transition in muonic hydrogen can give a more exact value
of the proton’s charge radius. So, for example, measuring
the (3S-1S) shift in muonic hydrogen with a relative error
(1–3) ppb together with an improvement in the accuracy of
calculating the effect of nuclear polarizability and a correction
to the structure of the nucleus of order (Zα)5 will reduce the
error in determining the proton charge radius to 0.0001 fm.

ACKNOWLEDGMENT

This work was supported by the Russian Science Founda-
tion (Grant No. 18-12-00128).

062820-14



ENERGY INTERVAL 3S-1S IN … PHYSICAL REVIEW A 102, 062820 (2020)

[1] R. J. Hill, EPJ Web Conf. 137, 01023 (2017).
[2] G. Paz, arXiv:1909.08108 [hep-ph].
[3] M. Horbatsch, E. A. Hessels, and A. Pineda, Phys. Rev. C 95,

035203 (2017).
[4] J. C. Bernauer, EPJ Web Conf. 234, 01001 (2020).
[5] C. E. Carlson, Prog. Part. Nucl. Phys. 82, 59 (2015).
[6] S. G. Karshenboim, V. G. Ivanov, and S. I. Eidelman, Phys.

Part. Nucl. Lett. 16, 514 (2019).
[7] R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben, J. M. R.

Cardoso, D. S. Covita, A. Dax, S. Dhawan, L. M. P. Fernandes,
A. Giesen et al., Nature (London) 466, 213 (2010).

[8] A. Antognini, F. Nez, K. Schuhmann, F. D. Amaro, F. Biraben,
J. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, M. Diepold
et al., Science 339, 417 (2013).

[9] A. Antognini, F. Kottmann, F. Biraben, P. Indelicato, F. Nez,
and R. Pohl, Ann. Phys. 331, 127 (2013).

[10] R. Pohl, F. Nez, L. M. P. Fernandes, F. D. Amaro, F. Biraben, J.
M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, M. Diepold
et al., Science 353, 669 (2016).

[11] A. Beyer, L. Maisenbacher, A. Matveev, R. Pohl, K. Khabarova,
A. Grinin, T. Lamour, D. C. Yost, Th. W. Hänsch, N. Ko-
lachevsky, and Th. Udem, Science 358, 79 (2017).

[12] W. Xiong, A. Gasparian, H. Gao, D. Dutta, M. Khandaker, N.
Liyanage, E. Pasyuk, C. Peng, X. Bai, L. Ye et al., Nature
(London) 575, 147 (2019).

[13] N. Bezginov, T. Valdez, M. Horbatsch, A. Marsman, A. C.
Vutha, and E. A. Hessels, Science 365, 1007 (2019).

[14] R. Gilman, E. J. Downie, G. Ron, S. Strauch, A. Afana-
sev, A. Akmal, J. Arrington, H. Atac, C. Ayerbe-Gayoso, F.
Benmokhtar et al. (MUSE Collaboration), arXiv:1709.09753
[physics.ins-det].

[15] H. Fleurbaey, S. Galtier, S. Thomas, M. Bonnaud, L. Julien, F.
Biraben, F. Nez, M. Abgrall, and J. Guéna, Phys. Rev. Lett. 120,
183001 (2018).

[16] P. J. Mohr, D. B. Newell, and B. N. Taylor, Rev. Mod. Phys. 88,
035009 (2016).

[17] C. G. Parthey, A. Matveev, J. Alnis, B. Bernhardt, A. Beyer,
R. Holzwarth, A. Maistrou, R. Pohl, K. Predehl, T. Udem
et al., Phys. Rev. Lett. 107, 203001 (2011).

[18] I. Fan, C.-Y. Chang, L.-B. Wang, S. L. Cornish, J.-T. Shy, and
Y.-W. Liu, Phys. Rev. A 89, 032513 (2014).

[19] M. I. Eides, H. Grotch, and V. A. Shelyuto, Phys. Rep. 342,
62 (2001); Theory of Light Hydrogenic Bound States (Springer,
Berlin, 2007).

[20] P. Crivelli, Hyperfine Interact. 239, 49 (2018).
[21] R. K. Altmann, S. Galtier, L. S. Dreissen, and K. S. E. Eikema,

Phys. Rev. Lett. 117, 173201 (2016).
[22] V. A. Yerokhin, K. Pachucki, and V. Patkos, Ann. Phys. 531,

00324 (2018).
[23] R. Pohl, H. Daniel, F. J. Hartmann, P. Hauser, F. Kottmann, V.

E. Markushin, M. Muhlbauer, C. Petitjean, W. Schott, D. Taqqu
et al., Phys. Rev. Lett. 97, 193402 (2006).

[24] V. P. Popov and V. N. Pomerantsev, arXiv:0809.0742 [nucl-th].
[25] A. P. Martynenko, J. Exp. Theor. Phys. 101, 1021 (2005).
[26] A. A. Krutov, A. P. Martynenko, G. A. Martynenko, and R. N.

Faustov, J. Exp. Theor. Phys. 120, 73 (2015).
[27] A. E. Dorokhov, A. P. Martynenko, F. A. Martynenko, and R. N.

Faustov, J. Exp. Theor. Phys. 129, 956 (2019).
[28] J. L. Friar, Ann. Phys. 122, 151 (1979).

[29] E. Borie, Ann. Phys. 327, 733 (2012).
[30] K. Pachucki, Phys. Rev. A 54, 1994 (1996).
[31] G. Källén and A. Sabry, Mat. Fys. Medd. Dan. Vid. Selesk. 29,

1 (1955), in Portrait of Gunnar Källén, edited by C. Jarlskog
(Springer, Cham, 2014), p. 555.

[32] T. Kinoshita and M. Nio, Phys. Rev. Lett. 82, 3240 (1999).
[33] T. Kinoshita and M. Nio, Phys. Rev. D 60, 053008 (1999).
[34] T. Kinoshita and W. B. Lindquist, Phys. Rev. D 27, 853

(1983).
[35] P. A. Baikov and D. J. Broadhurst, in New Computing Tech-

niques in Physics Research IV, edited by B. Denby and D.
Perrei-Gallix (World Scientific, Singapore, 1995), p. 167.

[36] R. N. Faustov, A. L. Kataev, S. A. Larin, and V. V. Starshenko,
Phys. Lett. B 254, 241 (1991).

[37] D. J. Broadhurst, A. L. Kataev, and O. V. Tarasov, Phys. Lett. B
298, 445 (1993).

[38] A. H. Hoang, J. H. Kühn, and T. Teubner, Nucl. Phys. B 452,
173 (1995).

[39] K. G. Chetyrkin, A. H. Hoang, J. H. Kühn, M. Steinhauser and
T. Teubner, Phys. Lett. B 384, 233 (1996).

[40] A. P. Martynenko, Phys. Rev. A 76, 012505 (2007).
[41] A. A. Krutov, A. P. Martynenko, F. A. Martynenko, and O. S.

Sukhorukova, Phys. Rev. A 94, 062505 (2016).
[42] H. F. Hameka, J. Chem. Phys. 47, 2728 (1967).
[43] M. G. Veselov and L. N. Labzovsky, Atomic Theory: Electron

Shell Structure (Nauka, Moscow, 1986).
[44] V. G. Ivanov and S. G. Karshenboim, J. Exp. Theor. Phys. 82,

656 (1996).
[45] V. G. Ivanov, E. Yu. Korzinin, and S. G. Karshenboim, Phys.

Rev. D 80, 027702 (2009).
[46] J. J. Kelly, Phys. Rev. C 70, 068202 (2004).
[47] A. E. Dorokhov, A. A. Krutov, A. P. Martynenko, F. A.

Martynenko, and O. S. Sukhorukova, Phys. Rev. A 98, 042501
(2018).

[48] R. N. Faustov, A. P. Martynenko, F. A. Martynenko, and V. V.
Sorokin, Phys. Lett. B 775, 79 (2017).

[49] M. I. Eides and H. Grotch, Phys. Rev. A 55, 3351 (1997).
[50] K. Pachucki and H. Grotch, Phys. Rev. A 51, 1854 (1995).
[51] V. M. Shabaev, Theor. Math. Phys. 63, 588 (1985).
[52] V. A. Yerokhin and V. M. Shabaev, Phys. Rev. Lett. 115, 233002

(2015).
[53] V. A. Yerokhin and V. M. Shabaev, J. Phys. Chem. Ref. Data

44, 033103 (2015).
[54] R. Barbieri, M. Caffo, and E. Remiddi, Nuovo Cimento Lett. 7,

60 (1973).
[55] E. Borie, Z. Phys. A 302, 187 (1981).
[56] J. L. Friar, J. Martorell, and D. W. L. Sprung, Phys. Rev. A 59,

4061 (1999).
[57] A. P. Martynenko and R. N. Faustov, Phys. Atom. Nucl. 64,

1282 (2001).
[58] E. Y. Korzinin, V. A. Shelyuto, V. G. Ivanov, R. Szafron, and

S. G. Karshenboim, Phys. Rev. A 98, 062519 (2018).
[59] S. G. Karshenboim, E. Yu. Korzinin, V. G. Ivanov, and V. A.

Shelyuto, JETP Lett. 92, 8 (2010).
[60] A. E. Dorokhov, A. P. Martynenko, F. A. Martynenko, and A. E.

Radzhabov, EPJ Web Conf. 222, 03010 (2019).
[61] A. E. Dorokhov, N. I. Kochelev, A. P. Martynenko, F. A.

Martynenko, and R. N. Faustov, Phys. Part. Nucl. Lett. 14, 857
(2017).

062820-15

https://doi.org/10.1051/epjconf/201713701023
http://arxiv.org/abs/arXiv:1909.08108
https://doi.org/10.1103/PhysRevC.95.035203
https://doi.org/10.1051/epjconf/202023401001
https://doi.org/10.1016/j.ppnp.2015.01.002
https://doi.org/10.1134/S1547477119050157
https://doi.org/10.1038/nature09250
https://doi.org/10.1126/science.1230016
https://doi.org/10.1016/j.aop.2012.12.003
https://doi.org/10.1126/science.aaf2468
https://doi.org/10.1126/science.aah6677
https://doi.org/10.1038/s41586-019-1721-2
https://doi.org/10.1126/science.aau7807
http://arxiv.org/abs/arXiv:1709.09753
https://doi.org/10.1103/PhysRevLett.120.183001
https://doi.org/10.1103/RevModPhys.88.035009
https://doi.org/10.1103/PhysRevLett.107.203001
https://doi.org/10.1103/PhysRevA.89.032513
https://doi.org/10.1016/S0370-1573(00)00077-6
https://doi.org/10.1007/s10751-018-1525-z
https://doi.org/10.1103/PhysRevLett.117.173201
https://doi.org/10.1002/andp.201800324
https://doi.org/10.1103/PhysRevLett.97.193402
http://arxiv.org/abs/arXiv:0809.0742
https://doi.org/10.1134/1.2163919
https://doi.org/10.1134/S1063776115010033
https://doi.org/10.1134/S1063776119110098
https://doi.org/10.1016/0003-4916(79)90300-2
https://doi.org/10.1016/j.aop.2011.11.017
https://doi.org/10.1103/PhysRevA.54.1994
https://doi.org/10.1103/PhysRevLett.82.3240
https://doi.org/10.1103/PhysRevD.60.053008
https://doi.org/10.1103/PhysRevD.27.853
https://doi.org/10.1016/0370-2693(91)90428-S
https://doi.org/10.1016/0370-2693(93)91849-I
https://doi.org/10.1016/0550-3213(95)00308-F
https://doi.org/10.1016/0370-2693(96)00789-7
https://doi.org/10.1103/PhysRevA.76.012505
https://doi.org/10.1103/PhysRevA.94.062505
https://doi.org/10.1063/1.1712290
https://doi.org/10.1103/PhysRevD.80.027702
https://doi.org/10.1103/PhysRevC.70.068202
https://doi.org/10.1103/PhysRevA.98.042501
https://doi.org/10.1016/j.physletb.2017.10.056
https://doi.org/10.1103/PhysRevA.55.3351
https://doi.org/10.1103/PhysRevA.51.1854
https://doi.org/10.1007/BF01017505
https://doi.org/10.1103/PhysRevLett.115.233002
https://doi.org/10.1063/1.4927487
https://doi.org/10.1007/BF02728271
https://doi.org/10.1007/BF01415535
https://doi.org/10.1103/PhysRevA.59.4061
https://doi.org/10.1134/1.1389555
https://doi.org/10.1103/PhysRevA.98.062519
https://doi.org/10.1134/S0021364010130023
https://doi.org/10.1051/epjconf/201922203010
https://doi.org/10.1134/S1547477117060140


A. E. DOROKHOV et al. PHYSICAL REVIEW A 102, 062820 (2020)

[62] A. E. Dorokhov, N. I. Kochelev, A. P. Martynenko, F. A.
Martynenko, and A. E. Radzhabov, Phys. Lett. B 776, 105
(2018).

[63] B. Franke, J. J. Krauth, A. Antognini, M. Diepold, F. Kottmann,
and R. Pohl, EPJ D 71, 341 (2017).

[64] E. Y. Korzinin, V. A. Shelyuto, V. G. Ivanov, and S. G.
Karshenboim, Phys. Rev. A 97, 012514 (2018).

[65] S. G. Karshenboim, V. G. Ivanov, E. Y. Korzinin, and V. A.
Shelyuto, Phys. Rev. A 81, 060501(R) (2010).

[66] A. P. Martynenko, Phys. Atom. Nucl. 69, 1309 (2006).

062820-16

https://doi.org/10.1016/j.physletb.2017.11.027
https://doi.org/10.1103/PhysRevA.97.012514
https://doi.org/10.1103/PhysRevA.81.060501
https://doi.org/10.1134/S1063778806080072

