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Measurement of the Rb g-series quantum defect using two-photon microwave spectroscopy
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We utilize two-photon, high-precision microwave spectroscopy of ng → (n + 2)g transitions to precisely
measure the high-angular-momentum g-series quantum defect of 85Rb. Samples of cold Rydberg atoms in
the ng state are prepared via a three-photon optical excitation combined with controlled electric-field mixing
and probed with 40-μs-long microwave interaction pulses. The leading systematic uncertainty arises from DC
Stark shifts, which is addressed by a cancellation of background electric fields in all three dimensions. From
our measurements and an analysis of systematic uncertainties from DC and AC Stark shifts, van der Waals
interactions, and microwave frequency calibration, we obtain δ0 = 0.003 999 0(21) and δ2 = −0.0202(21). We
discuss our results in context with recent work elsewhere, as well as applications towards precision measurement.
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I. INTRODUCTION

Measurements of atomic transition frequencies are the
cornerstone of precision spectroscopy, used in applications
ranging from atomic clocks [1–3] to measuring gravitational
redshifts [4] and the radius of the proton [5–8]. Often, cold
atoms are used in these measurements. Alkali-metal atoms,
which have a single valence electron similar to hydrogen,
are easier to laser cool than hydrogen due to a lower re-
coil energy and near-infrared cooling-transition wavelengths.
However, in an alkali-metal atom such as rubidium, the in-
teraction between the ionic core of the atom and the valence
electron depresses the energy levels of the valence electron
below the expected hydrogenic levels (the “quantum defect”).
In precision spectroscopy, it is imperative to determine this
quantum defect for each commonly used alkali-metal species.
Moreover, precision measurements of quantum defects can
serve as a check for advanced theoretical calculations and
contribute to a better understanding of the electronic structure
in atoms.

Here, we measure the ng-series quantum defect of Rb
(n is the principal quantum number). For electrons in high-
angular-momentum states, the quantum defect is dominated
by the polarizability of the ionic core, which can be extracted
from quantum defect measurements. In the most recent ex-
perimental measurements of the ng-series quantum defect,
microwave spectroscopy of nd → (n + 1)g transitions [9] and
n f → ng was performed [10]. In our work, we use sub-THz
spectroscopy to measure ng → (n + 2)g transitions in an en-
vironment with three-dimensional electric-field control in the
atom-field interaction region. Our two-photon transition de-

*Present address: SRI International, Princeton, NJ 08540, USA.
†alisherd@umich.edu

pends only on one set of quantum defects and takes advantage
of equal Landé-g factors in the lower and upper states, mak-
ing the measurement insensitive to external magnetic fields.
We measure the ng-series δ0 and δ2 quantum defects (where
δ0 and δ2 are the Ritz expansion coefficients [11]) of 85Rb
with a precision comparable with recent experiments [9,10].
The accuracy of our measurements depends critically on our
analysis of systematic shifts in Sec. III. Our experimental
procedure includes frequent nulling of Stark shifts by com-
pensation of DC stray electric fields in all three dimensions,
which addresses the leading systematic in our and similar
work [10]. Further, we carefully evaluate the conditions un-
der which level shifts due to Rydberg-Rydberg interactions
become negligible, as required for the current study. In our
theoretical work to that end, we compute potential energy
curves of Rydberg-atom pairs that interact via multipolar
interactions [12–15], and we derive scaling laws for the rel-
evant van der Waals shifts. As a final critical component of
our study of systematics, we estimate AC Stark shifts by
calculating the proportionality constant between these shifts
and two-photon Rabi frequencies and experimental estimation
of the latter. Our results on δ0 and δ2 agree with those of
Ref. [9] within the stated uncertainties, but are slightly out-
side of the uncertainty overlap compared with the results of
Ref. [10].

This field of research leads to a better characterization
of hydrogenlike species for future precision measurements.
Specifically, the results may pave the way towards an im-
proved Rb+ polarizability measurement, which is necessary
for precision measurement of the Rydberg constant using
circular Rydberg states of nonhydrogenic atoms, which are
easier to laser cool and to excite than hydrogen [16–18]. A
Rydberg-constant, R∞, measurement can help to solve the
proton radius puzzle, for which an inaccurate value of R∞ has
been named as a possible answer [5–8,19].
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FIG. 1. Outline of the experiment. (a) Electrode, laser, and
microwave-horn configuration in the experimental setup (not to
scale). The two z electrodes present in the experiment are not pic-
tured. (b) Level diagram of the excitation scheme. (c) Experimental
Stark map demonstrating the preparation of the 39g population.
Black indicates high (>40) Rydberg counts per detection cycle. The
preparation consists of optical excitation of a DC-field-perturbed ng
state (red squiggly line) and subsequent ramping of the DC field to
zero (black arrow). (d) Partial timing diagram of the experiment. The
full experimental period is 5 ms and includes MOT loading time,
which is not pictured here.

II. METHODS

The objective of this study is to obtain values for the ng-
series δ0 and δ2 quantum defects in the Rydberg-Ritz formula,

δ(n) = δ0 + δ2

(n − δ0)2
+ · · · , (1)

from spectroscopic measurements of transition interval fre-
quencies, νn1,n2 , between g Rydberg states with principal
quantum numbers n1 and n2,

νn1,n2 = RRbc

(
1

[n1 − δ(n1)]2
− 1

[n2 − δ(n2)]2

)
. (2)

Here, RRb is the Rydberg constant for 85Rb. To improve pre-
cision, several redundant measurements are performed.

The experimental setup is shown in Fig. 1(a), the energy
level diagram in Fig. 1(b), and the timing sequence of the
experiment in Fig. 1(d). Atoms are laser cooled and trapped
by utilizing a two-stage magneto-optical trap (MOT). The
primary MOT stage is a pyramidal MOT [20,21] that delivers
a cold atomic beam to the secondary MOT, which is a con-
ventional six-beam MOT. The final atom temperature in the
secondary MOT is ∼150 μK. The experimental system [22]
is designed such that the separation between six independently

controlled electrodes is 3 cm. The atomic sample is confined
in a �1 mm3 volume, equidistant from all electrodes. Using a
finite-element analysis, we estimate the relative variation of
the electric field in this region, δE/E , to be �5%, which
reflects a sufficient degree of homogeneity of the applied
compensation electric fields.

During each experimental cycle, we prepare atoms in an
initial Rydberg ng state via an on-resonant three-stage optical
excitation under simultaneous application of a perturbative
DC electric field. The weak DC field admixes a small n f
character into the ng state, allowing us to drive the 5d → ng
optical transition [see Fig. 1(b)] in the first order of the optical
field. As it can be seen from the experimental Stark map
shown in Fig. 1(c), we observe significant population in the
initial Rydberg ng state, well isolated from the neighboring
nh state and the hydrogenic manifold. After state preparation,
the perturbative DC electric field is adiabatically lowered
[see Fig. 1(d)] to the predetermined zero-field value, thereby
producing a sample of ng-state atoms. Next, a rectangular
microwave pulse is applied for τ = 40 μs, driving the ng →
(n + 2)g transition. We scan the microwave frequency across
resonance and detect the population in the target state (n + 2)g
via state-selective field ionization (SSFI) [23].

In our microwave system, microwaves are first generated
in a synthesizer (Agilent N5183A). Next, they are frequency
quadrupled in an active frequency multiplier (Norden Mil-
limeter N14-4680). The frequency-quadrupled output power
can be varied over a limited range by adjusting the input
power supplied by the synthesizer. While the input-to-output
power relation is highly nonlinear [24], it nevertheless allows
us to continuously vary the intensity at the location of the
atoms over a range that allows us to observe the progression
of the spectral lines from being indiscernible from the noise
floor to being severely broadened, or until the output power
of the multiplier saturates. The sub-THz intensity sweep is
important in quantifying the AC Stark shifts of the transitions
when evaluating systematic uncertainties.

To reduce systematic shifts, we have specifically chosen to
probe �l = 0 and � j = 0 transitions. Since these transitions
have equal Landé g factors in the lower and upper states, for
�mj = 0 (our case), there is no line broadening due to the
quadrupole field of the MOT or other external magnetic fields.
Any �mj �= 0 transitions are broadened by the MOT mag-
netic field over hundreds of kilohertz and are not recognizable
in our spectra.

We measure the frequencies of the ng → (n + 2)g two-
photon transitions for four choices of n. For each case, we take
six data series. Five of the series are to evaluate systematics,
as outlined in the following sections. The sixth data series is
longer and is collected under conditions with minimized sys-
tematic uncertainty. The transition frequencies are extracted
using two alternate methods that we refer to as Methods A
and B. In Method A, we obtain the four transition frequencies
from the long data series with minimized systematics. Method
A produces a measurement result with low statistical uncer-
tainty in the range of only a few 100 Hz. In Method B, we
obtain the transition frequencies from maps of the transitions
against microwave frequency and power. The data for Method
B are taken from the measurement series that are collected to
evaluate the systematic shifts and uncertainties from the AC
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TABLE I. Summary of shifts added to the measured frequencies and their uncertainties in kilohertz (see text for the details). DCi stands for
the DC Stark shift in the i direction, and AC stands for the AC Stark shift due to the drive microwave field. The clock shifts reflect corrections
and uncertainties from the 10-MHz references used for the microwave synthesizer.

Shift (kHz) 38g → 40g 39g → 41g 40g → 42g 41g → 43g

DCz 0.1 ± 14 0.01 ± 4.7 0.08 ± 4.4 0.02 ± 4.1
DCx 0.01 ± 2.5 0 ± 2.6 0.003 ± 0.77 0.46 ± 0.92
DCy 0 ± 1.6 0.01 ± 1.1 0 ± 1.4 0 ± 1.8
AC 0 ± 0.66 0 ± 0.62 0 ± 0.19 0 ± 0.37
Clock 0 ± 0.011 0 ± 0.010 4.78 ± 0.19 0 ± 0.009

Statistical ± 0.28 ± 0.18 ± 0.22 ± 0.30
Total 0.11 ± 14.3 0.02 ± 5.5 4.86 ± 4.7 0.48 ± 4.6

Stark effect in both methods. It should be noted that Method B
has a higher statistical uncertainty due to fewer measurements
taken. However, this method provides the assurance that there
are no AC shifts or mean-field shifts due to Rydberg-atom
collisions.

III. UNCERTAINTY ANALYSIS

A careful analysis of statistical and, especially, systematic
uncertainties is a critical component of this work. A summary
of frequency corrections of our four measurements is given in
Table I. The uncertainties are given to two significant digits,
so as not to lose information in the calculation of the corrected
transition interval frequencies and their uncertainties (see
Tables II and III) [25].

One can see that systematic uncertainty from residual DC
Stark shifts represents the largest source of uncertainty, which
makes frequent nulling of stray electric fields in all three
dimensions an important part of our work. The next important
systematics is AC Stark shifts, followed by statistical uncer-
tainties. While the calibration offset of one of the employed
10-MHz reference sources is important, the resulting cali-
bration uncertainty for each transition represents the smallest
systematic effect. In the following sections, the procedure of
the uncertainty evaluation is discussed in detail.

A. Statistical uncertainty and microwave-frequency calibration

Averaging the long data series obtained after evaluation
and minimization of systematics, we observe spectral peaks
centered at frequencies νc (Fig. 2). For our microwave in-
teraction time τ , the expected Fourier-sideband zeros at m ×
25 kHz (m is a nonzero integer) coincide with local minima
observed in the spectrum. The sidebands are not well resolved,
indicating some inhomogeneous broadening and decoherence.
The former arises from the presence of both j = 7/2 and

TABLE II. Summary of results for the transition interval frequen-
cies ng → (n + 2)g from Method A.

n Transition interval frequency (GHz) δ∗(n, n + 2)

38 222.199 268(14) 0.003 976 61(82)
39 205.932 535 1(55) 0.003 977 84(36)
40 191.215 930 0(47) 0.003 979 19(34)
41 177.869 073 7(46) 0.003 979 80(36)

j = 9/2 fine-structure transitions with � j = 0 and �mj = 0,
which are separated by about 20 kHz. Here we assume that
we drive a statistical mix of these transitions, centered at the
fine-structure-free transition frequency. Comparatively small
amounts of decoherence and inhomogeneous broadening may
result from spontaneous Rydberg-atom decay, decay driven
by black-body radiation, and residual quasistatic electric-field
noise. Since the transitions are magnetic field insensitive,
magnetic-field noise does not contribute to the broadening.
Microwave noise and variations of the atom-field interaction
time also do not contribute to inhomogeneous broadening or
decoherence.

We perform each peak fit using a Lorentzian function.
In Method A, in which we obtain the transition frequencies
from an average over the long data series, we achieve a sta-
tistical uncertainty of the line centers of a few 100 Hz. The
statistical uncertainties are explicitly listed in Table I. Since
the frequencies νn1,n2 of the transition intervals [as defined in
Eq. (2)] exceed 0.1 THz, the statistical uncertainty amounts
to a relative frequency uncertainty of the atomic transition
frequencies of ∼10−9.

At this level of precision, it is necessary to lock the internal
crystal oscillator of the microwave synthesizer to an atomic
reference. For three of the four cases of ng states we have stud-
ied, we have used a factory-calibrated, external atomic clock
(SRS 725) with a relative uncertainty of ±5 × 10−11. The ab-
solute instrument uncertainty for the measured ng → (n + 2)g
frequency interval is ≈10 Hz. This instrument uncertainty is
well below systematic uncertainties.

For the 40g → 42g frequency-interval measurement, we
used a different atomic clock (DATUM LPRO) because the
SRS 725 was not available. The LPRO clock had an unknown
calibration due to aging. We have determined the LPRO clock
shift by beating the LPRO clock with the calibrated SRS 725
used in the data sets for n = 38, 39, and 41. We determined

TABLE III. Summary of results for the transition interval fre-
quencies ng → (n + 2)g from Method B.

n Transition interval frequency (GHz) δ∗(n, n + 2)

38 222.199 266(14) 0.003 976 52(82)
39 205.932 534 9(55) 0.003 977 83(36)
40 191.215 931 9(47) 0.003 979 33(33)
41 177.869 069 9(46) 0.003 979 50(36)
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FIG. 2. Two-photon microwave spectrum of the 40g → 42g tran-
sition obtained with Method A explained in Sec. II. Black squares
represent the fraction of atoms detected in 42g, detuned from νc

(black line). The statistical uncertainty on νc is less than the width
of the black vertical line. Uncertainty on the corrected interval
frequency (gray region), listed in Table II, reflects systematic uncer-
tainty. Error bars on data points are standard errors of the means.
The red (gray) curve is a Lorentzian fit. In this figure, the systematic
corrections exhibited in Table I have not yet been applied to νc.

that the LPRO runs faster by a relative amount of 2.53 × 10−8,
showing that a correction accounting for the LPRO clock
shift was important. The frequency correction applied to the
40g → 42g measurement that results from the LPRO clock
shift is explicitly exhibited in Table I.

B. DC Stark shifts

As seen in Table I, the DC Stark shift, which scales as
the square of the electric field E is the leading systematic
uncertainty. As the electric-field components Ei (i = x, y, z)
add up in quadrature to a net field E , it is important to control
all three components of the field. Our setup is designed such
that this is possible. In order to minimize the shifts due to
static electric fields, we follow the standard procedure [9,26].
The field zeros are determined by varying a field direction
Ei (i = x, y, z) while holding the other directions fixed until
a minimum shift of the transition frequency ν is observed.
This is determined by measuring ν as a function of the DC
tuning voltage that corresponds to the field direction i and
fitting the result to a parabola. The uncertainty in the parabolic
fit determines the uncertainty in the residual DC Stark shift
contributed by the field direction i. The procedure is iteratively
performed for all directions. The corrections and uncertainties
derived from this procedure are listed in Table I (the listed
uncertainties include the noise of the tuning voltage sources).
The uncertainty corresponding to the DC Stark shift in the z
direction is the dominant systematic. We attribute this to the
fact that the z-direction field is applied via a high-voltage am-
plifier that is needed for SSFI. While the amplifier noise was
mostly eliminated with a filter circuit, it was still noticeable.
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FIG. 3. Dependence of the 40g → 42g transition on Rydberg-
atom density. This analysis is representative of the procedure used
for all four measured transitions. Data points (black circles) show
peak shifts relative to the frequency values given in Table II versus
average Rydberg-atom counts per detection cycle. The peak shifts
are obtained from local parabolic fits around the peaks in the spectra.
The standard errors of the peak shifts are negligible. For comparison,
in the upper-right corner we have added an artificial data point with
an error bar that shows the systematic uncertainty provided in Table I.
Horizontal error bars are the standard deviations of the counts. The
insets display two measured spectra and peak positions (solid vertical
lines) extracted from the parabolic fits.

C. Rydberg-Rydberg interactions

The effect of Rydberg-Rydberg interactions leads to asym-
metric line broadening and mean-field line shifts if the number
of Rydberg counts per sample is chosen too high. Here,
we have identified a maximum number of Rydberg atoms
that may be excited per detection cycle without inducing
collisional shifts affecting the result, thereby optimizing the
signal/noise ratio while avoiding collisional shifts. In Fig. 3,
we show the measured peak position versus average total
detected Rydberg counts per cycle for the 40g → 42g transi-
tion. The peak positions are obtained from parabolic fits over
frequency intervals that cover the peaks in the spectra. Two
of the spectra are shown in the insets of Fig. 3. Although
an increase in detected Rydberg counts generally improves
the signal/noise ratio, Rydberg-Rydberg interactions are seen
to cause a red shift of the detected transition frequency, as
well as asymmetric broadening (compare insets in Fig. 3).
The asymmetric line shape observed at high Rydberg counts
(upper-right inset in Fig. 3) is attributed to details in the van
der Waals interactions between Rydberg atoms, which we
elaborate on in the next paragraph. For each transition, we
observe that below about ten detected Rydberg counts per
sample the peak position and linewidth coincide with their
interaction-free values with an accuracy considerably better
than that of the systematic uncertainty (see error bar on the
right in Fig. 3). We therefore do not include Rydberg-Rydberg
interactions in the analysis of shifts and uncertainties outlined
in Table I.
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The long data series used in Method A of our analysis
are taken in the regime of less than ten counts per sample.
In this regime, the peaks in the spectra are fitted well with
Lorentzian functions (see Fig. 2 for one case), yielding the
atomic transition frequencies without collisional shifts.

For a theoretical assessment of the shifts expected due
to pairwise interactions, we have calculated the adiabatic
molecular potentials of Rydberg-atom pairs using the methods
from Refs. [27–31]. We considered the molecular configura-
tions that both interacting atoms are in ng, both atoms are
in (n + 2)g, and one is in ng and the other is in (n + 2)g,
and for projections of angular momentum onto the inter-
nuclear axis ranging from M = 0 to |M| = 9. All adiabatic
interaction potentials exhibit a van der Waals dependence
∝ R−6, at internuclear distances of R � 3 μm. There are
about twice as many attractive potentials as there are re-
pulsive potentials, and the density of potentials is greatest
near zero. The shifts range between maximal values of
about −h × 7.5 × 10−44(n1 n2)5.5/R6 Hz m6 and h × 5.0 ×
10−44(n1 n2)5.5/R6 Hz m6, with n1 and n2 denoting the prin-
cipal quantum numbers of the involved g states (here, n2 =
n1 + 2). Since the excitation volume is estimated at about
1 mm3 and the detection efficiency at about 30%, at the
highest count numbers in Fig. 3, the average internuclear
separation in a frozen gas would be on the order of 100 μm,
leading to van der Waals shifts in the in the sub-hertz range.
The van-der-Waals forces and accelerations at the average
internuclear separation are too small to cause any substantial
movement of the atoms during the interaction time τ = 40 μs.
On the other hand, during the interaction time τ , thermal
motion is estimated to bring a large fraction of Rydberg atoms
into proximity with another Rydberg atom (distances in the
range of 10 μm). At this distance, atom pairs come within
range of substantial van der Waals forces (which scale as R−7).
The force may be attractive or repulsive, depending on which
adiabatic potential the pair evolves. Because attractive forces
are conducive to closer collisions than repulsive forces, and
because Rb ng atom pairs at a given R experience negative
level and transition shifts generally larger in magnitude than
the positive shifts, it is expected that the interactions should
lead to asymmetric spectra biased towards negative detunings,
as observed in the higher-density spectrum in Fig. 3.

The dynamics may also involve a fraction of spectator
Rydberg atoms in n f states in the sample, which could be-
come populated by black-body-radiation-induced transitions
or minor nonadiabaticity in the excitation sequence shown
in Fig. 1. These would exert electric-dipole forces onto the
g-type atoms. Electric-dipole forces are stronger than van der
Waals forces, and the above-outlined mechanism may become
even more visible.

Spectra in interacting Rydberg-atom systems have been ob-
served and discussed in earlier work, including Refs. [12–15].
These previous studies were performed with low-angular-
momentum Rydberg atoms and have shown pronounced
asymmetric line shapes resembling the upper-right inset in
Fig. 3. While a detailed examination of Rydberg-atom inter-
actions in dense samples of ng Rydberg atoms may be an
interesting topic in future work, the present experiment is
conducted at low densities such that the transitions of interest
are not significantly affected by these interactions.

D. AC Stark shifts

We have timed the excitation sequence such that optical
light is not present during the measurement interval, eliminat-
ing optical AC Stark and ponderomotive shifts [see Fig. 1(d)].
However, the shifts due to the microwave field and their in-
terrelation with Rydberg-atom collisions must be estimated.
Typically, an AC shift correction may be performed by mea-
suring line frequency vs microwave power and extrapolating
the line shift to zero power [9,10]. This is not possible here
due to the nonlinearity of the frequency multiplier, which
has been calibrated by us [24] using an atom-based RF field
measurement method [32,33]. The multiplier output power
approximately scales as the ninth power of the input power
and saturates at about 2 mW output power. In the present
experiment, the useful variation range of the input power is
�1.5 dB, resulting in a range of about �15 dB in output
power, corresponding to a range of about a factor of 30 of
the two-photon Rabi frequency. In view of these character-
istics, we measure the spectra versus signal generator power
injected into the quadrupler for each of the four transitions
studied. For the determination of the transition frequencies,
we then use only injected microwave powers within ranges as
indicated by the vertical lines in Figs. 4(a) and 4(b), panels
(iii) and (iv). Within these injected power ranges, the quadru-
pler output power monotonically increases, and the spectra
have a clearly visible peak, have no significant asymmetry,
and yield transition-frequency results that are stable against
modest variations of the power. In the following, we justify
this procedure.

At low injected microwave power, the signal is barely
visible above the noise floor, making the peak centers hard
to determine. As the power increases, the lines become more
visible. In a few cases, there is a hint of a positive AC shift that
slightly exceeds the statistical uncertainty. This is seen in the
trends of the peak shifts plotted in Figs. 4(a) and 4(b), panel
(iv). A small positive AC shift of the transition frequency is
consistent with our calculations (see below), which show that
both the ng and the (n + 2)g states have negative AC shifts.
These shifts mostly cancel in the transition frequency. Since
the lower state shifts more than the upper state, the transition
frequency exhibits a slight net increase (positive AC shift).

At the highest powers available, we observe an asymmetric
line broadening similar to that caused by Rydberg-Rydberg
interactions (see Fig. 3, upper-right inset). We interpret this
behavior as follows. As discussed in Sec. III C, a fraction
of the atoms may come close to each other in the course
of the atom-field interaction duration τ = 40 μs. At time
instances of close approach, the ng levels are shifted according
to the van der Waals shift equations provided. The transition
frequencies exhibit negative or positive shifts, with a prepon-
derance of negative shifts. At low microwave power, the RF
Rabi frequencies are too small to effectively drive detuned
transitions during close encounters, because the transition-
frequency shifts are rapidly changing during these events.
As the RF Rabi frequency increases, transitions during close
encounters become noticeable, causing negative- and positive-
shifted wings at high power in Fig. 4. In accordance with
the van der Waals interaction potentials, the negative-shifted
wings are more significant. Even if the wings extend to
100 kHz or more, the mean-field shift of the line centers still
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FIG. 4. AC Stark shift analysis for the 38g → 40g (a) and 40g → 42g (b) transitions. (i) Examples of spectra that are included in the
determination of the transition frequency. (ii) Sample spectra that are asymmetrically broadened and are not included. (iii) Spectral signal
on linear gray scales vs transition detuning (vertical) and microwave power supplied into the quadrupler. (iv) Center frequency and spectral
linewidth vs microwave power supplied into the quadrupler. In panels (i) and (ii), the solid lines show Lorentzian fit functions over the spectral
ranges used for the fits, whereas the dashed lines show extrapolations of the fits over the entire widths of the plots. In panels (iii) and (iv), the
vertical solid lines delimit the power range used for analysis of the transition frequencies. In this figure, the systematic corrections exhibited in
Table I have not been applied yet, resulting in a small offset of the center frequencies from zero detuning.

amounts to less than about 10 kHz. This is because the RF
transitions are heavily dominated by time segments during
which Rydberg-atom pairs are at large relative distances from
each other, where there is no collision-induced shift and the
transition frequency is time independent. Due to the low av-
erage density of the Rydberg-atom sample, the shift-free time
intervals cover most of the τ = 40 μs atom-field interaction
time, Hence, the peak shift is much smaller than the overall
width of the lopsided spectra.

To avoid systematic effects from collisions, in our anal-
ysis of the transition interval frequencies we only process
spectra within the vertical cursors in Figs. 4(a) and 4(b),
panels (iii) and (iv), where the RF Rabi frequency is too small
to significantly drive transitions during short-range encoun-
ters between Rydberg atoms. To ensure that any remaining
collision-induced asymmetry, as well as asymmetry in the
broadened Fourier sidebands of the peaks, does not affect
the fit results for the line centers, we restrict the frequency
range used for fitting of the peak centers to a narrow region
around the maximum value of Rydberg counts [solid curves
in Figs. 4(a) and 4(b), panels (i) and (ii)]. The fits are then
extrapolated over the full range [dashed red (gray) curves].

For a theoretical estimate of the AC shift, we have calcu-
lated AC shifts and two-photon Rabi frequencies for mj =
−9/2 to 9/2. Both the AC shifts of the transition frequency
and the Rabi frequencies scale as the square of the RF elec-
tric field, ERF. For the transitions studied in our work, the
AC shifts of the transition frequencies are typically 10% of
the Rabi frequencies. The AC shift scales approximately as
n6.6, and the Rabi frequencies scale as n8. For example, for

|mj | = 0.5 and n = 40 the Rabi frequency in rad/s is 2π ×
3.52 kHz/(V/m)2 × E2

RF, while the AC shift of the transition
frequency, in Hz, is 209 Hz/(V/m)2 × E2

RF. Close to satu-
ration of the transitions, the upper-state population becomes
maximal. Saturation of the upper-state population occurs near
the upper bound of injected microwave power of the spectra
we process. For our atom-field interaction time of τ = 40 μs,
the system approaches upper-state population saturation when
the Rabi frequency becomes on the order of 2π × 10 kHz.
This value corresponds with RF electric fields of about 1.5
V/m and AC shifts of the transition frequency of about
500 Hz, corroborating the finding that the lines do not exhibit
a significant and quantifiable AC shift.

Further verification of the Rabi frequency in our spectra
can be obtained from the power-broadening behavior seen in
Figs. 4(a) and 4(b), panel (iv). The peak linewidths within
the processed ranges of the injected microwave powers are
only slightly larger than the Fourier-limited linewidth, γF =
0.89/τ = 22.3 kHz. Hence, the processed spectra exhibit no
or only mild saturation broadening, allowing an upper-bound
estimate of the microwave Rabi frequency in these spectra of
∼2π × 25 kHz/2, which is ∼2π × 10 kHz. This value agrees
with the estimate in the previous paragraph, also leading to
the conclusion that the lines do not exhibit a significant and
quantifiable AC shift.

In line with the above findings, in Table I we report a
zero AC shift. The reported uncertainties of the AC shifts are
given by the uncertainty in the weighted average of the center
frequencies of the spectra, taken over the selected ranges of
injected microwave power (see Fig. 4).
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IV. RESULTS

A. Method A

In Method A, we derive the transition interval frequen-
cies from Lorentzian fits to the sixth (long) data series (see
Sec. II), one case of which is shown in Fig. 2. The systematic
corrections given in the last row in Table I are then applied
to the measured transition interval frequencies. The results of
Method A are summarized in Table II. The uncertainty values
in Table II are identical to the total uncertainties provided in
Table I.

To obtain values for the ng-series δ0 and δ2 quantum
defects, we follow the procedure of Ref. [34]. First, we ob-
tain an average quantum defect δ∗(n, n + 2) for the pair of
microwave-coupled levels using

νn = RRbc

(
1

(n − δ∗[n, n + 2)]2
− 1

[n + 2 − δ∗(n, n + 2)]2

)
.

(3)

In Table II, we list the values for δ∗(n, n + 2) and their
uncertainties together with the transition frequencies νn,n+2

obtained with Method A.
Next, in Fig. 5(a) we plot δ∗(n, n + 2) versus n̄∗−2, where

the average n̄∗ = n + 1 − δG
0 . Here, δG

0 is a previously deter-
mined value of δ0 [9]. Extrapolating to n̄∗−2 = 0, we obtain
an initial estimate of δ∗

0 = 0.003 999 79. For each of the four
transitions studied, we then substitute δ(n) = δ∗

0 + δ∗
2/(n −

δ∗
0 )2 into Eq. (2) and solve for δ∗

2 . Averaging the four results
yields a preliminary value of δ∗

2 = −0.020 990 1. It is noted
that the initial seed values δ∗

0 and δ∗
2 do not affect the actual

final fit result, shown next.
Using δ∗

0 and δ∗
2 as initial values for the two free parameters

δ0 and δ2 in Eqs. (1) and (2), we perform a nonlinear least-
squares fit to the transition-frequency values listed in Table II,
where n is the independent variable. We use a Levenberg-
Marquardt algorithm with assigning weights of the data points
to 1/σ 2

i (σi being a frequency uncertainty of the ith data
point).

Our results for the ng-series quantum defects based on
Method A are δ0 = 0.003 999 3(21) and δ2 = −0.0204(21).
The uncertainties in these results include the propagation of
the uncertainties listed in Table I. Systematic uncertainty of
DC Stark shifts is the dominant contributor to the uncertainties
of the quantum defects. The residuals in the transition interval
frequencies that result from the fit, along with their uncertain-
ties, are plotted in Fig. 5(b).

B. Method B

In our alternate Method B, we use the transition interval
frequencies determined in the the course of the AC Stark
shift analysis described in Sec. III D to extract the δ0 and
δ2 quantum defects. The transition interval frequencies and
corresponding values of δ∗(n, n + 2) from Method B are dis-
played in Table III. The results according to Method B are
δ0 = 0.003 998 5(26) and δ2 = −0.0197(29). Here, we use
the same DC and clock shifts and uncertainties as listed in
Table I.

(b)

(a)

FIG. 5. Quantum defect determination from the data in Table II.
(a) Determination of the seed values δ∗

0 and δ∗
2 for fitting. Black

circles are data. Error bars are errors propagated from the frequency-
interval results in Table II. The solid line is a weighted linear fit to the
data. (b) Determination of δ0 and δ2 from a nonlinear least-squares
fit using the model in Eq. (2), initialized with δ∗

0 and δ∗
2 . The plot

shows the residuals of the fit relative to the frequency-interval results
in Table II, with error bars propagated from Table II.

C. Summary of results

Foremost, we observe that the results of Method B are not
statistically different from those of Method A, providing a
consistency check of our analyses. By computing a weighted
average of the values obtained using Methods A and B, we
determine

δ0 = 0.003 999 0(21) and

δ2 = −0.0202(21)

as our final results for the g-series quantum defects. Since the
weights scale as the inverse square of the uncertainties, the
final result is dominated by Method A. In the final result we
maintain the uncertainties from Method A, because the lead-
ing uncertainty, the systematic uncertainty due to the DC Stark
effect, is the same in both cases, making the uncertainties of
Methods A and B largely dependent. We also note that more
data were collected in Method A than in Method B.
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V. DISCUSSION

Our results are consistent with a measurement presented in
Ref. [9] in δ0 and δ2, with absolute respective differences of
7 × 10−7 and 2 × 10−3, with our results being at least 1 order
of magnitude more precise. However, our results are slightly
inconsistent with a recent measurement in Berl et al. [10].
Our measurements of δ0 and δ2 differ from theirs by absolute
respective differences of 8 × 10−6 and 7 × 10−3, with our
uncertainty in δ0 being lower by about a factor of 2 and in δ2

being higher by about 2 orders of magnitude than theirs. While
a different atom-field interaction time is utilized (40 μs) in
our present experiment, and our results benefit from frequent
stray-electric-field cancellation in three directions, the afore-
mentioned discrepancies remain to be resolved.

In order to extract dipolar, αd , and quadrupolar, αq, po-
larizabilities of the Rb+ ionic core from measured transition
frequencies, one must adapt the method of Ref. [9] to mea-
surements of shifts of transition energies relative to their
quantum-defect-free values, δW , by writing (in atomic units)

2δW
1

〈1/r4〉D
= αd + αq

〈1/r6〉D

〈1/r4〉D
. (4)

Here 〈1/ri〉D = 〈1/ri〉n,l − 〈1/ri〉n+2,l . As can be seen by
examining the 〈1/ri〉n,l functions in Refs. [35,36], the values
of 〈1/ri〉n,l depend much more on l than on n. The n depen-
dence of δ∗(n, n + 2), evident in Table II, is not sufficient
to allow for a determination of αd and αq because all states
have the same l . The �l = 0 sub-THz method presented in
this paper is, in principle, well-suited for a measurement of
the nh series and higher-l quantum defects. Also, improved

magnetic-field control, as employed in Ref. [26] for mea-
surements of Rydberg-atom hyperfine structure, may allow
spectroscopy of optical-molasses-cooled Rydberg-atom tran-
sitions with different l in the initial and target states.

VI. CONCLUSION

In summary, we have presented a measurement of the
g-series quantum defects using two-photon microwave spec-
troscopy of laser-cooled Rb atoms and compared our results
with those of Refs. [9,10], noting an agreement with the re-
sults of Ref. [9] (with our uncertainties being much smaller)
and a discrepancy with those of Ref. [10] in δ2. While the
probing of �l = 0 transitions eliminates the Zeeman effect
from external magnetic fields, careful control over stray elec-
tric fields in all three directions with in-vacuum electrodes has
been found to be critical in reducing systematic uncertainty.
As evident in Table I, our leading systematic arises from
the noise in the voltage applied to the z-direction electrodes.
Experimental improvement is possible through a redesign of
the SSFI apparatus. Possible extensions of the work based
on this and other improvements have been discussed in
Sec. V.
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