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Reflection of Rydberg antihydrogen by surfaces
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We study Rydberg antihydrogen interaction with a metallic or dielectric surface by calculating the adiabatic
potential curves. For a metallic or pure dielectric surface with permittivity ε = ∞, the image charges create
an attractive potential that pulls the positron away from the antiproton when the atom approaches the surface.
This is no longer the case with low-dielectric-constant materials (ε ≈ 1). Furthermore, using a negative positron
work function, meaning that positrons are repelled by these surfaces, only repulsive potential curves exists. This
suggests that Rydberg antihydrogen can probably be repelled by such ultralow-k materials, opening the way for
simple manipulation and guiding of antimatter (antihydrogen or positronium) systems.
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I. INTRODUCTION

Collision of an antimatter system with a matter surface is
widely believed to lead to annihilation. However, it is well
known that positron can be repelled by some materials be-
cause of an existing negative work function. This suggests the
possibility for antimatter systems containing positrons, such
as antihydrogen or positronium, to be repelled by a surface.
This is an appealing method to manipulate antiatoms such
as antihydrogen (H) that are routinely produced at CERN’s
Antiproton Decelerator in a broad range of Rydberg states [1].
This is very similar to what has been suggested for Rydberg
matter atoms: reflection from a liquid helium surface (that has
a negative work function for electrons) [2,3]. In our paper, we
rephrase the arguments for an antimatter system and calculate
more precisely the potential interaction curves. We stress that
this reflection occurs because of a repulsive potential and
thus has nothing to do with the so-called quantum reflection
phenomenon, also proposed for antihydrogen [4], which is a
quantum and counterintuitive phenomenon where the motion
of slow particles is reverted even in the presence of an attrac-
tive potential.

We first briefly discuss the positron interaction with a
metallic or dielectric surface with permittivity ε to get a
simple intuitive picture and a simplified interaction potential.
Then we diagonalize the electronic (here leptonic, in fact)
Hamiltonian to get the potential interaction curve of an an-
tihydrogen atom at a distance Z of a surface. Finally, based on
simple adiabatic considerations, we suggest that, independent
of its internal state, almost all Rydberg antihydrogen atoms
can be repelled by material with a negative work function
that is acting as a positron repeller—the main condition be-
ing that no attractive charge image potential exists with a
low permittivity ε ≈ 1 material. We finally briefly discuss
the annihilation and magnetic-field effects and then conclude
by discussing interest in antihydrogen or positronium experi-
ments.

II. ELECTRON-POSITRON AND SURFACE

Interaction of positrons with atoms, molecules, and sur-
faces is a very rich topic that has been studied quite
extensively (see, for instance, Refs. [5–7]), especially for its
usefulness for defect studies using positron annihilation [8].
Positron interactions differ from electron ones, at least from
the charge and Pauli’s exclusion principle point of view, lead-
ing to major consequences, for instance, for surface diffraction
experiments, such as in total-reflection high-energy positron
diffraction (TRHEPD), which is the positron counterpart of
reflection high-energy electron diffraction (RHEED). A very
illustrative example of the difference between electron and
positron is given by the work function �±, where + denotes
the positron case and − the electron one. The work function
is the sum of two terms: the bulk chemical potential μ± and
the surface dipole potential: �± = ∓� − μ±. The interesting
fact is that, because of the positron’s opposite charge com-
pared to the electron, the surface dipole potential barrier (�
that typically prevent electrons to escape form the bulk) has
the reverse effect on positrons than on electrons. We thus see
that if � is large enough to overcome the positron chemical
potential, the positron work function �+ can be negative [9].
This occurs if the positron ground state lies higher in energy
than the vacuum level, and so positrons may spontaneously be
(re)emitted from the surface of the bulk material. For this rea-
son, metals such as W or Pt are used as positron moderators.

The fact that positron can be repelled by a surface is the
first key parameter we are going to use. The second key
parameter is the long-range interaction between the material
and the positron (and also obviously the antiproton). In the
well-known electron case, when an electron (−e charge) is
extracted from a metal toward the vacuum at distance z, a +e
image charge (hole) is created in the metal that screens exactly
the electric field generated by the electron at the metal surface
(at z = 0). The electric field E (z) generated by the charge
image (hole) acting on the electron is: E (z) = e

4πε0(2z)2 and
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FIG. 1. Interaction potential seen by the antihydrogen system. (a) Notation of the distance between particles, and their image charges.
(b) Positron interaction potential Vε with the surface. The two extreme cases of a metal or a perfect dielectric (ε = ∞), and of an ultralow-
dielectric-constant (low-k) materials (ε ≈ 1) are illustrated, as well as the two cases of positive and negative work functions. (c) Total potential
V drawn in the same extreme cases from top to bottom: ε = 1(�+ = −0.1, �+ = 0.1), ε = ∞(�+ = −0.1, �+ = 0.1). Values are given in
atomic units.

the associated potential energy is Vimage potential(z) = − e
4πε0(4z) .

The exact same discussion occurs for positrons with the exact
same result for a metal or for a perfect dielectric (that is with
permittivity ε = ∞). In the more general case of a more real-
istic dielectric media, with a dielectric constant ε, the image
charge is not exactly opposite to the real charge but is given
by q = qε = − ε−1

ε+1 e.
It is way beyond the scope of this paper to deal with the

overall complexity of the full positron interaction potential,
especially near a surface (metallic, semiconductor [10], di-
electric, or even heterostructure or with multilayer coating
[11]) that depends on many physical aspects such as the
electronic band (gap) structure, the electron (or positron [12])
affinity, Fermi level and positronium formation potential. Our
goal is to use simple models to identify the key behaviors and
trends. Thus, we will simplify the problem of the positron
interaction potential with a material by using, as discussed
previously, an effective work-function parameter such that
−�+ defines the barrier height between the vacuum and the
surface, as shown in Fig. 1(b). Because the charge image
model is valid only asymptotically, i.e., for a positron-surface
distance zp that is a few Bohrs away from the image plane
[13,14], we smoothed this border to avoid corrugation effects
along the surface, using a β parameter (for all numerical
applications, we use β = 1a0 value).

So, in summary ,our simple positron interaction potential
with the surface will be modeled by

Vε[zp] = qε

4πε0

1

4zp

1 − e−βzp

(1 + e−βzp )2
− �+ 1

1 + eβzp
. (1)

This formula, inspired by the one given in Ref. [15], has no
physical ground, except interpolating simply and smoothly
between the regions far from the surface. The two extreme
cases of a metal or a perfect dielectric, (ε = ∞, qε = −e), and
of ultralow-dielectric-constant (low-k) materials (ε ≈ 1, qε =
0) are illustrated in Figs. 1(b) and 1(c).

III. INTERACTION OF RYDBERG ANTIHYDROGEN
WITH SURFACES

Interaction of Rydberg atoms with surfaces has a long
history (for a review, see Ref. [16]). The interaction can be
divided in long range (where the distance between the Ryd-
bergs is larger than the Rydberg radius) and short range where
surface effects such as work function plays a role. Due to the
charge images [cf. Fig. 1(a)], the problem is very similar to
H2, H+

2 , or even H − H̄ interactions [17–19], especially in
Rydberg states [20,21]. We will treat the problem assuming
first the Born-Oppenheimer approximation, which is with a
fixed position of the heavy particle (antiproton and its image).

A. Hamiltonian and interaction potential

The notations are given in Fig. 1(a) with Z the distance
between the antiproton and the surface, R the vector position
of the antiproton (of mass M), and R + rA the vector position
of the positron (of mass m). r = rA is the distance between
the antiproton and the positron (A), rB the distance between
the antiproton and the charge image of the positron (B),
and zp = rAB/2 the distance between the positron and the
surface.

We neglect relativistic effects such as the nuclear and
electron spins or Casimir Polder-retardation in the electro-
magnetic interaction. So the electrostatic potential is given by
[22]

V = e

4πε0

[ qε

4Z
− e

rA
− qε

rB

]
+ eVε[rAB/2]. (2)

The kinetic energy is given by

Hkin = − h̄2

2M
∇2

R − h̄2

2μ
∇2

rA
+ h̄2

M
∇rA .∇R,

where μ = mM
m+M is the reduced mass of the (anti)hydrogen

system and the third term (so-called mass polarization term)
couples antiproton and positron motions.
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We start with the adiabatic-Born Oppenheimer approxima-
tion that is looking for product wave function �(rA, rB, R) =
�n(R)�e(rA, rB, Z ) of a nuclei (n) part (we keep here this
terminology even if hadronic in fact) and an electronic (e)
(here leptonic) part. The electronic wave function satisfies the
Schrödinger equation:[

− h̄2

2μ
∇2

rA
+ V

]
�e = Ve�e. (3)

Therefore, for a given Z , we solve the Schrödinger equa-
tion, the solution of which defines the electronic potential
Ve(Z ) under which the nuclear part evolves (if neglecting the
mass separation term).

B. Lagrange-mesh method and generalized Gauss Laguerre
quadrature

Following Refs. [23,24], we use the Lagrange-mesh
method [25,26] to find Ve(Z ) from Eq. (3).

A method to find the proper coordinate system is given in
Refs. [27,28] and we use here the scaled parabolic coordinates
u = λ(r + z) = λη > 0, v = λ(r − z) = λξ > 0, and φ [de-
fined from the cylindrical coordinates (z, ρ, φ) cf. Fig. 1(a)].

The system has axial symmetry around the internuclear z
axis. Therefore, we can immediately write the electronic wave
function as �e(ξ, η, φ) ∝ eimφ where m is the projection of
the positron angular momentum on the z axis. Using atomic
units (in fact, slightly modified because μ is not exactly me)
that is, roughly speaking h̄ = μ = e2

4πε0
= 1, Eq. (3) becomes

[T̂ + V − Ve]�e = 0, with

T̂ = −1

2
∇2

rA
= 2λ2

u + v

{
− ∂

∂u

[
u

∂

∂u

]

− ∂

∂v

[
v

∂

∂v

]
+ m2

4

(
1

u
+ 1

v

)}
, (4)

and V , cf. Eq. (2), can be expressed in u, v coordinates, using:

rA = r = u + v

2λ
,

rAB

2
= Z + z = Z + u − v

2λ
,

rB =
√

− (u − v)2

4λ2
+ (u + v)2

4λ2
+

(
Z +

∣∣∣Z + u − v

2λ

∣∣∣)2

.

The absolute value arises because if Z + z < 0 the positron is
inside the bulk.

Because the Stark hydrogen wave function is ex-
pressed in terms of the orthonormal functions ϕn(x) =
[ n!

(n+|m|)! ]
1/2

L|m|
n (x)x|m|/2e−x/2 [29] (for x = ξ/n or x = η/n),

it is intuitive, for our problem of an antihydrogen atom
under the field of the image charges, to use discrete-variable-
representation (DVR) method related to the Lagrange-mesh
method. If the optimal choice for λ can be obtained by min-
imizing as many of the lowest eigenvalues as possible, the
scaled Stark hydrogen wave function already indicates that
typically λ ∼ 2/n, for the study near the principal quantum
number n of interest, is a good choice [26].

We use a Gauss-quadrature approximation at the zeros
xi, for i = 1, . . . , N , of the generalized Laguerre polynomial

of order N (L|m|
N (xi ) = 0). This leads to the grid point ui =

xi and v j = x j and the one-dimensional Lagrange (DVR)
basis functions [23,30,31] fi(u) = w

1/2
i

∑N−1
n=0 ϕn(ui )ϕn(u)—

that is, fi(x) = (−1)ix1/2
i ( (N+|m|)!

N! )
−1/2 L|m|

N (x)
x−xi

x|m|/2e−x/2 with

the weight wi = 1
xi (ϕ′

N (xi ))2 = (N+|m|−1)!exi

N!(N+|m|)x|m|−1
i (L|m|

N−1(xi ))2
such that

fi(u j ) = w
−1/2
i δi j and

∫ ∞
0 fi(u) f j (u)du = δi j . Taking care

of the Jacobian from the coordinate transformation (d2r =
ρdρdz = u+v

4λ3 dudv), the two-dimensional Lagrange basis is
formed from a direct product of one-dimensional bases
fi j (u, v) = [ u+v

4λ3 ]−1/2 fi(u) f j (v). The pseudospectral method,
or DVR (Laguerre mesh) basic approximation, is then the
fact that a normalized function χ (u, v) (

∫
d2r|χ |2 = 1) is ap-

proximated by χ (u, v) ≈ ∑
i j fi j (u, v)χi, j with χα={i, j} being

a unitary vector. Thus, because of the Jacobian coordinate
transformation, the wave function χ (u, v) is represented by
a (normalized) vector whose components are given by χi, j =
[ (ui+v j )wiw j

4λ3 ]
1/2

χ (ui, v j ) where wi is the weight related to the
Gauss-Laguerre quadrature points.

In summary, the overall information is thus dis-
cretized at a few grid points. We use the approxima-
tion of the substitution of the exact integration by the
two-dimensional quadrature formula

∫ ∞
0 du

∫ ∞
0 dvg(u, v) ≈∑N

i=1 wi
∑N

j=1 w jg(ui, v j ). In our case, all potential and
kinetic information is thus discretized. We note Vi j,i′ j′ =
V (ui, v j )δii′δ j j′ and Ti j,i′ j′ = ∫ ∞

0 du
∫ ∞

0 dv fi j (u, v)T̂ fi′ j′ (u, v)
is given by

Ti j,i′ j′ = 2λ2 tii′δ j j′ + t j j′δii′

(ui + v j )1/2(ui′ + v j′ )1/2
,

where

tii = 1

3

(
N − ui

4
+ m2 − 1

2ui
+ |m| + 1

2

)
,

and for i′ �= i,

tii′ = 2(−1)i−i′ (uiui′ )1/2

(ui − ui′ )2
.

This exact evaluation of the kinetic energy term is a very
useful property because the highly singular numerical deriva-
tives are avoided, which is not the case with most of the
other numerical methods based on propagation on a grid.
The DVR also makes possible the inclusion of a realistic
potential since we only need the wave function at the grid
points, thereby avoiding the singularity at the origin. Finally,
the matrix elements Ti j,i′ j′ of the kinetic energy term need to be
evaluated only once for a particular symmetry of the problem,
so changing the potential is straightforward.

To be able to treat the positron escape, we have to deal
with continuum states. So, we will use the complex scaling
rotation methods (r → reiθ ) in which the continuum states
appear now as square integrable and vanish asymptotically.
So, in summary, we have the discrete Hamiltonian [30,31]:

Hi j,i′ j′ = e−2iθ 2λ2 tii′δ j j′ + t j j′δii′

(ui + v j )1/2(ui′ + v j′ )1/2

+V (uie
iθ , v je

iθ )δii′δ j j′ . (5)
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FIG. 2. (a), (b) Positron interaction potential Vε with the surface for an antihydrogen atom at distance Z of a metal or a perfect dielectric
(ε = ∞) material. Z = 20 a0 in (a) and Z varies from 10a0 to 40a0 in (b) where only the pure axial (ρ = 0) potential is shown. The interaction
potentials are given for a positive (left-red box) and negative (green-right box) work function (of ±0.1 atomic units). (c) Potential curve of the
antihydrogen atom in function of Z in these two cases and for angular momentum m = 0, 5 in the energy region of n = 10 − 16.

Equation (5) defines a Hamiltonian matrix of size N2 × N2.
The potential energy matrix is diagonal and eigenvalues from
the diagonalization of the Hamiltonian matrix directly give the
energies. They are plotted in Figs. 2 and 3. More precisely,
because of the complex scaling rotation methods, real and
imaginary parts of the eigenvalues correspond, respectively, to
the energies and half widths (�/2) of the resonance states. We
generally choose the complex scaling angle as a convergence
parameter, such that the eigenvalues do not vary with small
changes in the rotation angle. We find θ ≈ 0.4 convenient for

FIG. 3. Interaction potential (upper part) and adiabatic potential
curves (lower part) of an antihydrogen atom at distance Z from an
ultralow-dielectric-constant (low-k) material (ε ≈ 1) with a negative
positron work function. The cases of angular momentum m = 0, 5
are shown.

our cases (but when no continuum state is present, θ = 0 is
obviously a good choice).

C. Potential curves

Lagrange mesh points xi and diagonalization of Eq. (5) are
straightforwardly calculated using MATHEMATICA software
and we present results for states between n = 10 and n = 16.
This choice is convenient to avoid plotting too many curves
and are already well representative of Rydberg behavior. From
such plots, it is quite easy to extrapolate to higher levels
because of a clear n scaling dependence. For such a region,
N = 50 grid points are enough to get a very decent picture but
we choose N = 70 (and step 1a0 for Z) for the plots. Other
parameters are λ = 0.1, θ = 0.4, φ+ = ±0.1.

D. Metallic or perfect dielectric surface: ε = ∞
We first present in Fig. 2 the interaction of an antihydrogen

atom with a metallic or perfect dielectric surface, that is, with
a surface having ε = ∞. Because of the 1/4Z [in atomic units,
cf. Eq. (2)] interaction potential due to the antiproton with
its image charge, all potential curves are attractive and lead
to unstable states. This arises independently of the value of
the work function because the potential barrier on the sur-
face side of the antiproton becomes lower and thinner, thus
enhancing the ionization. This is clearly visible in Fig. 2(b),
where the potential has a saddle point along the z axis (for
ρ = 0) between the antiproton and the surface. The process
is thus absolutely identical to the one of hydrogen atoms
approaching a metallic surface. This has been studied exten-
sively (see Ref. [16] and references therein) and the results
are indeed the destruction of the Rybderg. We note that the
potential curves show characteristics that are similar to the
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pure Stark states with lower energy redshifted (respectively,
higher energy blueshifted) states with the induced atomic
dipole moment, p, parallel (respectively, antiparallel) to the
image charge field, E , and the associated potential energy,
−p.E , negative (respectively, positive). Therefore blueshifted
stark states would ionized at lower fields, meaning closer
to the surface, than the redshifted states because the dipole
orientation indicates that for blue states the positron location
is mainly in an opposite position of the saddle point and thus,
classically speaking, it is harder for the positron trajectory to
find the way to this saddle point. However, once the saddle
point passed, the motion along ρ is free and the positron is
removed from the antiproton and is likely to be lost. The value
of the work function is only here to determine the future of
this free positron which can either be annihilated, trapped in a
surface state which, together with an electron, might also form
positronium, or be backscattered. Depending on the initial
state, the followed potential curves might be different, but for
us the important net result is the Rydberg destruction when
approaching the surface. We could have thought that a sort of
centrifugal barrier could have prevented this effect but high m
states have a similar behavior as shown in Fig. 2, with similar
behaviors for m = 0 and m = 5 cases.

E. Low-k material ε = 1

In low-k material, the image charge is reduced and even
absent for the limiting case of ε = 1. We can thus expect a
totally different behavior. With no charge image, the Rydberg
atoms moves freely until the positron approaches the surface
layer. Clearly, with a positive work function, the potential of
Fig. 1 indicates that the positron will be caught by the surface
and thus probably will annihilate, leading to the destruction of
the Rydberg atoms. Thus, the only interesting case is the one
with a negative work function, shown in Fig 3.

Because of the negative work function, the positron is
repelled from the surface. This always leads, for the Rybderg
atom, to repulsive potential curves. The states are bound and
so calculus is performed with θ = 0.

F. Simple adiabatic consideration for the reflection on surface.

If the curves are repulsives, we can expect reflection of the
antihydrogen during its motion. However, this relies on adi-
abatic (Born-Oppenheimer) curves. We would like to check
this assumption for antihydrogen as produced in experiments.
In typical antihydrogen experiments at CERN, the Rydberg
n = 20 − 60 are formed at temperatures of ∼40 K or slightly
higher [1] so with velocities in the v⊥ ∼ 1000 m/s range.
When approaching (at orthogonal velocity v⊥) the surface,
the characteristic time of atom-surface interaction ∼a0n2/v⊥
(in the 0.1 ns range), given by the Rydberg size divided
by the velocity, is much longer than the orbital period of
Rydberg electron 2n2h/Eh (in the ps range), where Eh =
4.36 × 10−18J is the atomic units for energy. We might thus
expect adiabatic following of the potential curves. This as-
sumption was used in Refs. [2,3] to study Rydberg hydrogen
approaching a He surface. The authors even further simplify
the problem by assuming a sharp infinite repulsive potential
curve (β = 0,�+ = −∞) to be able to solve analytically the

problem in ellipsoidal coordinates. Limiting cases correspond
first to paraboloidal coordinates, as Z tends to infinity—
so for the initial Stark state |n, n1 = nξ , n2 = nη, m〉 (with
n = nξ + nη + |m| − 1 and nξ , nη positives)—and, second,
to spherical polar coordinates, as Z tends to zero, that is,
when the (anti)proton hits the surface with a Rydberg state
|n′l ′m′〉. The adiabatic link is provided, as in H+

2 [32], by n′ =
nξ + 2nη + |m| + 2, l ′ = 2nη + |m| + 1, m′ = m. The condi-
tion for the reflection of the Rydberg atoms from the surface
is thus simply a kinetic energy insufficient to climb the en-
ergy difference: 1

2 Mv2
⊥ � Eh

2 ( 1
n2 − 1

n′2 ). n < n′ = n + nη + 1
is always verified, so the worst case is n′ = n + 1. In such a
case, the critical velocity is thus 400 m/s for n = 30. This is
similar to antihydrogen velocities produced in experiments.
For colder antihydrogen (<20 K), the initial velocity will
even be smaller and atoms will always be reflected from
the surface. To have a better understanding of the adiabatic
versus nonadiabatic behavior, we would need a more complex
charge transfer dynamics that would be extremely difficult to
carry for n > 20 states [33]. But, this simple adiabatic picture
already gives interesting results. However, care has to be taken
because the potential height is not infinite in our case and
is modified by the value of the work function. Furthermore,
it is well known than nonadiabatic effects play a significant
role in Rydberg-anti Rydberg or Rydberg surface interactions
[16,21,33]. However, our realistic potential curves shows sim-
ilar behaviors than the simple analytical model of Refs. [2,3]
with always repulsive curves and, because we find that all
potential curves are repulsive, we can safely ensure a total
reflection for slow antihydrogen atoms as formed in current
experiments at CERN.

IV. CONCLUSION

We found that, as for hydrogen, Rydberg antihydrogen
interaction with a metallic surface (or surface with high
permittivity) will lead to ionization due to the attractive im-
age charge effect and thus independently of the sign of the
positron work function. The first important result is thus that
positron repulsion does not ensure antihydrogen reflection.
Thus, evidence of a high reflection coefficient (of 0.58 [34])
for very low-energy (20 eV) positrons on tungsten surfaces
does not mean that Rybderg antihydrogen will be reflected
from a W surface even if the work function of W (110) foil is
−3.0 eV and that of W (100) is −2.48 eV.

However, for low-permittivity material, the attraction does
not exist anymore and if, in addition, the surface repels
positrons, we expect classical reflection of the antihydrogen
from the surface. It is beyond the scope of this paper to study
in detail the material properties, but it is obviously crucial
to know that such material exists or are in current develop-
ment (cf. Ref. [35] and reference therein for a comparison of
dielectric constants of various materials). Some of them are
based on positron moderators (that thus repelled positrons);
one of the simplest examples being solid neon, well known
as a positron moderator for producing slow positrons with
ε = 1.24 [36–39]. Because they are used as positron mod-
erators, the annihilation would be practically absent during
(at longest) nanosecond range interaction time between the
Rydberg and the surface [40]. We take the opportunity to
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mention here that solid neon can also be a very good choice
to reflect Rydberg positronium. We did not study the case
of Rydberg positronium here but, because solid neon repels
positrons as well as electrons, it will, quite probably, repel Ry-
dberg positronium, such as many of other materials [41–43].
Other low-k materials are in development either based on
silicon oxide derivatives (SiO2 has k = ε = 4), organic com-
pounds, aerogels, or mesoporous systems with one recent
quite ideal example of amorphous boron nitride films with
ultralow values of ε = 1.16 at 1 MHz frequency and probably
even lower at higher frequency such as the one present in our
Rybderg-surface interaction case (the frequency being in the
GHz region = inverse of the typical interaction time) [35].

We did not treat the case of a magnetic field, often present
in some antihydrogen experiments. It is easy to treat the case
of a magnetic field B along the z axis by simply adding the
linear m B

2 and quadratic B2

8 ρ2 = B2

8
uv
λ2 Zeeman terms in the

potential, where B is the value in atomic units (2.35 × 105 T).
The resulting potential curves are almost indistinguishable
from the ones (cf. Fig. 2) without magnetic field. However,

this case of magnetic field orthogonal to the electrodes is
not the most common one, and more complex (3D grids and
no separation in m values) calculations would be needed to
treat the general case. It can be done but it will probably
not change much the case of low-k materials without image
charge effect. But, in other cases, magnetic field can even help
for antihydrogen reflection in the case of a metallic surface
interaction because of the complex energy-level structure that
can, thanks to avoided crossing, limit a too strong acceleration
produced by the antiproton image charge.

We hope that our study will trigger more detailed the-
oretical and experimental investigations to provide efficient
Rydberg antihydrogen, or positronium, surface reflection that
could be quite useful for transporting or focusing a beam, for
instance, for a gravity measurement [1,44–46].
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