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The molecular anion C2
− is currently of interest as a candidate for laser cooling due to its electronic structure

and favorable branching ratios to the ground electronic and vibrational states. Helium has been proposed as
a buffer gas to cool the molecule’s internal motion. We calculate the cross sections and corresponding rates
for rovibrational inelastic collisions of C2

− with He, and also with Ne and Ar, on three-dimensional ab initio
potential energy surfaces using quantum scattering theory. The rates for vibrational quenching with He and Ne
are very small and are similar to those for small neutral molecules in collision with helium. The quenching rates
for Ar, however, are far larger than those with the other noble gases, suggesting that this may be a more suitable
gas for driving vibrational quenching in traps. The implications of these results for laser cooling of C2

− are
discussed.
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I. INTRODUCTION

Laser cooling of molecules has become a very active
research area [1]. With the direct preparation of ultracold
molecular ensembles in magneto-optical traps [2], numerous
experiments on molecular quantum control, quantum phases
[3], precision spectroscopy [4], or ultracold chemistry [5]
become accessible. For atoms, laser cooling of neutral and
charged species has developed hand in hand. For molecules,
however, no charged molecular species has yet been success-
fully laser cooled. Ions with bound excited electronic states
that lie below the first fragmentation threshold and can be ex-
cited with suitable narrow-band lasers are rare. Furthermore, a
near-optimal Franck-Condon overlap of the vibrational wave
functions is required to make closed optical cycles feasible.

The diatomic carbon molecular anion has been identi-
fied as an interesting exception [6], as it possesses several
bound excited electronic states below the photodetachment
threshold. Furthermore, the electronic states A 2�u and B 2�+

u
(Fig. 1) have high Franck-Condon overlap factors with the
X 2�+

g ground state for the transitions between their lowest
vibrational levels ν ′ = 0 → ν ′′ = 0 [7,8]. Simulations of laser
cooling using the B 2�+

u [6] and A 2�u [9] states have both
shown that C2

− can, in principle, be cooled efficiently to
millikelvin temperatures using Doppler or Sisyphus cooling in
Paul or Penning traps. Photodetachment cooling has also been
shown to allow even lower temperatures to be accessed [10]. If
laser cooling of C2

− anions were to be realized, it would open

*francesco.gianturco@uibk.ac.at

up the possibility of sympathetically cooling other anions [9]
or even antiprotons [10]. This last achievement could allow
the efficient production of antihydrogen atoms, currently be-
ing investigated for tests of fundamental physics such as CPT
invariance [11] and the weak equivalence principle [12].

The diatomic carbon molecular anion C2
− has been a

model system for decades, attracting a great deal of exper-
imental [13–27] and theoretical [8,28–36] work. Its bound
electronically excited states [32] are unusual for an anion,
which is a consequence of the high electron affinity of neu-
tral C2 of around 3.3 eV [17,21] in combination with the
open shell character of the electronic configuration of carbon
dimers. In its ground electronic state X 2�+

g the molecule
has only evenly numbered rotational states due to the nuclear
statistics of the 12C2

− molecule with zero spin nuclei, while
in the excited B 2�+

u state only odd-numbered rotational states
exist.

It has also been suggested that C2
− could be present

in astronomical environments as neutral C2 is abundant in
interstellar space [37], comet tails [38], and is a common com-
ponent of carbon stars [39,40]. The large EA of C2 and strong
electronic absorption bands of C2

− [16] suggest that the anion
could also be detected in space [41], but as yet no conclu-
sive evidence of its presence has been found [42–44]. As the
most abundant isotopologue 12C 2

− is a homonuclear diatomic
molecule, it does not exhibit a pure rovibrational spectrum,
making its detection in emission difficult. Transitions to and
from low-lying excited electronic states could, however, allow
for the anion’s detection or, as will be evaluated and discussed
here, as a possible option, for the detection of the 12C 13C−
isotopologue which would then have a small dipole moment.
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FIG. 1. Potential energy curves for the three lowest-energy elec-
tronic states of C2

− and for the ground state of C2. The vibrational
levels of interest in this study are also shown. The curves were
obtained using the Rydberg-Klein-Rees (RKR) method [51] with the
spectroscopic constants from Ervin and Lineberger [21].

Laser cooling of C2
− would ideally start with ions initially

cooled to around 10 K, for example by helium buffer gas
cooling in a cryogenic ion trap [45,46]. Processes used to gen-
erate C2

− involve applying an electric discharge to a mixture
of C2H2 and CO2 in a carrier gas [25,47] which may form
the anion in excited vibrational states. Aside from cooling
the translational motion, the buffer gas is then also required
to cool internal degrees of freedom via inelastic collisions.
Furthermore, buffer gas may be a useful tool to quench ex-
cited vibrational levels when they get populated during laser
cooling due to the nondiagonal Franck-Condon factors. This
could circumvent the need for additional repumping lasers. In
a similar scheme, rotational buffer gas cooling was performed
during sympathetic translational cooling of MgH+ [48].

In a recent paper we calculated cross sections and rate co-
efficients for C2

−-He rotationally inelastic collisions, treating
the anion as a rigid rotor [49]. The rates for rotational exci-
tation and quenching were found to be in line with those for
similar ionic molecules interacting with helium [46]. Simula-
tions of cooling rotational motion at typical helium pressures
in ion traps showed thermalization to Boltzmann populations
occurred within tenths of seconds. Very recently we have
extended this work and also modeled the rotational cooling
of C2

− with neon and argon [50]. It was found that ther-
malization times of C2

− with He and Ne were fairly similar
but cooling was significantly faster with Ar. This is due to
the increased interaction strength between C2

− and the larger
atoms which increased as expected in the series He < Ne <

Ar.
In this work we present results for the quenching of internal

vibrational motion of C2
− in its ground 2�+

g electronic state in
collisions with the noble-gas atoms helium, neon, and argon.
A simplified view of the relevant vibrational levels involved
in these processes is shown specifically in Fig. 1. We know,
however, that no quantitative rate coefficients for vibrational
relaxation are available to date. As C2

− has no oscillating
dipole, the vibrational levels are long lived with the ground

electronic state’s v = 2 levels persisting for over 5 s [24]
and so collisions are the only viable means of quenching
these states efficiently. The rate coefficients of C2

− vibrational
quenching with helium may also prove useful in future astro-
nomical studies, should the anion be detected in an interstellar
environment where excited vibrational states are important for
observation, as in the circumstellar envelope around carbon-
rich stars where helium atoms are also abundant.

The paper is organized as follows. In the next section we
discuss the potential energy curve (PEC) and vibrational lev-
els of the isolated C2

− in its ground electronic 2�+
g state. We

further calculate the dipole moment of the 12C 13C− isotopo-
logue and discuss its value. In Sec. III we provide details of ab
initio calculations for the three-dimensional (3D) potential en-
ergy surfaces (PES) and fitting of the surfaces to a functional
form. This section also contains details of the vibrationally
averaged matrix elements required for scattering calculations.
Details of the close-coupled scattering calculations are given
in Sec. IV. Cross sections and corresponding rates for rota-
tionally and vibrationally inelastic collisions are presented in
Sec. V. We present conclusions in Sec. VI.

II. C2
−(2�+

g ) POTENTIAL ENERGY CURVE AND 12C 13C−

DIPOLE MOMENT

As recently discussed by Gulania et al. [36], the electronic
structure of the C2 molecule is notoriously difficult to calcu-
late accurately due to many low-lying electronic states giving
rise to a multireference character of the ab initio description
of its ground electronic state. For the C2

− anion considered
here, the situation is not so severe but the presence of a
close-lying A 2�u state (4000 cm−1 above the ground 2�+

g
state, see Fig. 1) still makes electronic structure calculations
challenging.

The PEC of C2
− in its ground 2�+

g state was calculated
from the 3D potential energy surfaces (see next section) with
the noble-gas atom at R = 25 Å. The LEVEL program [52] was
used to obtain the vibrational energies and wave functions for
the C2

− molecule. Ab initio PEC points were used as input,
interpolated using a cubic spline and extrapolated to r values
below and above our range using functions implemented in
LEVEL. The relative energies of the first three vibrational levels
along with the rotational constants for each state are shown in
Table I and compared with previously published calculated
theoretical and experimental values. Table I also compares
the values obtained for the multiconfiguration-self-consistent-
field (MCSCF) method which was used for the C2

−-He PES
and the coupled-cluster singles-doubles perturbative triples
(CCSD-T) method which was used for C2

−-Ne/Ar (see next
section). While we do not achieve spectroscopic accuracy with
our PEC, the relative energy spacings are sufficiently realistic
for computing the vibrational quenching rates of interest here
at a reliable level. The results obtained for CCSD-T are closer
in agreement to experiment than those for the MCSCF method
but the differences will have a minimal impact on the com-
puted inelastic rate coefficients obtained from our scattering
calculations of interest here. The PEC fit using LEVEL to
the CCSD-T calculations and vibrational wave functions for
ν = 1, 2, and 3 are provided in the Supplemental Material
[53].
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TABLE I. Comparison of vibrational energies and rotational con-
stants with previous theoretical and experimental values. Literature
values calculated from Dunham parameters provided. Units of cm−1.

Relative energy Bν

ν0 MCSCF 0 1.7455
CCSD-T 0 1.7356
Calc. [8] 0 1.7358

Expt. [19] 0 1.7384
ν1 MCSCF 1805 1.7419

CCSD-T 1776 1.7222
Calc. [8] 1759 1.7197

Expt. [19] 1757 1.7220
ν2 MCSCF 3633 1.7190

CCSD-T 3561 1.7126
Calc. [8] 3494 1.7035

Expt. [19] 3492 1.7062

As discussed above, the C2 molecule has been detected
in various astronomical settings [37–40] but searches for the
C2

− anion focusing on electronic transitions have so far not
been conclusive [42–44]. Franck-Condon factors and Einstein
A coefficients for these transitions have been calculated by
Shi et al. [8]. Another possible detection method, at least in
principle, is the rotational transitions of the 13C 12C− isotopo-
logue [34]. The rotational constants for this isotoplogue were
accurately calculated by Šedivcová and Špirko [34]. Here we
use our PEC to assess the dipole moment of 13C 12C− and
Einstein A coefficients for rotational transitions.

The dipole moment of a charged homonuclear diatomic
with different isotopes arises due to the difference in the center
of mass and center of charge. An expression for the dipole
moment of HD+ was derived by Bunker [54] and Ellison [55]
as

μ(ν ′, ν) = −[(ma − mb)/2mT ]e〈ν ′|r|ν〉, (1)

where ma and mb are the masses of each nucleus and mT =
ma + mb. Using LEVEL, the matrix element of the vibrational
coordinate r for 13C 12C− for the ν ′ = ν = 0 ground vibra-
tional state was calculated as 1.27 Å, close to the equilibrium
geometry of C2

− of req = 1.2689 Å [8]. Using the masses for
13C 12C− in Eq. (1) gives μ(0, 0) = 0.12 D. This compares
to 0.87 D in HD+ [54]. For pure rotational transitions, the
Einstein coefficient for spontaneous dipole transitions is given
as [46]

Ak→i = 2

3

ω3
k→i

ε0c3h
μ2

0
jk

(2 jk + 1)
, (2)

where ωi→k ≈ 2B0( ji + 1) is the transition’s angular fre-
quency. In Table II the Einstein A coefficients computed using
Eq. (2) for 12C 13C− (treated as pseudosinglet), HD+ and
C2H− are compared for the first few rotational levels. The
Einstein A coefficients for 12C 13C− are orders of magnitude
smaller than for HD+ and C2H− and other molecular ions
[46]. The combination of very small rotational emission co-
efficients coupled with the isotope ratio for 13C/12C of 0.01
suggests that detecting C2

− via the rotational transitions of
the 12C 13C− isotopologue would be very difficult.

TABLE II. Computed Einstein spontaneous emission coeffi-
cients Aj→ j′ for 12C 13C− (B0 = 1.671 52 cm−1 [34], μ = 0.12 D),
HD+ (Be = 22.5 cm−1 [56]), μ = 0.87 D [54], and C2H− (Be =
1.389 cm−1 [57], μ = 3.09 D [58]). All quantities in units of s−1.

Transition 12C 13C− HD+ C2H−

1 → 0 5.6 × 10−8 7.2 × 10−3 2.14 × 10−5

2 → 1 5.4 × 10−7 6.9 × 10−2 2.05 × 10−4

3 → 2 1.9 × 10−6 2.5 × 10−1 7.43 × 10−4

4 → 3 4.8 × 10−6 6.0 × 10−1 1.83 × 10−3

5 → 4 9.6 × 10−6 1.2 × 100 3.65 × 10−3

III. C2
−-He/Ne/Ar 3D POTENTIAL ENERGY SURFACES

AND VIBRATIONALLY AVERAGED MATRIX ELEMENTS

The interaction energies between C2
− in its ground 2�+

g
electronic state with He, Ne, and Ar atoms were calculated
using ab initio methods implemented in the MOLPRO suite of
codes [59,60]. Geometries were defined on a Jacobi grid with
R (the distance from the center of mass of C2

− to the atom)
ranging from 2.6 to 25 Å and θ (the angle between R and
the C2

− internuclear axis r) from 0 to 90◦ in 10◦ intervals.
Five values of the C-C bond length for each system between
r = 1.10–1.35 Å were used including the equilibrium value of
req = 1.269 Å. This is sufficient to cover the vibrational levels
of interest in this study. Interaction potential energies between
C2

− and the noble-gas atoms were determined by subtracting
the asymptotic energies for each bond length.

For C2
−-He, energies were calculated using the 2 × 2

multiconfigurational self-consistent field (MCSCF) method
[61,62] with 10 occupied orbitals and 4 closed orbitals fol-
lowed by a 2-state multireference configuration interaction
(MRCI) [63] calculation. An aug-cc-pVQZ basis [64] was
used on each carbon center and an aug-cc-pV5Z basis on
the helium atom. For the C2

−-Ne and Ar systems, conver-
gence problems were encountered for the MCSCF approach
and so energies were instead calculated using the partially
spin restricted coupled-cluster singles-doubles perturbative
triples (RCCSD-T) method for open shell systems [65,66]
with complete basis-set (CBS) extrapolation using the aug-
cc-pVTZ, aug-cc-pVQZ, and aug-cc-pV5Z basis sets [67,68].
The same method for the case of C2

−-He provided results
within a few wave numbers of the MCSCF approach. The
basis-set-superposition-error (BSSE) was also accounted for
at all calculated points using the counterpoise procedure [69].

The three-dimensional PESs were fit to an analytical form
using the method of Werner, Follmeg, and Alexander [70,71]
where the interaction energy is given as

Vint (R, r, θ ) =
Nr−1∑
n=0

Nθ−1∑
l=0

Pl (cos θ )Aln(R)(r − req)n, (3)

where Nr = 5 and Nθ = 10 are the number of bond lengths r
and angles θ in our ab initio grid, Pl (cos θ ) are the Legendre
polynomials where due to the symmetry around θ = 90◦ only
even values of l are used, and req = 1.2689 Å is the equilib-
rium bond length of C2

−. For each bond length rm and angle
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FIG. 2. Contour plots of C2
−(2�+

g )-He (top left), Ne (top right), and Ar (bottom left) vibrationally averaged matrix elements V0,0(R, θ )
projected onto Cartesian coordinates. Energies in cm−1. Bottom right is expansion of matrix elements in Vλ coefficients for V0,0 for He (solid
lines), Ne (long dashed lines), and Ar (short dashed lines). V0 in red (light gray), V2 in blue (darker gray), and V4 in black.

θk , one-dimensional cuts of the PESs Vint (R, rm, θk ) were fit to

Bkm(R) = exp(−akmR)

[
imax∑
i=0

b(i)
kmRi

]

− 1

2
[1 + tanh(R)]

[
j= jmax∑
j= jmin

c j
kmR− j

]
, (4)

where the first terms account for the short-range part of the
potential and the second part for the long-range terms com-
bined using the 1

2 [1 + tanh(R)] switching function. For each
rm and θk , Eq. (4) was least-squares fit to the ab initio data
(around 40 R points) using imax = 2, jmin = 4, and jmax = 10
for eight variable parameters. The average root-mean-square
error (RMSE) for each fit was 0.5 cm−1 for C2

−-He and
Ne, rising to 1 cm−1 for Ar. From the one-dimensional (1D)
potential fits Bkm(R), the radial coefficients Aln(R) can be de-
termined from the matrix product A(R) = P−1B(R)S−1 where
the matrix elements of P and S are given as Pkl = Pl (cos θk )
and Snm = (rm − req)n, respectively. The analytical represen-
tation of the PES [Eq. (3)] gives a reasonable representation of
the ab initio interaction energies. An RMSE of 1.5 cm−1 for
V < 200 cm−1 and 0.9 cm−1 for V < 0 cm−1 was obtained
for the C2

−-He system while for the C2
−-Ne and Ar systems,

RMSEs of 0.5 and 3.5 cm−1, respectively, for V < 1500 cm−1

were obtained.
The scattering calculations described in the next section

require the interaction potential to be averaged over the vi-
brational states of C2

− as

Vν,ν ′ (R, θ ) = 〈χν (r)|Vint (R, r, θ )|χν ′ (r)〉. (5)

Figure 2 shows the diagonal terms V0,0(R, θ ) for each system.
As expected for a molecule with a strong bond, the contour
plots of the V0,0(R, θ ) for each system are very similar to our
earlier rigid-rotor (RR) PESs which were obtained without
the vibrational averaging (and a different ab initio method
for C2

−-He) [49,50]. The minimum values of V0,0 for each
system occur at perpendicular geometries and are around
−30 cm−1 at 4.5 Å for He, −110 cm−1 at 3.7 Å for Ne,
and −490 cm−1 at 3.7 Å for Ar. Each system’s PES has a
fairly similar appearance with the well depth being the main
difference which increases as expected from He to Ne to Ar
due to the increasing number of electrons on the atoms and
on the much larger dipole polarizabiliy that dominates the
long-range attractive terms with a value of 1.383 a3

0 for He,
2.660 a3

0 for Ne, and 11.070 a3
0 for Ar [72].

The off-diagonal V0,1(R, θ ) terms which directly drive vi-
brationally inelastic ν = 1 to ν = 0 transitions are shown in
Fig. 3. At short distances the coupling terms are repulsive,
becoming negligible quickly at longer distances, as is the case
for many other atom-diatom systems. It can be seen that for
C2

− interacting with He and Ne the V0,1(R, θ ) plots are quite
similar but the interaction with Ar is more repulsive. This sug-
gests collisions with Ar have larger vibrational cross sections
as will be shown below. The V0,2(R, θ ) and V1,2(R, θ ) matrix
elements have a similar appearance to those of V0,1(R, θ ).

The close-coupling scattering calculations discussed in the
next section require the vibrationally averaged matrix ele-
ments in the form of a multipole expansion as

Vν,ν ′ (R, θ ) =
λmax∑
λ

V λ
ν,ν ′ (R)Pλ(cos θ ), (6)
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FIG. 3. Contour plots of C2
−(2�+

g )-He (top left), Ne (top right), and Ar (bottom left) vibrationally averaged matrix elements V0,1(R, θ )
projected onto Cartesian coordinates. Energies in cm−1. Bottom right is expansion of matrix elements in Vλ coefficients for V0,1 for He (solid
lines), Ne (long dashed lines), and Ar (short dashed lines). V0 in red (light gray), V2 in blue (darker gray), and V4 in black.

where again due C2
− being a homonuclear diatomic, only

even λ terms are required. The bottom right panels of Figs. 2
and 3 compare the V λ

0,0/1(R) coefficients for the most impor-
tant λ = 0, 2, and 4 coefficients. As with the contour plots
of Fig. 2, the V λ

0,0(R) expansion coefficients are very similar
to their rigid-rotor counterparts [49,50]. This means that rota-
tionally inelastic collisions using the vibrationally averaged
multipole expansion will have very similar values to those
obtained using a rigid-rotor treatment as will be shown in
Sec. V A. As for other atom-diatom systems, V λ

ν,ν (R) for other
vibrational states ν are very similar to those for V λ

0,0(R) and
thus rotations and vibrations can essentially be considered
separately.

For the off-diagonal expansion coefficients V λ
0,1, all terms

quickly approach zero as R is increased. For all three systems
the V 0

0,1(R) coefficients are steeply repulsive as R decreases.
For the C2

−-He system, however, the V 2
0,1(R) and V 4

0,1(R)
terms are attractive in contrast to Ne and Ar which are also
repulsive. As expected from the contour plots, the V λ

0,1(R)
terms are the most repulsive for the C2

−-Ar interaction.
The PES functions and vibrationally averaged matrix ele-

ments used for each system are provided in the Supplemental
Material [53].

IV. QUANTUM SCATTERING CALCULATIONS

Quantum scattering calculations were carried out using
the coupled channel (CC) method to solve the Schrödinger
equation for scattering of an atom with a diatomic molecule
as implemented in our in-house code ASPIN [73]. The method
has been described in detail before [73,74] and only a brief

summary will be given here, with equations given in atomic
units. For a given total angular momentum J = l + j the scat-
tering wave function is expanded as


JM (R, r,�) = 1

R

∑
ν, j,l

f J
νl j (R)χν, j (r)YJM

jl (R̂, r̂), (7)

where l and j are the orbital and rotational angular momen-
tum, respectively, YJM

jl (R̂, r̂) are coupled-spherical harmonics
for l and j which are eigenfunctions of J . χν, j (r) are the
radial part of the rovibrational eigenfunctions of the molecule.
The values of l and j are constrained, via Clebsch-Gordan
coefficients, such that their resultant summation is compatible
with the total angular momentum J [73,74]. f J

νl j (R) are the
radial expansion functions which need to be determined. Sub-
stituting the expansion into the Schrödinger equation with the
Hamiltonian for atom-diatom scattering [73,74] leads to the
CC equations for each J:(

d2

dR2
+ K2 − V − l2

R2

)
fJ = 0. (8)

Here, each element of K = δi, j2μ(E − εi ) (where εi is the
channel asymptotic energy), μ is the reduced mass of the
system, V = 2μU is the interaction potential matrix between
channels, and l2 is the matrix of orbital angular momentum.
For the rovibrational scattering calculations of interest here,
the matrix elements U are given explicitly as

〈ν jlJ|V |ν ′ j′l ′J〉 =
∫ ∞

0
dr

∫
d r̂

∫
dR̂χν, j (r)YJM

jl (R̂, r̂)∗

× |V (R, r, θ )|χν ′, j′ (r)YJM
j′l ′ (R̂, r̂). (9)
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As the intermolecular potential V (R, r, θ ) is expressed as in
Eq. (6), Eq. (9) can be written as

〈ν jlJ|V |ν ′ j′l ′J〉 =
∞∑

λ=0

V λ
ν,ν ′ (R) f J

λ jl j′l ′ , (10)

where the f J
λ jl j′l ′ terms are the Percival-Seaton coefficients

f J
λ jl j′l ′ =

∫
d r̂

∫
dR̂ YJM

jl (R̂, r̂)∗Pλ(cos θ )YJM
j′l ′ (R̂, r̂), (11)

for which analytical forms are known [73]. Equation (10) also
makes use of the widely known approximation

V λ
ν,ν ′ (R) ≈ V λ

ν jν ′ j′ (R), (12)

for all j such that the effect of rotation on the vibrational
matrix elements is ignored.

The CC equations are propagated outward from the clas-
sically forbidden region to a sufficient distance where the
scattering matrix S can be obtained. The rovibrational state-
changing cross sections are obtained as

σν j→ν j′ = π

(2 j + 1)k2
ν j

∑
J

(2J + 1)

×
∑
l,l ′

∣∣δνl j,ν ′l ′ j′ − SJ
νl j,ν ′l ′ j′′

∣∣2
. (13)

In all scattering calculations the C2
− anion was treated as

pseudosinglet (1�) and the effects of spin-rotation coupling
were ignored. In our previous work on this system it was
shown that a pseudosinglet treatment of the rotational state-
changing collisions resulted in essentially the same results
as the explicit doublet calculation when the relevant cross
sections were summed [49]. This approximation reduces the
computational cost of the scattering calculations without sig-
nificantly affecting the size of the cross sections and thus the
main conclusions.

To converge the CC equations, a rotational basis set was
used which included up to j = 20 rotational functions for each
vibrational state. The CC equations were propagated between
1.7 and 100.0 Å using the log-derivative propagator [75] up
to 60 Å and the variable-phase method at larger distances
[76]. The potential energy was interpolated between calcu-
lated V λ

ν,ν ′ (R) values using a cubic spline. For R < 2.6 Å the
V λ

ν,ν ′ (R) were extrapolated as aλ

R + bλR while for R > 20 Å the
λ = 0 terms were extrapolated as c

R4 + d
R6 . As our ab initio

calculated interaction energies were computed to R = 25 Å
where the interaction energy is negligible for the temperature
of interest here, the extrapolated form has also a negligible
effect on cross sections [49].

A number of parameters of the calculation were checked
for convergence. The number of λ terms from Eq. (6) was
checked for both rotationally and vibrationally inelastic colli-
sions. For the former, calculations were converged to better
than 1% using only three terms (up to λ = 4). For vibra-
tionally inelastic collisions the convergence with increasing λ

is less precise: with five λ terms convergence to tens of percent
is achieved for He and Ne. For Ar convergence to within about
a factor of 2 is achieved. This is due to the very small cross
sections for these processes which makes obtaining precise

and stable values more difficult to achieve. For production
calculations, nine λ terms were included for each Vν,ν ′ (R).

The effect of the PES fitting function was also checked.
For the C2

−-He system a PES fit was carried out using only
three r terms with r = 1.10, 1.2689, and 1.35 Å. This change
resulted in tens of percent changes to the vibrationally inelas-
tic cross sections. The fitting function (3) does not extrapolate
well and this change from a fifth-to third-order polynomial
fit for r has a drastic effect on the variation in potential
energy with r for values below and above the range used for
fitting. Despite this, the vibrationally inelastic cross sections
remained reasonably consistent and thus our r range is suffi-
cient to obtain cross sections which are to the correct order of
magnitude, sufficient to assess rates for vibrational quenching
of C2

− with each of the noble-gas atoms.
As a final check of our calculation parameters, the effect

of the vibrational basis set was also considered. In all calcula-
tions we used the vibrational energies and rotational constants
obtained from calculations using LEVEL and employing our
own C2

− PEC as discussed in Sec. II. It was found that for
ν = 1 and 2, which are the states of interest here (see next
section), it was sufficient to only include these states. Includ-
ing the ν = 3 state had a negligible effect on the ν = 1 and 2
quenching cross sections.

Scattering calculations were carried out for collision en-
ergies between 1 and 1000 cm−1 using steps of 0.1 cm−1

for energies up to 100 cm−1, 0.2 cm−1 for 100–200 cm−1,
1.0 cm−1 for 200–300 cm−1, 2 cm−1 for 300–700 cm−1, and
4 cm−1 for 700–1000 cm−1. This fine energy grid was used to
ensure that important features such as resonances appearing in
the cross sections were accounted for and their contributions
correctly included when the corresponding rates were calcu-
lated. At low collision energies, such resonances will be very
sensitive to the details of the PES (see below). The number
of partial waves was increased with increasing energy up to
J = 100 for the highest energies considered.

V. RESULTS

A. Rotationally inelastic cross sections

Rotationally inelastic cross sections for C2
−-He collisions

can be used to compare our present calculations with those
of our previous work which considered rotationally inelastic
collisions treating the anion as a rigid rotor [49]. Figure 4
shows rotationally inelastic cross sections for selected j → j′
transitions for both excitation and deexcitation processes. The
figure compares using a vibrationally averaged (VA) PES, that
is, only V λ

0,0 coefficients from Eq. (6), to using the ab initio
PES to carry out RR calculations at r = req and our previous
RR calculations which used the CCSD(T) method to compute
interaction energies [49]. The RR calculations do not carry out
the VA procedure of Eq. (5) and instead expansion coefficients
in Eq. (6) are obtained only for r = req.

The differences between the VA and RR cross sections
obtained using the present PES are small, as is expected since
the ν = 0 vibrational wave function is strongly peaked around
r = req. This behavior was also found for H2

+-He collisions
[77] and justifies our previous treatment of the molecule as a
rigid rotor. From Fig. 4 it can also be seen that the rotationally
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FIG. 4. Rotationally inelastic cross sections computed using vi-
brationally averaged method (solid lines), using a RR approach with
the current PES for r = req (long-dashed lines) and those of our
previous RR PES (short-dashed lines) [49].

inelastic collisions using our PES are in quite good agreement
with our previous work as anticipated from the similarity of
the multipolar expansion coefficients in Fig. 2 to our previous
work [49]. The profiles of the cross sections with energy
variation are similar and resonances appear at similar ener-
gies. Cross sections only differ by tens of percent and these
differences will have a negligible effect on the corresponding
rotationally inelastic rates.

Rotationally inelastic collisions can also be used to as-
sess the effect of vibrational state on rotationally inelastic
collision. Figure 5 shows selected rotationally inelastic vibra-
tionally elastic cross sections for C2

−-He for the ν = 0, 1,
and 2 vibrational states. As mentioned in Sec. III, the V λ

ν,ν ′
coefficients for ν = ν ′ are very similar resulting in very simi-
lar rotationally inelastic cross sections for a given vibrational
state. This insensitivity of rotationally inelastic cross sections
to vibrational state has been seen for many other molecules
undergoing collisions with He [71,78–81] and Ar [82,83] and
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FIG. 5. Rotationally inelastic vibrationally elastic cross sections
for C2

−-He collisions computed for ν = 0 (solid lines), ν = 1 (long-
dashed lines), and ν = 2 (short-dashed lines).

is a consequence of the small off-diagonal vibrational matrix
elements of the PES compared to diagonal ones in Eq. (6).

The results shown in this section for C2
−-He collisions

have demonstrated that rotational and vibrational collisions
can essentially be considered separately. We have recently
compared rotationally inelastic thermal quenching cross sec-
tions, rates, and times for C2

− in collisions with He, Ne, and
Ar and we refer the reader to this work for further details of
this process [50].

The 2D RR PES functions and Legendre expansions for
each system are provided in the Supplemental Material [53].

B. Vibrationally inelastic cross sections

As discussed in the Introduction, vibrationally inelastic
collisions of C2

− with helium buffer gas have been suggested
to cool the molecules to their ν = 0 vibrational ground state.
As shown in Fig. 1, the ground vibrational state of the A 2�u

electronic state is lower in energy than the ν = 3 state of
the X 2�+

g ground electronic state. It therefore follows that
the vibrational states above ν = 2 in X 2�+

g can decay to the
A 2�u state by dipole allowed transitions which in turn decay
into the ν = 2 and below vibrational states of X 2�+

g [24]. As
a consequence, we only consider here collisional quenching
of the long-lived ν = 1 and 2 vibrational states of C2

− in its
ground X 2�+

g electronic state.
From Fig. 1 it can also be seen that the ν = 2 vibrational

level of the X 2�+
g state is close in energy to the ν ′ = 0 state

of the excited electronic A 2�u state with an energy difference
relative to the bottom of the X 2�+

g PEC of ≈(4837–4380) =
457 cm−1 [8]. This close energy spacing could cause the
ν ′ = 0 state to perturb the ν = 2 state through nonadiabatic
effects during collisions. This was also a concern for the
neutral C2-He system where for the isolated molecule the en-
ergy difference between the ground X 2�+

g and excited a 3�u

state is only around 700 cm−1 [36]. For C2-He rigid-rotor
rotationally inelastic scattering, Naja et al. [84] found that at
the C2 X 2�+

g equilibrium geometry, the energy separation
between the X 2�+

g and a 3�u states is 2000 cm−1 which
remained at this value even with the approach of the He atom.
In this case, electronic state coupling could be ignored. When
vibrations are involved, the situation is more complicated as
states can be coupled via the r vibrational coordinate. This is
the case for the H+-CO and H+-CN systems which have been
studied by Kumar et al. [85–87]. For these systems the naked
positive charge of the proton has a strong perturbing effect
and can couple the molecule’s electronic states. The strength
of the coupling can be calculated as {ψα

i | ∂n

∂Qn |ψα
j } where ψα

i/ j

are the electronic wave functions and the operator is the first
(n = 1) or second (n = 2) derivative with respect to the nu-
clear coordinate Q (=r for diatomics) [85–87]. The coupling
matrix was used to carry out H+-CO scattering calculations by
constructing diabatic PESs for two electronic states allowing
a computation of elastic, vibrationally inelastic, and charge
transfer probabilities [88]. The present systems involve the
rather weak interaction of an anion with closed-shell noble
gases so that the gradient couplings between the relevant
electronic states should be smaller than in the case of the
naked proton as a partner as in the case of the work of
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FIG. 6. Comparison of vibrationally inelastic rotationally elastic cross sections for ν = 1 → ν = 0 (left panel), ν = 2 → ν = 1 (center
panel), and ν = 2 → ν = 0 (right panel) transitions for collisions of C2

− with He, Ne, and Ar atoms.

Kumar et al. Kendrick also recently studied HD + H reactive
scattering for excited vibrational states (those energetically
above and below a conical intersection on the PES) using
two coupled diabatic PESs and found significant differences
to the adiabatic approach [89]. Kendrick has also given a
detailed approach for nonadiabatic reactive scattering [90]. To
apply these approaches to the C2

−-He/Ne/Ar systems would
involve using an ab initio method such as complete-active-
space self-consistent-field (CASSCF) or MRCI to obtain the
ground and electronically excited PESs and assessing them as
a function of R, r, and θ coordinates. The coupling matrices
could be calculated as described above and diabatic states
constructed. This is somewhat beyond the scope of this work
but whether nonadiabatic effects would alter quenching rates
is an interesting question and would depend on the magnitude
of the coupling compared to inaccuracies in the adiabatic PES.

Figure 6 compares vibrationally inelastic rotationally elas-
tic (for j = j′ = 0) cross sections for the deexcitation ν =
1 → ν = 0, ν = 2 → ν = 1, and ν = 2 → ν = 0 transitions
for C2

− colliding with He, Ne, and Ar atoms. At low collision
energies between 0.1 to around 60 cm−1 the cross sections for
He and Ne are very small, orders of magnitude less than rota-
tionally inelastic cross sections. The ν = 2 → ν = 0 process
is an order of magnitude smaller than the �ν = −1 transitions
as is common for cross sections for larger energy differences
between states. The cross sections show resonances at lower
collision energies. These are likely due to shape or Feshbach
resonances. As is well established, the location and widths
of resonances in the scattering cross sections at low collision
energies are very sensitive to the details of the PES [91,92]
and there is currently an effort to obtain reliable informa-
tion about scattering observables, particularly for ultracold
regimes, such as the statistical method of Morita et al. [93].
As we are primarily interested in assessing the rates for vibra-
tional quenching for temperatures of 5–100 K, the fine details
of the low-energy resonances are less important since the
Boltzmann average over the cross sections in this temperature
range is likely to be far less sensitive to the details of the PES.

For He and Ne, in all three processes the cross sections
begin to increase in magnitude above 100 cm−1. This is a
well-known trend for vibrationally inelastic collisions [71,79–
81]. This trend is a consequence of the PES in Fig. 2 and

the vibrational matrix elements in Fig. 3: the off-diagonal
matrix elements which couple different vibrational states are
only significant at small-R values where the PES is repulsive.
The incoming atom thus requires a higher kinetic energy to
allow the scattering wave function to become significant in
this region and therefore facilitate vibrational transitions. The
C2

−-Ar cross sections are more constant in value at the higher
energies, however, a feature which is likely to be due to the
more attractive potential exhibited by this system, which then
allows the scattering wave function to build up more signifi-
cantly in the repulsive region, thereby allowing the occurrence
of larger inelastic vibrational cross sections.

Comparing the cross sections for collisions of C2
− with

He, Ne, and Ar, some general trends are apparent. The cross
sections for Ar are orders of magnitude larger than those of
He and Ne which are broadly similar in size. This can be
rationalized by comparing the interactions shown in Figs. 2
and 3. The well depth of the V0,0(R, θ ) elements for the C2

−-
Ar is far larger than for He and Ne. This stronger interaction
allows the incoming scattering wave function to build up more
in the repulsive region where the off-diagonal V0,1(R, θ ) are
significant, as opposed to He and Ne, for which the cou-
pling potentials are much smaller. These matrix elements are
therefore larger for Ar, thus giving rise to larger vibrationally
inelastic cross sections in comparison with those from the
lighter noble gases.

C. Vibrationally inelastic rates

The computed inelastic cross sections of the previous sec-
tion can be used to obtain the corresponding thermal rate
constants kν→ν ′ (T ), which can be evaluated as the convolution
of the computed inelastic cross sections over a Boltzmann
distribution of the relative collision energies of the interacting
partners as

kν→ν ′ (T ) =
(

8

πμk3
BT 3

)1/2 ∫ ∞

0
Ecσν→ν ′ (Ec)e−Ec/kBT dEc,

(14)
where Ec = μv2/2 is the kinetic energy.

As discussed in the Introduction, studies on laser cooling
of C2

− have assumed the anion to be initially cooled to tens of
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FIG. 7. Comparison of vibrational rate constants kν j→ν′ j′ (T ) for ν = 1 → ν = 0 (left panel), ν = 2 → ν = 1 (center panel), and ν = 2 →
ν = 0 (right panel) transitions for collisions of C2

− with He, Ne, and Ar atoms.

kelvin [6] and thus the rate constants were computed between
5 and 100 K in 1-K intervals. Figure 7 shows the rates for
vibrationally inelastic rotationally elastic ( j = j′ = 0) transi-
tions corresponding to the cross sections in Fig. 6. The rates
for the vibrational deexcitation processes for He and Ne are
quite similar, particularly for the ν = 1 → ν = 0 transition.
They increase with increasing temperature as expected from
the discussion in Sec. V B but even at 100 K, are at least
four orders of magnitude smaller than the rotational deex-
citation rates [50]. For Ar, the rates are more constant and
are consistently two or three orders of magnitude larger than
those for He or Ne. The vibrational quenching rates show
some variation with the largest ν = 2 → ν = 1 rate about
an order of magnitude larger than the ν = 1 → ν = 0 and
ν = 2 → ν = 0 rates which themselves are quite similar at
the higher temperatures considered.

The trends in rates on going from He to Ne to Ar in colli-
sions with C2

− are similar to what was found for rotationally
inelastic collisions [50] where the stronger interaction with
the Ar atom resulted in larger rates and faster themalization
times compared to He or Ne. The larger quenching rates for
Ar compared with He and Ne were not easy to predict a priori.
Kato, Bierbaum, and Leone measured quenching rates of N2

+
in collisions with He, Ne, Ar, Xe, and Kr at 300 K and found
quenching rates increased with the size of atom [94]. This
suggests that the polarizability of the colliding atom plays an
important role. Ferguson found a similar trend for vibrational
quenching of O2

+ with He, Ne, and Ar atoms at 300 K [95].
In contrast, Saidani et al. calculated quenching rates for CN
with He and Ar over a wide range of temperatures and found
that cross sections and rates for Ar were orders of magnitude
lower than those for He [96]. However, ionic interactions are
driven by different forces than those acting between neutrals,
so it is not obvious how such a result relates to the present
findings for an anion.

It is well known that, generally, vibrational quenching of
molecules due to collisions is inefficient. Measurements of
low-temperature rate constants for quenching of the ν = 1
level include NH undergoing collisions with He where the

rates are of the order of 4 × 10−15 cm3 s−1 [101]. There are,
however, systems for which collisions are efficient at quench-
ing vibrational motion. The low-frequency stretching mode
(100) in SrOH has been shown to be efficiently deexcited in
collisions with He [102]. There is also the dramatic case of
the BaCl+ + Ca system where laser-cooled Ca atoms have
been shown to efficiently quench vibrational motion with rates
similar to rotational transitions [100,103].

The rates and cross sections calculated here for C2
−-

He/Ne/Ar vibrationally inelastic transitions can be compared
to other systems. Table III compares cross sections and rate
constants (where available) calculated for various systems for
ν = 1 → ν = 0 transitions. As a simple comparison metric,
Table III also compares the minimum of the interaction po-
tential for each system Vmin. From the table it can be seen
that cationic molecules have orders of magnitude larger vi-
brationally inelastic cross sections and rates compared with
neutral systems. The strength of interaction between the
molecule and colliding atom, parametrized here by Vmin, plays
a role in the efficiency vibrational quenching as it will al-
low the scattering wave function to build up for geometries
where the coupling matrix is large [Eq. (5)]. This has also
been rationalized in terms of a statistical model [100] where
the well depth and diatomic vibrational frequency contribute
to the density of states of the complex which increases the
lifetime of the complex and allows efficient quenching. Other
factors play a role such as the mass of the colliding partners
(compare the very low rates for CN-Ar collisions compared to
CN-He despite the former having a lower well depth) and the
long-range attraction [95]. Nevertheless, Table III shows that,
in general, cations will have far larger vibrational quenching
rates than neutral molecules. The low rates for C2

−-He vibra-
tional quenching are similar to those of neutrals as expected
based on the relatively weak interaction. To be noted is the
behavior of the vibrationally inelastic rates when Ar is taken
as the partner gas: the size of the rates brings their values in
the range of those for cations interacting with He, indicating
quantitatively the special behavior of this noble gas as a part-
ner for C2

− anions in cold traps.
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TABLE III. Comparison of vibrationally inelastic cross sections and rates for different systems. Well depth Vmin in cm−1, cross sections
σν=1→ν′=0 in Å2 for scattering energy of 10 cm−1. Temperatures in kelvin and rate constants kν=1→ν′=0(T ) in cm3 s−1. The “asterisk” indicates
the value was estimated from graph.

System Vmin σν=1→ν′=0 Temperature kν=1→ν′=0(T ) Reference

Cations
H2

+ + He −2700 10∗ [77]
NO+ + He −195 1∗ 100 7 × 10−14∗ [97]
Mg+ + He < −100 80∗ [98]
CH+ + He −514 10∗ [99]
BaCl+ + Ca −7442 0.1 1 × 10−9∗ [100]
Neutrals
SiO + He −27 200 5 × 10−18∗ [71]
CO + He −24 1 × 10−8∗ 300 1 × 10−17 [78]
SO + He −35 5 × 10−5∗ 300 4 × 10−17∗ [79]
CS + He −22 300 1 × 10−17∗ [80]
SiS + He −20 300 4 × 10−17∗ [81]
HF + Ar −159 1 × 10−6∗ 100 7 × 10−17 [83]
CN + He −20 1 × 10−10∗ 100 1 × 10−20∗ [96]
CN + Ar −130 1 × 10−20∗ 100 1 × 10−28∗ [96]
Anions
C2

− + He −30 1.4 × 10−6 100 5.4 × 10−17 This work
C2

− + Ne −110 3.8 × 10−6 100 4.9 × 10−17 This work
C2

− + Ar −490 7.2 × 10−2 100 3.7 × 10−14 This work

VI. CONCLUSIONS

The cross sections and corresponding thermal rates for
rovibrationally inelastic collisions of C2

− with He, Ne, and
Ar have been calculated using a set of ab initio PESs. The
rotationally inelastic vibrationally elastic cross sections were
found to be insensitive to vibrational state, justifying the
treatment of the C2

− molecule as a rigid rotor [49,50]. The
cross sections and rates for vibrational quenching from the
ν = 1 and 2 states for He and Ne were found to be orders of
magnitude lower than those obtained for purely rotationally
inelastic collisions. The values of the vibrational quenching
rates are found for this anion to be similar in size to those
known for other small neutral molecules in collision with
helium atoms. For the Ar partner, the vibrationally inelastic
rates we have obtained here were around three or four orders
of magnitude larger.

These computed rate coefficients for vibrational quenching
can be used to model the behavior of C2

− in ion traps with
He, Ne, or Ar as buffer gas. It turns out, in fact, that they
have significant implications for laser cooling of C2

−: the

inefficiency of vibrational quenching found for He and Ne
in our calculations shows how important the knowledge of
vibrational repumping rate coefficients is for modeling the
cyclic scattering of many photons off C2

−. To quench the
states which are being populated within that cycle by using
buffer gas collisions, as discussed in this study, will require
higher pressures in order to efficiently increase the collision
frequency in the trap. Our results suggest, therefore, that argon
would be a more suitable buffer gas to efficiently quench the
vibrational motion of C2

− as lower pressures will be required
for it as a buffer gas in comparison to using either helium or
neon.
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