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Core polarizability of rubidium using spectroscopy of the ng to nh, ni Rydberg transitions
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We present a precise measurement of the rubidium ionic core polarizability. The results can be useful for
interpreting experiments such as parity violation or black-body radiation shifts in atomic clocks since the
ionic core electrons contribute significantly to the total electrical polarizability of rubidium. We report a dipole
polarizability αd = 9.116(9) a3

0 and quadrupole polarizability αq = 38.4(6) a5
0 derived from microwave and radio-

frequency spectroscopy measurements of Rydberg states with large angular momentum. By using a relatively
low principal quantum number (17 � n � 19) and high angular momentum (4 � � � 6), systematic effects are
reduced compared to previous experiments. We develop an empirical approach to account for nonadiabatic
corrections to the polarizability model. The corrections have less than a 1% effect on αd but almost double
αq from its adiabatic value, bringing it into much better agreement with theoretical values.

DOI: 10.1103/PhysRevA.102.062818

I. INTRODUCTION

The electric polarizability of an atom is of significant
interest and importance. Accurate polarizability values are
needed for many experiments, including atomic clocks, quan-
tum computation, parity nonconservation, thermometry, and
studies of long-range molecules [1–5]. Polarizability mea-
surements are also useful as benchmarks for theoretical
calculations since the polarizability depends on the dipole
matrix elements of the atomic wave functions, which are diffi-
cult to obtain using conventional spectroscopy. Calculation of
matrix elements from first principles is very challenging for
multielectron atoms, so comparisons to experimental quan-
tities, like polarizabilities, provide important checks. These
motivations have prompted a series of improving polarizabil-
ity measurements over the past several decades [6–13]. One
promising approach is tune-out spectroscopy [14], where the
ac electric polarizability of an atom vanishes and the wave-
length at which that occurs is measured. This technique can
provide orders of magnitude improvement in the accuracy of
the dipole matrix elements [10,11,13,15].

Theoretical interpretation of the polarizability is simplest
for alkali atoms, where most of the effect comes from the
single valence electron. However, the contribution of the core
electrons cannot be ignored. For instance, the core contributes
about 3% to the total polarizability of a Rb atom [3], which
is large compared to the 0.2% accuracy of a measurement
such as in Ref. [9]. It can be useful to evaluate and subtract
the core contribution from a measurement to obtain the va-
lence polarizability alone, since this provides the most direct
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connection to the matrix elements of the valence wave func-
tions. This approach has been used with both dc and tune-out
measurements [10], but it is limited by the accuracy to which
the core polarizability is known. We present here an experi-
mental measurement of the core polarizability of Rb, with an
accuracy better by approximately a factor of 4 than previously
achieved. We expect this to be useful as tune-out spectroscopy
and other polarizability measurement techniques continue to
improve.

The core polarizability is obtained in our experiment
through microwave spectroscopy of atomic Rydberg states of
high orbital angular momentum �. When the valence electron
is far from the core, the atom behaves much like hydrogen;
however, in any atom other than hydrogen, the Rydberg elec-
tron can both penetrate and polarize the ion core, depressing
the atomic energy below the analogous hydrogenic energy.
Because of the �-dependent centrifugal barrier keeping the
Rydberg electron away from the ion core, Rydberg states of
high � (� � 4 for Rb) have negligible core penetration. How-
ever, core polarization remains, and by comparing the energies
of the high-� states to the corresponding hydrogenic energies,
the core polarizability can be determined [16,17]. This method
was previously used in Rb with Rydberg states having prin-
cipal quantum number n in the range of 27 to 30 [12]. The
accuracy of the spectroscopy measurements was principally
limited by Stark shifts from stray dc electric fields. The dc
polarizability of a Rydberg atom as a whole is very large, so
even fields of 100 mV/cm can be significant [12]. To address
this problem, the work here uses lower principal quantum
numbers: n = 17 to 19. Since the atomic polarizability scales
as n7, this reduces the electric field sensitivity by a factor of
about 25 compared to previous work from our group [12]. Our
analysis combines our present results, previous measurements
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from Ref. [12], and recent measurements by Moore et al. in
the range n = 38 to 43 [18].

Because the valence electron produces a nonuniform field
at the ion core, the polarization energy of the Rydberg
atom depends on both the dipole polarizability αd and the
quadrupole polarizability αq of the core [16,17]. Unless stated
otherwise, we use atomic units. In these units the polarization
energy is given by [17,19]

W = −1

2
αd

〈
1

r4

〉
n�

− 1

2
αq

〈
1

r6

〉
n�

, (1)

where r is the distance from the valence electron to the nu-
cleus, and 〈 1

r4 〉n�
and 〈 1

r6 〉n�
are the expectation values of the

squares of the expectation values of the field and field gradient
at the ion core due to the static probability distribution of
the n� electron. Because of the centrifugal barrier, 〈 1

r4 〉 and
〈 1

r6 〉 are highly dependent on �, and measuring the separation
between high-� states of the same n allows us to determine αd

and αq.
Equation (1) is often termed the adiabatic core polarization

model since it is based on the assumption that the Rydberg
electron charge distribution is static. Of course, the Rydberg
electron is not static, and Whitelaw and van Vleck pointed
out that Eq. (1) is a limiting case of a shift arising from
second-order perturbation theory [20]. In particular, Eq. (1)
is valid when the excited states of the ion lie far above the
its ground state compared to the energy spread of the Ry-
dberg states involved. Detailed derivations of Eq. (1) from
the perturbation theory expressions were subsequently given
by Mayer and Mayer and van Vleck and Whitelaw [21,22].
Although the adiabatic approximation of Eq. (1) is reasonably
good for Rb, it is not adequate for our purposes. Here we
develop an empirical method to account for the nonadiabatic
effects. Specifically, we compare Eq. (1) to the expression of
van Vleck and Whitelaw using several simplifications [22].
This comparison results in correction factors kd and kq which
must be applied to Eq. (1), both of which are unity in the
adiabatic approximation. Our estimates of kd and kq differ
from unity by less than 10%, and their introduction alters
αd by less than 1%, but almost doubles αq from its adiabatic
value and brings it into much better agreement with theoretical
values [3,12,23,24].

In the sections that follow, we describe the principle and
setup of the experiments, the spectroscopic results, the de-
velopment of the nonadiabatic corrections, the analysis of the
polarizablities, and finally our conclusions.

II. EXPERIMENTAL APPROACH

In order to interpret the energy shifts of the Rydberg state in
terms of the core polarizability, it is necessary for the valence
electron to remain far from the core at all times. In addition to
large n, this also requires the use of large angular momentum
quantum number �. Core penetration in a Rydberg state causes
its fine structure splitting to differ significantly from that of
hydrogen. Such distortions are observed in Rb for � � 3, so
we use only states with � � 4. The atoms are excited using the
scheme shown in Fig. 1 where a laser pulse first excites the
atoms from the 5s1/2 ground state to the 6p1/2 excited state.
About a third of the excited atoms spontaneously decay to the

5s1/2

6p1/2

4d3/2

nf5/2

ng7/2

nh9/2

ni11/2

FIG. 1. Atomic states used in this measurement. Rubidium atoms
in the 5s1/2 ground state are optically excited to 6p1/2, allowed to
spontaneously decay to 4d3/2, and then optically driven to the n f5/2

Rydberg state for n = 17–19. The expanded diagram on the right
shows microwave transitions from n f to ng, nh, and ni states using
one, two, and three photon excitations, respectively. The f –g interval
is about 15 GHz, the g–h interval is about 3 GHz, and the h–i interval
is about 1 GHz; the precise values depend on n.

long-lived 4d3/2 state, from which they are excited by a second
laser pulse to the n f5/2 Rydberg state. From there, microwave
and radio frequency pulses drive transitions to the ng, nh, and
ni states. We use the g–h and h–i intervals to determine the
dipole (αd ) and quadrupole (αq) polarizabilities of Rb+.

The experiment is performed in an atomic beam apparatus,
shown in Fig. 2. The Rydberg atoms are produced between
two electric field plates separated by 1.8 cm. A potential dif-
ference of up to 7 kV can be applied between the plates. After
the microwave pulse is applied, the electric field is ramped to
a value sufficient to ionize the Rydberg states. By carefully
controlling the timing and amplitude of the ramp, the atom
ionization process can be made state selective such that atoms
in � � 4 states are ionized while the n f atoms remain neutral.

(a)

(b)

(c)

(d)

(e)

FIG. 2. Experimental apparatus (not to scale). A rubidium
atomic beam is emitted from an oven (a) and passes between electric
field plates (b), which are separated by 1.8 cm. Two pulsed laser
beams (c) excite the atoms into Rydberg states, and microwaves
from the horn (d) drive Rydberg state transitions. An electric field is
applied to ionize the Rydberg atoms, and the ions are detected with
microchannel plate (e).
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Any ions produced are detected using a microchannel plate
operating in analog mode with spatially integrated channels.
The resulting signal current is accumulated using a gated
integrator to produce the spectroscopy signal.

The laser excitation pulses are produced by a pair of home-
built dye lasers. The first pulse is at a wavelength of 421.5 nm
and is produced using Stilbene 420 dye pumped by the third
harmonic of a Quanta-Ray Nd:YAG laser. The second pulse
is tuned between 712 and 720 nm to populate the desired n f
state. This laser uses LD720 dye, pumped by the second har-
monic of a Continuum Nd:YAG laser. Both laser pulses have
20-ns durations, and the second pulse is delayed by 250 ns
with respect to the first. Both lasers are linearly polarized
perpendicular to the electric field plates. While the 6p fine
structure is resolved by laser tuning, the n f fine structure is
not.

The lifetimes of the 17 f , 18 f , and 19 f states are 3.2, 3.8,
and 4.5 μs, respectively [19], and the microwave spectroscopy
pulses are applied 1 μs after the second laser pulse. In the case
of the n f to ng transition, a single-photon transition is driven
with a microwave frequency ranging from 11 to 17 GHz,
depending on n. For the n f to nh transition, a two-photon
transition is driven with microwaves at half the transition
frequency, between 7 and 10 GHz. For the three-photon n f to
ni transition, the two-photon microwave frequency is detuned
from the nh state, and we apply a rf frequency near 1 GHz to
couple nh to ni. These three excitation schemes are illustrated
in Fig. 1. The microwaves are produced by an Agilent 83622B
frequency synthesizer coupled to one of two microwave horns.
The rf field is produced by coupling a HP 8673C synthesizer
to one of the electric field plates. In all cases, the duration of
the spectroscopy pulse is 1 μs.

For each measurement, the microwave frequency is swept
across the resonance. The measurement results of each fre-
quency step in the sweep are averaged over ten experimental
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FIG. 3. Example spectroscopy line profiles. (a) Single-photon
19 f5/2–19g7/2. (b) Two-photon 19 f5/2–19h9/2. (c) Three-photon
19 f5/2–19i11/2 with an applied rf frequency of 720 MHz.

cycles, and the sweep in its entirety is repeated five times.
The resulting signals are averaged to produce a line profile,
such as the example data shown in Fig. 3. The profiles are
least-squares fit to Lorentzian functions to determine the line
centers. Uncertainty in the line center is taken from the uncer-
tainty estimate of the fit. However, in cases where the line
center uncertainty from the fit is less than 10% of the fit
linewidth, we instead assigned an uncertainty of 10% of the
linewidth to reflect the fact that the actual line shape is not
well characterized.

Several sources of systematic uncertainty must be taken
into account, including dc Stark shifts, ac Stark shifts, Zeeman
shifts, and fine structure splitting.

Although dc Stark shifts are reduced by operating at rela-
tively low n, they must still be accounted for. The conducting
field plates suppress electric fields parallel to the plates, but
any residual voltage difference produces a significant field
normal to the plates. We are able to apply a bias voltage
across the plates during the experiment, and Fig. 4(a) shows
how the n f –ng transition frequency varies as a function of the
resulting bias field. We fit such data to a parabola and then
set the bias voltage to the vertex of the fit. We perform this
calibration daily and observe day-to-day variations of about
0.15 V/cm, corresponding to Stark shifts of the n f –ng transi-
tion up to approximately 0.6 MHz. The apparatus provides no
direct way to measure or control the transverse electric field
components, but other experiments with similar geometries

11855

11860

11865

11870

11875

−1 −0.5 0 0.5 1

M
ic
ro
w
av
e
Fr
eq
ue
nc
y
(M
H
z)

Applied Field (V/cm)

7158.0

7158.5

7159.0

7159.5

0 20 40 60

M
ic
ro
w
av
e
Fr
eq
ue
nc
y
(M
H
z)

Microwave Power (mW)

7182.0

7182.5

7183.0

7183.5

7184.0

7184.5

0 5 10 15 20

M
ic
ro
w
av
e
Fr
eq
ue
nc
y
(M
H
z)

RF Power (mW)

(a)

(b) (c)

FIG. 4. (a) Measurement of the dc Stark shift on the
19 f5/2–19g7/2 transition. For spectroscopy, the bias voltage is set to
the vertex of the curve. (b) Measurement of the ac Stark shift on the
two-photon 19 f5/2–19h9/2 transition. The line is a linear fit showing
the extrapolation to zero microwave power. (c) Measurement of
the ac Stark shift on the three-photon 19 f5/2–19i11/2 transition. The
microwave frequency is swept at a constant 50 mW power. The rf
frequency is kept constant at 720 MHz and its power is varied. The
line is again a linear fit.
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show that the transverse fields are typically below 0.1 V/cm
[12]. We computed the expected Stark shift at this field value
and found for n = 19 values of 0.25 MHz on the f –g tran-
sition, 0.82 MHz on the f –h transition, and 1.58 MHz on
the f –i transition. These values are in good agreement with
the measured field sensitivity. These shifts are the dominant
systematic uncertainty for the measurement. We scale each
shift appropriately with n and add it in quadrature to the
corresponding experimental frequency error [25].

There are no ac Stark shifts on the single-photon n f to
ng transitions, but there are on the multiphoton transitions.
These shifts are manifested as linear variations of the tran-
sition frequency as a function of microwave or rf power. We
compensate for them by taking data over a range of powers
and extrapolating the results to zero power. Example data are
shown in Figs. 4(b) and 4(c). The ac Stark shift is largest for
the three-photon n f –ni transition, and the shift depends on
the two-photon detuning from the nh state. For these mea-
surements, the microwave and rf powers were independently
varied and extrapolated to zero. For each n, we used at least
two different two-photon detuning values, with at least one on
each side of the h state resonance. The values obtained were
consistent within the estimated uncertainties. In all cases, the
extrapolation to zero power was performed using an error-
weighted least squares fit to the data, and the uncertainty
from this fit is reported as the uncertainty in the transition
frequency measurement. The resulting values are reported in
Table I. For the majority of the transitions reported here, at
least two measurements were completed on different days,
and the results agreed within the stated uncertainty.

The linearly polarized laser beams produce a symmetric
distribution of m levels, so we expect no first-order Zeeman
shift. However, the measured background field of about 0.5
G gives a Zeeman energy similar to the fine-structure split-
ting, so computation of the expected spectrum is complicated.
Instead we applied a magnetic field comparable to the back-
ground field and observed shifts of about 0.1 MHz. We include
this as a source of systematic uncertainty in the results.

In hydrogen, the fine structure (FS) splittings of the n =
17–19 g, h, and i states range from 1.8 to 0.6 MHz. This
is comparable to or less than our experimental linewidth, so
the fine structure is not well resolved, but it is significant
compared to our measurement accuracy. To avoid uncertainty
due to unresolved FS, we take advantage of the fact that the
excitation scheme of Fig. 1 ensures that the Rydberg atoms
are always in the lower j fine structure state, j = � − 1/2.
Accordingly, we have measured the intervals given in Table I.

We expect the � � 4 FS splittings in Rb to be similar to
those of hydrogen, because the � � 4 states should not pene-

trate the core and the core polarization effect is independent
of j. To verify this, we retuned the initial laser excitation
pulse to the 6p3/2 state, which then allowed excitation of
both the n f5/2 and n f7/2 states. The n f7/2–ng7/2 transition is
suppressed due to small Clebsch-Gordan coefficients, but we
observed the n f7/2–ng9/2 transition. Using the known f -state
FS splitting [26], we obtained a value for the 17g FS splitting
of 1.83 ± 0.06 MHz. This is in agreement with the hydrogenic
value of 1.78 MHz and supports the conclusion that the g
states are nonpenetrating [27]. We therefore use the hydrogen
FS values for the � � 4 states. For the analysis described
below, we use transition frequencies from which the FS shift
has been removed by referencing the transition to the center of
gravity of the FS manifold. These frequencies are also listed
in Table I.

III. ANALYSIS AND DISCUSSION

In our analysis, we assume that core penetration does not
occur in Rb states of � � 4 and that relativistic and exchange
effects are negligible. In the adiabatic core polarization model,
the electric field from the quasistatic charge distribution of the
Rydberg n� electron polarizes the ion core, which results in
the polarization energy shift of the Rydberg n� state relative
to the hydrogenic n� energy. The shift is given by Eq. (1),
which we here rewrite as

W = −1

2
α

(a)
d

〈
1

r4

〉
n�

− 1

2
α(a)

q

〈
1

r6

〉
n�

, (2)

where the superscripts denote the use of the adiabatic approxi-
mation. If we assume the n� wave functions to be hydrogenic,
there are closed-form expressions for the required expectation
values [17,19,28]. As a result, it is a straightforward matter to
extract α

(a)
d and α(a)

q from the high-� Rydberg energies.
Equation (2) gives the energy shift of a state relative to the

corresponding state of hydrogen, but we do not have accurate
values for the absolute energies of the n f states, so we cannot
evaluate the energies of the high-� states relative to hydrogen.
Instead, we consider the energy difference between two states
n� and n�′. Since the hydrogenic energies are independent of
�, the energy difference is

�W = − 1
2α

(a)
d �

(a)
d − 1

2α(a)
q �(a)

q , (3)

where

�
(a)
d ≡

〈
1

r4

〉
n�

−
〈

1

r4

〉
n�′

(4)

TABLE I. Measured transition intervals and intervals referenced to the centers of gravity of the fine-structure doublets in MHz for n =
17–19, f –g, f –h, and f –i. The uncertainties reported correspond to statistical uncertainties added in quadrature with a possible 0.1 V/cm
uncontrolled static electric field and an experimentally determined Zeeman shift.

n f5/2–g7/2 fcg–gcg f5/2–h9/2 fcg–hcg f5/2–i11/2 fcg–icg

17 16528.7(2) 16547.3(2) 19929.5(5) 19947.8(5) 20992.5(10) 21010.6(10)
18 13945.2(2) 13960.9(2) 16815.6(6) 16831.0(6) 17713.2(12) 17728.5(12)
19 11872.3(3) 11885.7(3) 14317.0(8) 14330.2(8) 15082.9(18) 15096.0(18)
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FIG. 5. Core polarizability analysis in the adiabatic approxima-
tion. Solid black circles correspond to measurements reported here,
open blue circles are values from Lee et al. [12], and solid red
squares are from Moore et al. The axis quantities are discussed
in the text and given in atomic units (a3

0 for the vertical axis, and
a−2

0 for the horizontal axis). The heavy solid line is a linear fit to
all the data shown, weighted by the individual error bars. The thin
solid lines show the effect of varying the slope and intercept across
their 1σ -confidence interval. The dashed lines show the confidence
interval obtained using only the Berl and Lee data. The intercept
and slope of the line give, respectively, the dipole and quadrupole
polarizabilities in the adiabatic approximation. Insets show expanded
views near each set of points.

and

�(a)
q ≡

〈
1

r6

〉
n�

−
〈

1

r6

〉
n�′

. (5)

The energy difference �W corresponds to the FS-corrected
transition frequencies reported in Table I.

Figure 5 is a plot of 2�W/�
(a)
d versus �(a)

q /�
(a)
d . The

solid black circles show our values for (�, �′) pairs (4,5) and
(5,6). We also include results from Lee et al. [12] as open
blue circles and from Moore et al. [18] as solid red squares.
Lee measured the energy shifts W of individual states rel-
ative to hydrogen, so for those points the x coordinates are
〈r−6〉n�/〈r−4〉n� and the y coordinates are 2W/〈r−4〉n�. Moore
measured the transition frequencies between different n levels,
so the hydrogenic contributions −R/n2 are subtracted in �W ,
where R is the mass-adjusted Rydberg constant for 85Rb.

To obtain estimates for the adiabatic polarizabilities, we fit
the data points to a line, with the results shown in Table II. The
heavy line in the figure shows the best fits to all the data. The
other lines illustrate the uncertainty range of the fits. The fit
uncertainties are calculated differently than by Lee et al.: Here
we estimate the error in a parameter as the change required to
increase χ2/dof by one when χ2/dof < 1, or to double χ2

when χ2/dof � 1. In Ref. [12], the errors were determined
by increasing χ2/dof by one in all cases. For the Lee data

TABLE II. Calculated values of the dipole and quadrupole po-
larizabilities, using the adiabatic core polarization model. Data sets
are Berl (present work), Lee [12], and Moore [18]. Values in paren-
theses are the estimated uncertainties. The goodness-of-fit parameter
χ 2/dof is calculated as the sum of the squares of the deviations
between the measured data and the fit, divided by the total number
of data points used, minus two.

Data sets α
(a)
d (a3

0 ) α(a)
q (a5

0 ) χ 2/dof

Berl 9.059(18) 19.1(1.4) 0.05
Berl, Lee 9.096(21) 16.3(1.7) 2.9
Berl, Lee, Moore 9.089(6) 16.8(6) 2.7

alone, we now obtain α
(a)
d = 9.12(4) and α(a)

q = 14(4), with

χ2/dof = 4. In comparison, Lee et al. reported α
(a)
d = 9.12(2)

and α(a)
q = 14(3). Note that the low value for χ2/dof for

the present data alone reflects the fact that our uncertainty is
dominated by systematic error from horizontal bias fields.

It is apparent from the table and the graph that the different
data sets are not entirely consistent. In particular, the h–i fre-
quencies measured here yield points that lie below the overall
best-fit line. The other points involve g-state measurements,
except for the Lee results at low �(a)

q /�
(a)
d , which are rela-

tively imprecise. A possible explanation is that the stray fields
in our experiment are larger than estimated, which would tend
to decrease the measured h–i intervals as seen. Alternatively,
the core-penetration effect in the g states may be larger than
expected. This would tend to increase the measured values
for those states, which is also consistent. Our error analysis
accounts for this tension by increasing the fit uncertainty in
the parameters as explained above.

The adiabatic approximation is inadequate here and must
be corrected to incorporate nonadiabatic effects [21,22,29–
31]. The nonadiabatic correction arises because Eq. (2) is an
approximation to the second-order shift from the multipole
expansion of the Coulomb interaction between the Rb+ ion
core and the Rydberg electron. The same method of analyzing
the experimental data can be used if we introduce correction
factors kd,n� and kq,n� into Eq. (1), which then reads [19,32]

W = −1

2
kd,n�αd

〈
1

r4

〉
n�

− 1

2
kq,n�αq

〈
1

r6

〉
n�

. (6)

To develop an estimation for kd and kq, we consider the
contribution of the dipole polarizability to the polarization
shift of a Rb n� state [22,32]. The atomic wave function
is taken to be a direct product of the ion wave function
and a hydrogenic wave function for the Rydberg electron.
Consequently, the total energy is simply the sum of the ion
and Rydberg energies. In a bound Rb n� state, the Rydberg
electron is coupled to the ground 4p6 state of Rb+, which
we denote as a, so the bound Rydberg state is denoted an�.
Similarly, a Rydberg n′�′ electron coupled to an excited state
b of Rb+ is denoted bn′�′. We restrict our attention to ion
states which are dipole coupled to the ground state. In the
Rydberg atom, the an� state is coupled by the dipole term
of the Coulomb expansion to the bn′(� − 1) and bn′(� + 1)
states, as well as the bε′(� − 1) and bε′(� + 1) continua. The
resulting second-order dipole energy shift of the an� state is
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energy and the bound states are plotted as boxes normalized per
unit energy. Values for the h states are shown with dashed lines, but
the f -state matrix elements are generally much larger. The energy
range over which the matrix elements remain appreciable is seen to
be small, but not very small, compared to Wb − Wa. Here we take
Wb = 232 300 cm−1, corresponding to the effective ion excitation
energy WId discussed in the text.

given explicitly by [19,22]

�Wd,n� = 1

3

∑
b,n′

[
�〈a|r1|b〉2〈n�|r−2

2 |n′(� − 1)〉2

(2� + 1)(Wan� − Wbn′(�−1))

+ (� + 1)〈a|r1|b〉2〈n�|r−2
2 |n′(� + 1)〉2

(2� + 1)(Wan� − Wbn′(�+1))

]
, (7)

where the sums are understood to include the continua above
the Rydberg and ion limits. Here r1 represents a core elec-
tron and r2 represents the Rydberg electron. The r−2

2 matrix
elements are computed using Numerov’s method, and their
accuracy is verified using the sum rule [22]

〈n�|r2s|n�〉 =
∑

n′
〈n�|rs|n′�′〉2. (8)

The energy denominators of Eq. (7) can be rewritten as

Wan� − Wbn′�′ = Wa − Wb + Wn� − Wn′�′ . (9)

The adiabatic expression of Eq. (2) is the result of tak-
ing Wn� − Wn′�′ = 0, since it is much smaller than Wb − Wa.
However, the squared 〈n�|r−2

2 |n′�′〉 matrix elements cover a
substantial energy range, as shown by the 18g example in
Fig. 6. Here the matrix elements cover an energy range that
is about 15% of Wb − Wa. The energy range does not depend
strongly on the Rydberg state energy, so we expect the kd

coefficients in Eq. (6) to largely independent of n.

Rather than neglecting Wn� − Wn′�′ entirely, we consider
Taylor expanding Eq. (7) with |Wn� − Wn′�′ |/|Wa − Wb| as a
small parameter. To first order, it is possible to show that the
sum over the ionic core transitions can be replaced by an
effective transition to a single ion state at energy WId above
the ground state, with WId given by

1

WId
=

∑
b

〈a|r1|b〉2

(Wa−Wb)2∑
b

〈a|r1|b〉2

Wa−Wb

, (10)

which is an appropriately weighted average of 1/(Wa − Wb).
Similarly, we can obtain an effective matrix element

〈a|r1|I〉2 =
(∑

b
〈a|r1|b〉2

Wa−Wb

)2

∑
b

〈a|r1|b〉2

(Wa−Wb)2

. (11)

Replacing the sum over the excited states of the ion with
the effective state I allows the ion dipole matrix element to be
removed from the sum, leaving

�Wd,n� = 1

3
〈a|r1|I〉2

∑
n′

[
�〈n�|r−2

2 |n′(� − 1)〉2

(2� + 1)(Wan� − WIn′(�−1))

+ (� + 1)〈n�|r−2
2 |n′(� + 1)〉2

(2� + 1)(Wan� − WIn′(�+1))

]
. (12)

In practice, it is not necessary to evaluate 〈a|r1|I〉2 since
in this approximation, the ion polarizability is itself simply
〈a|r1|I〉2/6WId .

We do need to determine WId , which requires a knowledge
of the distribution of oscillator strength fa from the ion ground
state. Unfortunately, this is not well known. However, the pho-
toionization cross section, proportional to dfa/dW , is known
and similar to the photoionization cross section of the iso-
electronic neutral Kr [33,34]. For Kr, the oscillator strengths
are known for both the bound states and the continuum [35],
and using them we computed WId for Kr. We find a value
6% higher in energy than the first ionization limit of Kr at
112 900 cm−1. We estimate the value for Rb+ to also be 6%
higher than the ionization limit at 220 100 cm−1, resulting in
WId = 232 300 cm−1.

Using 〈a|r1|I〉2/3 = 2αdWId , we can obtain an expression
for kd as

kd,n� = WId

〈n�|r−4
2 |n�〉

∑
n′

[
�〈n�|r−2

2 |n′(� − 1)〉2

(2� + 1)(Wan� − WIn′(�−1))

+ (� + 1)〈n�|r−2
2 |n′(� + 1)〉2

(2� + 1)(Wan� − WIn′(�+1))

]
. (13)

The values of kd computed in this way are given in Table III.
To obtain an estimate of the uncertainty in kd , we note

that WId is roughly bounded by the lowest ionic excited state
energy and the second ionization energy. For instance, a cal-
culation of WId in atomic hydrogen gives a value just above
the 1s–2p transition energy, which reflects the fact that this
transition contains over half of the total oscillator strength. In
contrast, neutral Kr has six times as much oscillator strength
in the first 20 eV above the ionization limit as in the bound
states [35], which explains why WId is comparable to the

062818-6



CORE POLARIZABILITY OF RUBIDIUM USING … PHYSICAL REVIEW A 102, 062818 (2020)

TABLE III. Nonadiabatic correction factors, calculated as in Eq. (13). The lower n values are relevant to the data taken here, and the higher
n values are for the data of Ref. [12].

kd kq

n � = 4 5 6 4 5 6

17–19 0.978(2) 0.990(1) 0.994(1) 0.919(15) 0.966(7) 0.984(3)
27–42 0.977(2) 0.990(1) 0.919(15) 0.966(7)

ionization energy in that case. The first excited state of Rb+

lies at 134 000 cm−1, about 40% below the ionization limit.
This sets the scale for the uncertainty range, but we believe
the isoelectronic analogy to Kr to be reasonably sound, so
we estimate an uncertainty of ±10% for WId . This translates
directly to a 10% uncertainty in (1 − kd,n�) and provides the
uncertainties shown in Table III.

The quadrupole correction factor kq,n� is calculated in
much the same way as kd,n�. In this case, the 〈n�|r−3

2 |n′�′〉
matrix elements are required, and they are similarly evalu-
ated numerically for hydrogenic wave functions. To assign
an effective energy WIq accounting for the ionic quadrupole
transitions, we use an expression analogous to Eq. (10). Lack-
ing better information, we calculate WIq for hydrogen and
obtain 122 465 cm−1, which is 12% over the ionization limit.
The ground state of Rb++ is split by the spin-orbit interac-
tion, so we use the center of gravity of the spin-orbit split
state as the Rb+ limit. Assuming WIq to lie 12% above this
results in WIq = 248 000 cm−1. Using this value of WIq in
the quadrupole analog of Eq. (13), we calculate kq,n�. Since
there is no analog to the Kr oscillator strength distribution for
comparison, we assign a ±20% uncertainty to WIq and thus to
1 − kq,n�. The results are also shown in Table III.

Since we measure energy differences �W , we again use
Eq. (3), but the definitions of �d and �q now include kd,n�

and kq,n�′ and are given by

�d ≡ kd,n�

〈
1

r4

〉
n�

− kd,n�′

〈
1

r4

〉
n�′

(14)

and

�q ≡ kq,n�

〈
1

r6

〉
n�

− kq,n�′

〈
1

r6

〉
n�′

. (15)

As before, we plot 2�W/�d versus �q/�d , for (�, �′) pairs
(4,5) and (5,6), shown as the solid circles in Fig. 7. Open
circles are again data from Lee et al. [12], and closed squares
are from Moore et al. [18], with the Lee data plotted as
2W/(kd〈r−4〉) versus (kq〈r−6〉)/(kd〈r−4〉). The heavy line is
a fit to all the data, while the thin and dashed lines show
the confidence intervals with and without the Moore data,
respectively. The fit results are listed in Table IV, with the first
values in parentheses indicating the estimated uncertainties.

These fits do not account for the uncertainties in kd and kq

themselves. To do so, we redo the analysis as the WI and WIq

parameters are varied independently across their uncertainty
ranges. The resulting changes in polarizabilities are indicated
in Table IV by the second value in parentheses. We take the
total uncertainty as the quadrature sum of the two values,
leading to final results of αd = 9.12(3), αq = 38.1(6) for the
Berl and Lee data only, and αd = 9.116(9), αq = 38.4(6)

when the Moore data are included. The value of αd is only
0.3% different from its adiabatic value, almost in agreement
with the adiabatic expansion model, which predicts no change
[36,37]. However, αq is almost double its adiabatic value, due
primarily to kq.

Our results can be compared to previous theoretical esti-
mates summarized in Table V. We find good agreement with
the most recent results of Ref. [3]. This consistency resolves
the large discrepancy between theory and the adiabatic αq

value reported in Ref. [12].
Although we measure transition frequencies, we can use

the extracted polarizabilities to calculate the absolute energy
of the Rydberg states and thus obtain the quantum defects. For
this, we use Eq. (2) and the adiabatic polarizability values α

(a)
d

and α(a)
q , since that avoids the uncertainty in the non-adiabatic

correction factors. The quantum defects are then found by
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FIG. 7. Core polarizability analysis including nonadiabatic cor-
rections. As in Fig. 5, solid black circles are measurements from the
present work, open blue points are from Lee et al. [12], and solid red
squares are from Moore et al. [18]. The axis quantities now include
the nonadiabatic correction factors kd and kq, as discussed in the text.
Quantities are in atomic units, a3

0 (vertical) and a−2
0 (horizontal). The

heavy solid line is a fit to all the data. The thin solid lines illustrate
the uncertainty in the fit, and the dashed lines show the confidence
range using only the Berl and Lee data. The uncertainties here do not
include the uncertainties of the nonadiabatic correction factors.
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TABLE IV. Calculated values of the dipole and quadrupole polar-
izabilities, incorporating nonadiabatic corrections. Data sets are the
same as in Table II. Here the first value in parentheses is the estimated
error from the linear fit, and the second value is the estimated error
from the nonadiabatic corrections. The bottom row shows our final
estimated values with uncertainties, taken from the fit will all three
data sets.

Data sets αd (a3
0 ) αq (a5

0 ) χ 2/dof

Berl 9.060(19)(10) 42.9(1.6)(6.3) 0.11
Berl, Lee 9.120(29)(7) 38.1(2.6)(5.6) 4.4
Berl, Lee, Moore 9.116(6)(7) 38.4(0.7)(5.6) 3.7
Final values 9.116(9) 38.4(6)

setting

Wn� = R

n2
− R

(n − δn�)2
. (16)

We use the Ritz expansion [39]

δ(n) = δ0 + δ2

(n − δ0)2
. (17)

By expanding both Eqs. (2) and (17) in powers of 1/n and
matching coefficients, we have

δ0,� = 1

R

[
12(2� − 2)!

(2� + 3)!
α

(a)
d + 560(2� − 4)!

(2� + 5)!
α(a)

q

]
(18)

and

δ2,� = − 2δ3
0 − 1

R

{
4�(� + 1)(2� − 2)!

(2� + 3)!
α

(a)
d

+ 480(2� − 4)!

(2� + 5)!

[
�(� + 1) − 5

6

]
α(a)

q

}
. (19)

We use these expressions and the α
(a)
i values calculated with

the Moore data to find the results listed in Table VI. The
g-state values can be compared to δ0 = 0.00400(2), δ2 =
−0.018(15) obtained by Lee [12] and δ0 = 0.003999(2), δ2 =
−0.020(2) obtained by Moore [18]. The source of this dis-
crepancy is likely related to the moderate inconsistencies of
the measurements noted in Table II. We expect these incon-
sistencies to be resolved with further investigations.

IV. CONCLUSIONS

The measurements reported here provide a set of con-
straints on the core polarizabilites of Rb atoms, based on
relatively low n values. Together with high-n results from
Moore et al. [18], the precisions of αd and αq are improved

TABLE V. Theoretical estimates of the core polarizability
paramters.

Ref. αd (a3
0 ) αq (a5

0 )

[3] 9.1 35.4
[38] 9.076 35.41
[23] 10.22
[24] 38.43

TABLE VI. Quantum defect Ritz expansion coefficients of Eq. (17).

� δ0 δ2

g 0.004 007(5) −0.027 42(6)
h 0.001 423(1) −0.014 38(2)
i 0.000 607 4(4) −0.008 550(8)

by a factor of four compared to the previous work of Lee et al.
[12]. In addition, we point out that nonadiabatic effects have
a significant impact on the value of the quadrupole polariz-
ability αq, which brings the experimental results into line with
theory.

We can consider methods to further improve the measure-
ments. Since uncertainty in the nonadiabatic corrections is
significant, it would be helpful to determine them with a more
sophisticated atomic structure calculation, compared to the
empirical approach described here. If such a calculation can
be performed, then reducing the measurement uncertainties
would also be useful. A straightforward improvement would
be to add electrodes to the apparatus to allow control of the
transverse electric field, so that dc Stark shifts can be further
reduced.

Extending the measurements to even higher � would pro-
vide a useful test of the core polarization model and help
identify any penetration shifts in the g states. However, this is
challenging because the signal-to-noise ratio on the n f → n j
transition would be low in our existing apparatus. Further,
the decreasing value of �W makes the relative frequency
uncertainty more significant. A different approach would be
to perform absolute spectroscopy of the n f state so that
the energy shifts relative to hydrogen of the ng, nh, and ni
states could be used independently. We cannot carry out such
spectroscopy with our current apparatus: Although precise
spectroscopy of the nd states is available [40], at low n values
the nd–n f frequency intervals are too large to access with our
microwave technology.

We expect that the improved core polarizability values
determined in this work will be useful for precision measure-
ments such as atomic clocks and tune-out spectroscopy. In
regards to our own interest in tune-out spectroscopy, the core
polarizability was a source of uncertainty in the determination
of the ratio of the 5p3/2 to 5p1/2 dipole matrix elements.
The original analysis in Ref. [10] used αd = 9.08(10) au.
Using the value 9.116(9) determined here, we find that the
ratio is slightly reduced, from 1.99 217(3) to 1.99 215(3). We
hope that further improvements will allow us to reduce the
uncertainty in this value and to better constrain other dipole
matrix elements of Rb as well [10].
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