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Potential-energy curve for the a 3�+
u state of a lithium dimer with Slater-type orbitals
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We report state-of-the-art ab initio calculations of the potential energy curve for the a 3�+
u state of the

lithium dimer, conducted to achieve spectroscopic accuracy (<1 cm−1) without any prior adjustment to fit the
corresponding experimental data. The nonrelativistic clamped-nuclei component of the interaction energy is
calculated with a composite method involving a six-electron coupled cluster and full configuration interaction
theories combined with basis sets of Slater-type orbitals ranging in quality from double to sextuple zeta. We
additionally include both the leading-order relativistic and adiabatic corrections, and find both of these effects
to be non-negligible within the present accuracy standards. The potential energy curve developed by us allowed
us to calculate molecular parameters (De, D0, ωe, etc.) for this system, as well as the corresponding vibrational
energy levels, with an error of only about 0.2–0.4 cm−1. We also report an ab initio value for the scattering length
of two 2S lithium atoms.
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I. INTRODUCTION

The lithium dimer is one of the simplest (bound) homonu-
clear many-electron molecules. Therefore, it has attracted
significant attention in recent years, with many experimental
[1–33] and theoretical [34–40] works devoted entirely to its
observation and description. However, singlet electronic states
of Li2 were the main subjects of the studies; Refs. [41–49]
provide a good overview on this topic.

In contrast, the triplet electronic states of the lithium dimer
were observed for the first time only relatively recently. Exper-
imental studies of the triplet states of Li2 are difficult because
transitions from the ground X 1�+

g state are dipole forbidden.
Moreover, the spin-orbit coupling in lithium is very weak.
This impasse has been broken by improvements in experimen-
tal techniques such as perturbation-facilitated optical-optical
double resonance (PFOODR) [9,10,19,20]. Xie and Field
[9,10] were the first to access the triplet state a 3�+

u and
determine the relevant spectroscopic constants. They started
with the (bound) ground state X 1�+

g and excited into the
mixed A 1�+

u - b 3�u manifold. A subsequent fluorescence led
to the final a 3�+

u state. Later, Martin et al. [23,43], Linton
et al. [12,13], and others [17] determined accurate vibrational
and rotational constants for this state by using high-resolution
Fourier transform spectroscopy. These data were further re-
vised by Zemke and Stwalley [50] reporting more bound
vibrational levels than initially claimed. Abraham et al. [51]
performed photoassociation of ultracold lithium atoms, al-
lowing one to determine precise positions of the highest
vibrational levels. Finally, Linton et al. [24] determined spec-
troscopic constants for the a 3�+

u state to an accuracy of only
a small fraction of cm−1. This progress was accompanied
by a number of works where semiempirical potentials were
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developed to reproduce the experimental spectra (see, for ex-
ample, Refs. [52–55] and references therein).

Observation of the Bose-Einstein condensate of lithium
atoms [51,56,57] sparked a renewed interest in the a 3�+

u
electronic state, also in analogous diatomic molecules com-
posed of heavier alkali metals [58]. The reason is the relation
between the stability of the Bose-Einstein condensate of spin-
polarized atoms and the scattering length (a) of these atoms.
This quantity can be calculated from first principles having
an accurate potential energy curve (PEC) for the a 3�+

u state.
Unfortunately, the scattering length is very sensitive to tiny
details of the PEC, especially in the asymptotic region. This
can be illustrated by an approximate formula [59], a2 ≈ h̄2

m|Eb| ,
relating the scattering length a to the binding energy of the
highest occupied vibrational level, Eb (m is the atomic mass).
One can see that even a relatively small change in the well
depth of the PEC can shift the value of Eb significantly and
thus impact the calculated scattering length dramatically. This
makes accurate ab initio determination of a very challenging,
and it has been achieved thus far only for the smallest systems.
Quite recently, the lithium atom and dimer have been also
the subject of research in the context of quantum information
theory [60–63].

The triplet a 3�+
u state of the lithium dimer is weakly

bound with a PEC well depth of about 334 cm−1 and a
minimum around 4.2 Å [54]. Despite that, it accommodates
as many as ten vibrational levels. To get a broader picture, let
us present a short survey of theoretical results available in the
literature for this state.

The first works devoted to various electronic states of Li2

employed effective core potentials (with one valence elec-
tron) and optional core polarization corrections. The papers
of Konowalow and co-workers [64–68], Müller and Mayer
[69], Schmidt-Mink et al. [70], and several others [71],
are prime examples of this approach. The biggest advan-
tage of the core potentials is that the remaining effective
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two-electron system can be treated with relative ease. As
a result, many excited states of different spatial and spin
symmetries can be studied simultaneously, as best illustrated
by recent papers of Jasik et al. [72–74]. Unfortunately, the
accuracy of this effective approach is somewhat limited,
with errors reaching several percent for some quantities. To
reduce this error a more elaborate first-principles method
must be used. This has recently been achieved by Musial
and Kucharski [75] by using a sophisticated all-electron
coupled cluster approach. The error has been reduced by
an order of magnitude compared with the previous works;
at the same time, more than thirty electronic states were
characterized.

In this paper we present a state-of-the-art ab initio PEC
for the a 3�+

u state of the lithium dimer. We combine high-
level quantum chemical methods with large one-electron basis
sets composed of Slater-type orbitals (STOs) [76,77] to reach
saturation of the calculated values. We employ techniques
for calculation of the two-center matrix elements over STOs
reported recently [78–82]. Moreover, we evaluate corrections
arising from several minor physical effects, e.g., adiabatic or
relativistic. We also calculate various spectroscopic param-
eters, such as dissociation energy, vibrational energy levels,
etc., and compare them with the latest experimental data. We
would like to emphasize that all calculations reported here
utilize only rigorous ab initio methods. In other words, the
results were obtained with no prior reference to the empirical
data.

Atomic units are used throughout the paper unless ex-
plicitly stated otherwise. We adopt the following conversion
factors and fundamental constants: 1a0 = 0.529 177 Å (Bohr
radius), 1 u = 1822.888 (unified atomic mass unit), 1 H =
219 474.63 cm−1 (Hartree), α = 1/137.035 999 (the fine
structure constant). These values are in line with the recent
recommendations by the Committee on Data for Science and
Technology (CODATA) [83]. We also adopt a convention that
the interaction energy is positive whenever the underlying
interaction is attractive.

II. ELECTRONIC STRUCTURE CALCULATIONS

A. Basis sets

In accurate ab initio calculations employing basis sets of
any kind it is of uttermost importance to generate a systematic
sequence of basis sets guaranteeing that the results converge
to the exact answer. This allows for reliable extrapolation
towards the complete basis set (CBS) limit and (partly) over-
comes the slow convergence of the correlation energy with
the basis set size. Unfortunately, we are not aware of any
openly available Slater-type basis sets which would satisfy
the present accuracy requirements. There are many papers de-
voted to optimization of the STOs’ basis sets in the literature
[84–89]. However, they are either very old and concentrated
mainly on atomic properties or aimed at the density functional
theory calculations where the basis set requirements are differ-
ent. As a result, the first step of this work is optimization of
Slater-type basis sets fulfilling the high accuracy standards of
the present study.

TABLE I. Composition of the STOs basis sets wtcc-l and
da-wtcc-l for the lithium atom; l is the largest angular momentum
included (see the main text for details).

l Atomic Diffuse

1 5s1p 2s1p
2 6s2p1d 2s2p1d
3 7s3p2d1 f 2s2p2d1 f
4 8s4p3d2 f 1g 2s2p2d2 f 1g
5 9s5p4d3 f 2g1h 2s2p2d2 f 2g1h
6 10s6p5d4 f 3g2h1i 2s2p2d2 f 2g2h1i

All basis sets used in this paper are composed of canonical
STOs [76,77]

χlm(r; ζ ) = (2ζ )n+1/2

√
(2n)!

rle−ζ r Ylm(θ, φ), (1)

where ζ > 0 is a free nonlinear parameter and Ylm are the
spherical harmonics in the Condon-Shortley phase conven-
tion. By the term “canonical STOs” we mean that the power
of r is equal to the angular momentum l .

To optimize the nonlinear parameters, we employ the well-
tempering scheme [90–92]: exponents for a given angular
momentum l are written as

ζlk = αl β
k+γl k2

l with k = 0, 1, 2, . . . (2)

where αl , βl , and γl are the actual parameters which have to be
determined variationally. Well tempering (or related schemes)
not only reduces the computational costs of the optimization,
but also alleviates the linear dependency problems and helps
to avoid troublesome local minima. The latter merit is particu-
larly advantageous in maintaining the consistency of the basis
sets sequence. At the same time, the flexibility of Eq. (2) is
usually surprisingly good. Brute-force optimizations typically
give only marginally better results, especially when a large
number of functions are included.

When deciding on the composition of the STOs basis sets
we follow the correlation-consistency principle, first proposed
by Dunning [93]. The smallest basis set considered here has
the composition 5s1p and is systematically expanded, reop-
timizing the nonlinear parameters at each step. This gives a
sequence of basis sets denoted shortly wtcc-l (well-tempered
correlation-consistent) where l is the largest angular momen-
tum included. A detailed composition of these basis sets is
given in Table I. To find the optimal values of the well-
tempering parameters for each l we minimized the total CISD
(configuration interaction with single and double substitu-
tions) energy of the lithium atom with all electrons active.

Basis sets designed to reproduce the atomic energies may
not be equally satisfactory in a molecular environment. This is
especially true for weakly bound systems where the tails of the
electronic density are important for the bonding phenomena.
To ensure that the basis sets developed here are truly universal
we supplemented them with two sets of diffuse functions; see
Table I. The exponents of these functions were varied freely to
maximize the static dipole polarizability of the lithium atom
evaluated at the coupled Hartree-Fock level of theory. The
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TABLE II. Total energy (Etotal) and the correlation energy (Ecorr)
of the lithium atom calculated at the FCI level of theory by using the
STOs basis sets da-wtcc-l . All values are given in atomic units.

l Ecorr Etotal

2 −0.041 842 −7.474 511
3 −0.043 749 −7.476 454
4 −0.044 532 −7.477 239
5 −0.044 862 −7.477 569
6 −0.045 056 −7.477 763
∞ −0.045 386 −7.478 093
Ref. [95] −0.045 353 −7.478 060

modified (augmented) basis sets are denoted da-wtcc-l where
“da” stands for doubly augmented.

Finally, in this work we are concerned with the calcu-
lation of the relativistic corrections, which have somewhat
specific basis set requirements. To eliminate possible sources
of error we created a special sequence of basis sets denoted
(da-)wtcc-l+s. These basis sets share the polarization and/or
augmented functions with the standard (da-)wtcc-l , but all
s functions were replaced with a universal set of twelve 1s
orbitals obtained by minimizing the Hartree-Fock energy of
the lithium atom. Detailed compositions of all basis sets used
in this work (including values of the nonlinear parameters) are
given in the Supplemental Material [94].

As a benchmark of these basis sets we compared our
atomic results with the reference values available in the
literature. For the lithium atom a very accurate value
of the clamped-nucleus nonrelativistic energy is available
[95] from the three-body Hylleraas calculations, Etotal =
−7.478 060 323 904 1

(+10
−50

)
. This value is virtually exact for

the present purposes. For comparison, we calculated Hartree-
Fock and full configuration interaction (FCI) correlation
energies in the da-wtcc-l basis sets; see Table II.

The Hartree-Fock energy converges at an exponential rate.
Indeed, by comparing the results from the largest two basis
sets we see that the energy difference is less than 1 μH.
Therefore, we simply take the value from the largest basis
set, EHF = −7.432 707(1), and conservatively assume that the
error is at most 1 μH. Extrapolation of the HF energies by us-
ing the exponential formula barely changed the results. On the
other hand, the correlation energy converges at a much slower
rate and we apply the conventional three-point extrapolation
[96]

E = a + b

l3
+ c

l5
, (3)

where the constants a, b, c are obtained by fitting. In Table II
we present results obtained with the basis sets l = 2–6 and
the values obtained by the extrapolation. Note that our final
number for the total energy of the lithium atom differs by only
about 34 μH (≈7 cm−1) from the aforementioned reference
value.

B. Born-Oppenheimer potential

The lithium dimer is a two-center six-electron molecule.
For such a system the FCI method, which gives the exact

TABLE III. Nonrelativistic contributions to the interaction en-
ergy of the lithium dimer calculated with the da-wtcc-l basis sets;
EHF

int and E ccsd(t)
int denote the interaction energy obtained at Hartree-

Fock and CCSD(T) levels of theory, respectively. The abbreviations
�E ccsdt

int and �E fci
int stand for the post-CCSD(T) corrections; see

Eqs. (5) and (6). Counterpoise correction was applied to remove the
basis set superposition error. All values are given in cm−1.

l EHF
int E ccsd(t)

int �E ccsdt
int �E fci

int

R = 7.75
2 −359.46 276.40 1.45 0.15
3 −345.15 322.50 2.2 8
4 −344.14 328.30 2.29
5 −344.05 329.21
6 −344.10 329.51
∞ −344.05 ± 0.01 330.09 ± 0.29 2.30 ± 0.12 0.18 ± 0.05

R = 12.5
2 −9.64 73.79 0.22 0.05
3 −9.51 85.83 0.30
4 −9.46 87.05 0.30
5 −9.45 87.26
6 −9.44 87.74
∞ −9.42 ± 0.01 87.96 ± 0.11 0.30 ± 0.02 0.06 ± 0.02

solution of the Schrödinger equation in the CBS limit, cannot
be applied. Therefore, in the present work we rely on a com-
posite method which is based mostly on the coupled cluster
(CC) theory [97,98].

Within the Born-Oppenheimer (BO) approximation, the
interaction energy of the lithium dimer for each internuclear
distance is defined as

−EX
int = EX(Li2) − 2 EX(Li), (4)

where EX(Li2) is the energy of the molecule in the a 3�+
u

state, EX(Li) is the ground-state energy of the atom, and
the superscript X denotes the level of theory. The nega-
tive sign in front of the above formula is a convention.
Unless explicitly stated otherwise, the counterpoise cor-
rection [99] is used in computation of the interaction
energies in order to eliminate the basis set superposition
error. In this approach the energy of the atom is cal-
culated in the basis set of the molecule and thus the
quantity EX(Li) is different for each internuclear separation.
Our protocol for obtaining accurate Born-Oppenheimer inter-
action energies is as follows.

First, we evaluate the BO interaction energies by using
the Hartree-Fock and coupled cluster with single, double, and
perturbative triple excitations (CCSD(T)) [100] methods (all
electrons active). The values obtained are abbreviated EHF

int and
E ccsd(t)

int , respectively. At these levels of theory the complete
sequence of basis sets, l = 2–6, can be used. The Hartee-Fock
and correlation contributions are extrapolated separately; the
exponential formula is used for the HF component and the
formula (3) is applied for the remainder. In Table III we
present results of this procedure for two interatomic dis-
tances: 7.75 and 12.5 a.u. The former value is near the
minimum of PEC while the latter lies close to the dissociation
limit.
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Interestingly, there is a small inconsistency in the Hartee-
Fock values: the interaction energy calculated with the l = 6
basis set is a tiny bit smaller than that with l = 5. To overcome
this problem we extrapolate the HF limit from the l = 3, 4, 5
basis sets, omitting the l = 6 value. Due to comparatively fast
convergence of the HF energies towards the CBS limit, the
error introduced by this approximation is minor for all inter-
electronic distances. More importantly, this artifact is absent
in the correlated contribution and thus not of a major concern.
In the estimation of the extrapolation errors we adopt a fairly
conservative approach. Unless explicitly stated otherwise, we
assume that the uncertainty is equal to half the difference
between the extrapolated result and the corresponding value
in the largest basis set.

To bring the accuracy down to the sub-cm−1 regime we
need to consider some minor corrections beyond the CCSD(T)
model. They naturally split into two contributions. The first
is the full triples correction, being defined as a difference
between the interaction energies obtained with the CCSDT
[101] and CCSD(T) methods:

�E ccsdt
int = E ccsdt

int − E ccsd(t)
int . (5)

The second correction accounts for excitations higher than
triple and is calculated as a difference between the FCI and
CCSDT interaction energies:

�E fci
int = E fci

int − E ccsdt
int (6)

The post-CCSD(T) corrections are especially computationally
intensive. In fact, we were able to calculate �E ccsdt

int in basis
sets only up to l = 4. Even more disappointingly, the FCI
correction is feasible only in the smallest basis set considered
here, l = 2. These restrictions eliminate the possibility of a
reliable extrapolation.

To estimate the CBS limits of the post-CCSD(T) correc-
tions we invoke a different strategy. Let us assume that the
rate of convergence of the interaction energy with respect
to the basis set size is the same at the CCSD(T) level and
for the post-CCSD(T) corrections. Because a reliable limit
of the CCSD(T) interaction energy is known, approximate
CBS limits of the �E ccsdt

int and �E fci
int corrections can now

be obtained by a simple scaling. The scaling parameter is
chosen so that the interaction energy calculated with a given
finite basis set at the CCSD(T) level matches the extrapolated
value.

Clearly, the scaling procedure is not as reliable as ex-
trapolation, the latter having firm theoretical underpinnings.
We assume that this procedure gives an accuracy of 5% for
�E ccsdt

int and 25% for �E fci
int . The results of the scaling are

given in Table III. The final theoretical error is computed
by summing squares of the uncertainties in the individual
components and taking the square root. For example, at the in-
ternuclear distance R = 7.75 this gives 332.57 ± 0.32 cm−1

for the total BO interaction energy.

C. Relativistic effects

For light systems, such as the lithium dimer, the leading-
order relativistic corrections (quadratic in the fine structure
constant, α) can be calculated perturbatively. Here we adopt

the approach based on the one-electron part of the Breit-Pauli
Hamiltonian [102],

E (2) = 〈P4〉 + 〈D1〉, (7)

〈P4〉 = −α2

8

〈∑
i

∇4
i

〉
, (8)

〈D1〉 = π

2
α2

∑
a

Za

〈 ∑
i

δ(ria)

〉
, (9)

where i and a denote electrons and nuclei, respectively. The
notation 〈Ô〉 stands for the expectation value of an operator
Ô on the nonrelativistic clamped-nuclei wave function. For
brevity, the consecutive terms in the above equation are called
the mass-velocity 〈P4〉 and the one-electron Darwin 〈D1〉 cor-
rections. Some authors [103] use the name “Cowan-Griffin
correction” for the sum of 〈P4〉 and 〈D1〉.

Note that in the above formulation we neglected the
two-electron relativistic corrections (Breit and two-electron
Darwin contributions). For light systems they are usually
at least by an order of magnitude smaller [104] than the
one-electron corrections given by Eqs. (8) and (9). As demon-
strated further in the text, the one-electron relativistic effects
contribute only a fraction of cm−1 to the total interaction
energy of Li2. Therefore, we estimate that the two-electron
effects are of the order of a few hundreds of cm−1, and thus en-
tirely negligible in comparison with other sources of error. An
additional approximation adopted in this work is the neglect
of spin-spin and spin-orbit interactions. The former term is
very small (≈0.01 cm−1 for all points of the potential energy
curve) as confirmed by the recent work of Minaev [105], and
vanishes quickly with the internuclear distance. The spin-orbit
interaction is identically zero in the first-order perturbation
theory since we are considering a molecular � state.

The one-electron relativistic corrections were calculated
analytically on the top of the CCSD(T) wave function.
Contractions with the appropriate density matrices were
accomplished by using a code written especially for this
task. Because the CCSD(T) method performs very well
for the interaction energies, we neglect the higher-order
mixed relativistic-correlation contributions and apply no post-
CCSD(T) corrections. Example results of the calculations are
given in Table IV, where, for consistency, we consider the
same two interatomic distances as in the preceding section.
To speed up the calculations, we evaluated the one-electron
relativistic corrections in the basis sets up to l = 5 only.

From Table IV one can see that the mass-velocity and
one-electron Darwin corrections converge very quickly with
respect to the basis set size. The results in the two largest basis
sets are barely distinguishable. Therefore, it is not necessary
to extrapolate the values of 〈P4〉 and 〈D1〉. The final result is
simply the value obtained with the largest basis set and the
error is estimated to be less than 5% of the absolute value.

D. Other corrections

Since the goal of the present paper is to reach the spectro-
scopic accuracy, we have to include some further corrections
to the potential energy curve originating from the QED
and adiabatic effects. Starting with the former, the most
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TABLE IV. Relativistic corrections to the interaction of the
lithium dimer energy calculated with the da-wtcc-l basis sets. The
corrections 〈P4〉 and 〈D1〉 are defined by Eqs. (8) and (9), respec-
tively. The last column provides the sum of the values from the
preceding two. All values are given in cm−1.

l 〈P4〉 〈D1〉 Total Cowan-Griffin

R = 7.75
2 −0.85 0.63 −0.22
3 −0.91 0.67 −0.24
4 −0.91 0.67 −0.24
5 −0.91 0.67 −0.24

R = 12.5
2 −0.11 0.08 −0.03
3 −0.13 0.09 −0.04
4 −0.13 0.09 −0.04
5 −0.14 0.10 −0.04

convenient framework to describe the QED effects in light
systems is the so-called nonrelativistic QED (NRQED) theory
[106,107]. In the NRQED the energy of the system is ex-
panded in powers of the fine-structure constant. The quadratic
terms correspond to the aforementioned Breit-Pauli Hamilto-
nian and the α3 and α3 ln α corrections are the leading-order
(pure) QED effects, E (3). Explicit expressions for the latter
are known [108,109], but their computation for many-electron
systems is still a considerable challenge. In the present work
we adopt the following approximation to the α3 and α3 ln α

corrections:

E (3) ≈ 8α

3π

(
19

30
− 2 ln α − ln kLi

0

)
〈D1〉, (10)

where ln k0 is the Bethe logarithm [102,110] and 〈D1〉 is the
same as in Eq. (9). This is essentially the dominant one-
electron component of the complete α3 QED correction (the
one-electron Lamb shift). For the Bethe logarithm we adopt
the atomic value, ln kLi

0 = 5.178 17(3) [111]. This is a reason-
able approximation because this quantity is usually weakly
dependent on the molecular geometry [112,113]. For reasons
similar as in the case of the relativistic corrections, in Eq. (10)
we neglected two-electron contributions, i.e., two-electron
Lamb shift and the Araki-Sucher correction. We assume that
the approximations introduced in (10) result in a relative error
smaller than 50%.

Finally, let us consider the finite nuclear mass effects. The
leading-order correction to the PEC due to the nuclear mo-
tion is the so-called diagonal Born-Oppenheimer correction
(DBOC or the adiabatic correction for short). It is given by
the formula [114,115]

EDBOC = 1

2

∑
a

1

Ma
〈∇a�0|∇a�0〉, (11)

where a runs over all nuclei of the system and Ma denote the
nuclear masses. Unfortunately, calculation of the DBOC with
the basis set of STOs is not developed yet and we must resort
to the Gaussian-type orbitals (GTOs) in the present paper.
We have used the all-electron CCSD method to calculate the
adiabatic correction [116] with the augmented quadruple-zeta

basis set developed by Prascher et al. [117] The post-CCSD
corrections and basis set incompleteness errors are neglected
in this case. We assume that this introduces an error of at most
25%.

E. Computational details

For the record, in this section we would like to provide
some additional technical details concerning the electronic
structure calculations described above. The basis set optimiza-
tions were carried out by using a program written especially
for this purpose. It is interfaced with the GAMESS package
[118,119] which carries out the necessary CISD calculations.
To optimize the well-tempering parameters we employed the
pseudo-Newton-Rhapson method with the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) update of the approximate Hessian
matrix [120] and numerically evaluated gradient (two-point
finite difference). The optimizations were stopped when the
energy difference between two consecutive cycles fell below
10 nH.

All subsequent electronic structure calculations were car-
ried out with help of the ACESII program package [121].
The only exception is the FCI method where the GAMESS

package was used and calculation of the adiabatic correction
where we employed the CFOUR program [122]. In all coupled
cluster computations we employed the restricted open-shell
(RO) reference wave function. Inclusion of the relativistic
corrections requires expectation values of several operators
specified in the preceding sections. Matrix elements of these
operators were calculated directly in the STOs basis sets. Cou-
pled cluster density matrices were extracted from the ACESII
package by proper manipulation of the CC gradients code
logic.

To evaluate the complete potential energy curve we re-
peated the procedures described in the preceding sections on
a grid of internuclear distances. For the nonrelativistic calcu-
lations we used the following grid: from R = 5.5 to R = 9.0
the step is R = 0.25; from R = 9.0 to R = 14.0 it is R = 0.5;
from R = 14.0 to R = 25.0 it is R = 1.0; and finally above
R = 25.0 the step is R = 2.5 up to R = 40.0 (all values are
given in multiples of the Bohr radius). Additionally, we eval-
uated a single point at R = 7.882 which is close to the actual
minimum of the potential energy curve. This gives a grand
total of 43 points spaced from R = 5.5 to R = 40.0. For the
relativistic corrections the grid was slightly smaller, ending at
R = 30.0. This is mostly due to large cancellations occurring
at large R making the calculated values less reliable.

III. ANALYTIC FITS OF THE POTENTIALS

A. General method

In order to generate results directly comparable with the
experimental values, the raw ab initio data points must be
fitted with a suitable functional form to give a smooth function
of the internuclear distance, R. For all contributions to the
interaction energy described in the previous sections we adopt
the following generic formula:

V (R) =
Ne∑

k=1

e−αkR
Np∑

n=0

cnkRn −
Na∑

n=3

C2n

R2n
f2n(ηR), (12)
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where Ne, Np, and Na control the expansion length, αk and η

are (nonlinear) parameters of the fit, cnk are linear parameters,
and f2n(ηR) is the Tang-Toennies damping function [123]

f2n(x) = 1 − e−x
2n∑

k=0

xk

k!
. (13)

The asymptotic coefficients, C2n, in Eq. (12) are either taken
from more accurate theoretical calculations or fitted (dis-
cussed further). Note that we found it unnecessary to include
the repulsive Coulomb wall (the unified atoms limit, Z2/R) in
the potential formula (12).

The nonlinear and linear parameters in Eq. (12) are cho-
sen to minimize weighted error of the fit. At each point of
the grid we are given the values of the potential, V comp

k , and
the corresponding errors, δV comp

k . The target function � for
the optimization is chosen as

�2 = 1

Ng

Ng∑
k=1

[
V comp

k − V (Rk )

δV comp
k

]2

, (14)

where V (Rk ) is the value of the fitting function evaluated at
a given grid point. We optimize the nonlinear parameters by
using the Powell procedure [124]. The optimization is stopped
when the target function varies by less than 10−5 cm−1 be-
tween several consecutive iterations. The raw ab initio data
(V comp

k , δV comp
k ) for all components of the PEC are given in the

Supplemental Material [94]. A simple Mathematica program
[125] implementing all the fits discussed here can be obtained
from the authors upon request.

B. Nonrelativistic potentials

An important issue in the generation of the analytic poten-
tials is to assure that the long-range tail of PEC is correct.
Therefore, we prefer to use the asymptotic constants cal-
culated with more accurate theoretical methods (whenever
available) rather than relying solely on fitting to match the
data points. Fortunately, reliable values of the first three non-
relativistic asymptotic constants (C6, C8, C10) were given by
Yan et al. [126] These values were obtained from variational
wave functions in Hylleraas basis sets and are all accurate to
better than one part per thousand. For the higher asymptotic
constants (C2n with n > 5) the data in the literature are not as
abundant. Remarkably, Patil et al. [127] report values of the
asymptotic constants up to n = 12. Their values are progres-
sively less reliable with increasing n. For example, we find
that the error in C6 is only about 0.3% compared with the work
of Yan et al. [126] but rises to almost 2% for C10. Therefore,
we adopt the values of C12, C14, and C16 from Ref. [127] and
neglect the higher-order inverse powers of R in Eq. (12). We
checked that the inclusion of terms beyond C16 changes the
results only marginally. The same is true for the asymptotic
terms such as C11/R11 (resulting from higher-order perturba-
tion theory) which can be safely neglected at this point.

Concerning the adiabatic correction, the corresponding
asymptotic constants are not available for lithium. Despite
explicit expressions for these coefficients are available in
the literature [128], their calculation is complicated and has
been achieved only for one- and two-electron systems thus
far. Therefore, we have no other option but to obtain the

TABLE V. Optimized parameters of the fit (12) for the Born-
Oppenheimer potential [V BO(R)] and for the adiabatic correction
[V ad(R)] (without dividing by the mass term). All values are given
in the atomic units. The symbol X [±n] stands for X × 10±n. Not all
digits reported are significant.

Parameter V BO(R) V ad(R)

α1 +1.27 983[+00] +1.87 631[+00]
α2 +2.29 122[−01] +3.24 019[−01]
η +1.02 337[+00] +5.84 617[−01]

c01 +1.28 843[+02] −8.45 797[+00]
c11 −9.02 013[+01] +4.52 239[+00]
c21 +2.67 910[+01] −8.14 315[−01]
c31 −3.42 393[+00] +5.01 342[−02]
c41 +2.07 665[−01] —b

c02 +2.11 421[−03] +1.95 248[−06]
c12 −2.40 579[−04] −5.40 041[−08]
c22 +1.05 528[−05] −1.43 211[−08]
c32 −2.07 608[−07] +4.64 261[−10]
c42 +1.54 659[−09] —b

C6 +1.39 339[+03]a +1.47 084[+00]
C8 +8.34 258[+04]a −1.18 756[+03]
C10 +7.37 210[+06]a +4.05 449[+05]
C12 +9.03 000[+08]a —b

C14 +1.48 000[+11]a —b

C16 +3.09 000[+13]a —b

aTaken from Refs. [126] and [127].
bNot included in the fit.

asymptotic constants Cad
2n by fitting. We find that inclusion of

the first three coefficients is sufficient to provide a reasonable
accuracy.

Overall, the fitting function (12) with Ne = 2, Np = 3 or 4,
and Na � 8 provides a satisfactory representation of the
raw ab initio data, both for the Born-Oppenheimer results
[V BO(R), Np = 4, Na = 8] and for the adiabatic correction
[V ad(R), Np = 3, Na = 5]. Both fits contain ten linear and
three nonlinear parameters, which is a modest amount com-
pared to about 40 points of the raw ab initio data. The
fitting errors are by an order of magnitude smaller than the
estimated uncertainty of the corresponding theoretical calcu-
lations. Only one or two points are exceptional in this respect,
but the error is still well within the acceptable range. Op-
timized parameters of the Born-Oppenheimer and adiabatic
potentials are given in Table V. Note that the adiabatic cor-
rection fitting error is larger than for the BO potential (cf.
Table VII) but this mostly due to increased relative errors
δV comp

k and smaller number of fitting parameters.

C. Relativistic effects

Analytic potentials corresponding to the one-electron rel-
ativistic effects were obtained in a similar fashion as for the
adiabatic correction. The mass-velocity [Eq. (8)] and one-
electron Darwin [Eq. (9)] terms were separately represented in
the form given by Eq. (12) with Ne = 2, Np = 3, Na = 5. The
optimized parameters are given in Table VI. For convenience,
in both cases we have included the factor of α2 into the
coefficients.

062806-6



POTENTIAL-ENERGY CURVE FOR THE … PHYSICAL REVIEW A 102, 062806 (2020)

TABLE VI. Optimized parameters of the fit (12) for the
one-electron relativistic corrections: mass-velocity [V P4(R)] and
one-electron Darwin [V D1(R)]; see Eqs. (8) and (9), respectively,
for the definitions. All values are given in atomic units. The symbol
X [±n] stands for X × 10±n.

Parameter V P4(R) V D1(R)

α1 +1.3284[+00] +1.3624[+00]
α2 +4.9227[−01] +5.2275[−01]
η +3.2767[−01] +3.7855[−01]

c01 −1.2702[−01] +1.4557[−01]
c11 +8.8288[−02] −9.7541[−02]
c21 −2.1025[−02] +2.2358[−02]
c31 +1.9023[−03] −1.9527[−03]
c02 −1.4425[−03] +1.3737[−03]
c12 +2.6974[−04] −2.5064[−04]
c22 −1.4610[−05] +1.3126[−05]
c32 +2.8967[−07] −2.5278[−07]

C6 −2.2228[+00] +1.5773[+00]
C8 −8.9706[+01] +7.3228[+01]
C10 −1.9637[+04] +1.0532[+05]

Note that the last asymptotic constant (C10) in both fits
optimized to a surprisingly large value. We believe that this
result should be treated cautiously. While the first two asymp-
totic coefficients are reasonably stable with respect to various
modifications of the fitting formula, the last one depends sig-
nificantly on the adopted parametrization. In order to stabilize
this quantity one would need to include more asymptotic
terms, but, because of the risk of overparametrization, we
decided not to do it. Therefore, the obtained values of C10

should not be used as a reference for other methods. The
same conclusion is probably valid for the fit of the adiabatic
correction described in the previous section.

The accuracies of the fitting functions for are summarized
in Table VII. More detailed data are given in Supplemental
Material [94]. This includes explicit listing of the raw ab initio
values at each point and the corresponding errors.

IV. SPECTROSCOPIC DATA

In order to generate the spectroscopic data we add up all
components of the PEC described above (BO, adiabatic, rela-
tivistic, and QED). The final PEC is illustrated in Fig. 1. Based
on the complete curve we calculate the relevant molecular
parameters. The total binding energy (i.e., the well depth, De)
and the equilibrium internuclear distance (Re) are obtained

TABLE VII. Root-mean-square deviations (in cm−1) and maxi-
mum absolute deviations (percentage-wise) of the fitted values from
the raw data points. The symbol X [±n] stands for X × 10±n.

rms error max error (%)

V BO(R) 1.8[−01] 3.0[−01]
V D1(R) 3.6[−05] 6.7[−02]
V P4(R) 8.1[−05] 6.1[−02]
V ad(R) 6.0[−03] 4.7[+00]

FIG. 1. Complete potential energy curve for the for the a 3�+
u

state of 7,7Li2 (solid black line); orange dots are the actual ab initio
data points. The horizontal dashed lines are energies of the J = 0
vibrational levels. The horizontal black solid line denotes the onset
of continuum.

by finding the minimum of the fitted PEC. The harmonic
vibrational frequency is defined as

ω2
e = 1

μ

(
∂2V

∂R2

)∣∣∣∣
Re

, (15)

in atomic units, where μ is the reduced mass of an isotopomer.
We consider two stable isotopes of lithium (6Li and 7Li) with
atomic masses equal to

m(6Li) = 6.015 123 u, (16)

m(7Li) = 7.016 005 u, (17)

according to the recent compilation [129].
In order to find the rovibrational wavefunctions (�νJ ) and

energies (EνJ ) we solve the nuclear (radial) Schrödinger equa-
tion within the adiabatic approximation[

− 1

2μ

d2

dR2
+ De + V (R) + J (J + 1)

2μR2
− EνJ

]
�νJ (R) = 0,

(18)

where J is the rotational quantum number. Note that we have
added the well depth (De) to the left-hand side of Eq. (18).
This makes all EνJ positive by convention and their values
grow with increasing values of ν and J . Further, in the pa-
per we are mostly concerned with the lowest rotational state
(J = 0) and thus adopt the notation Eν := Eν0. Finally, the dis-
sociation energy is defined as a sum of the interaction energy
and the zero-point vibrational energy, D0 = De + Eν=0.

In Table VIII we report the calculated ab initio values of the
molecular parameters (De, Re, D0, ωe) for both isotopomers of
the lithium dimer. The error of De was estimated by interpo-
lating the theoretical errors at several neighboring grid points.
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TABLE VIII. Molecular parameters of the a 3�+
u state of 6,6Li2

and 7,7Li2. See the main text for precise definitions of the listed
quantities. All values are given in cm−1, apart from Re which are
given in ångströms, Å.

De Re D0 ωe

6,6Li2

This work 333.68(30) 4.1688 299.13 71.05
Ref. [54] 333.778(8) 4.170038(30) 70.65a

7,7Li2

This work 333.69(30) 4.1687 301.61 65.78
Ref. [54] 333.758(7) 4.17005(3) 65.42a

Ref. [24] 333.69(10) 4.173 301.829(15)

aNot reported originally in Ref. [54]; extracted by taking the second
derivative of the final potential.

Let us compare our results with the most recent experimental
values of Linton et al. [24] and with a very reliable 17-
parameter Morse–long-range potential of Dattani and Le Roy
[54]. The agreement with these values is remarkably good.
For example, our De for the isotopomer 7,7Li2 differs from
the results of Refs. [24] and [54] by only 0.01 and 0.07 cm−1,
respectively, while our estimated error is about 0.3 cm−1 at the
bottom of the well. The same conclusion is valid for the dis-
sociation energy, D0. This suggest that our error estimations
are indeed quite conservative, at least in the regions close to
the minimum of the potential. A similarly good agreement is
found for the remaining molecular parameters.

The radial nuclear Schrödinger equation (18) was solved
with help of the discrete variable representation (DVR)
method [130]. The obtained vibrational energy levels (J = 0)
are listed in Table IX and compared with the experimen-
tal values of Linton et al. [24]. Additionally, we calculate
the classical turning points (Rν) defined as solutions of the

TABLE IX. Vibrational energy levels (J = 0) for the a 3�+
u state

of 7,7Li2. The vibrational energies (Eν) are given in cm−1, and the
classical turning points (Rν

min, Rν
max) in ångströms, Å. The minimum

of PEC corresponds to the zero energy. The last two rows are the
maximum and root-mean-square errors with respect to the experi-
mental data [24].

This work Ref. [24]

ν Eν Rν
min Rν

max Eν Rν
min Rν

max
0 32.06 3.844 4.627 31.857 3.846 4.630
1 90.83 3.668 5.090 90.453 3.668 5.092
2 142.94 3.570 5.502 142.523 3.571 5.503
3 188.65 3.504 5.920 188.240 3.505 5.922
4 228.07 3.455 6.371 227.679 3.458 6.373
5 261.24 3.419 6.882 260.837 3.422 6.885
6 288.11 3.392 7.496 287.665 3.395 7.501
7 308.55 3.373 8.293 308.098 3.377 8.297
8 322.55 3.361 9.453 322.155 3.365 9.441
9 330.39 3.354 11.476 330.170 3.358 11.392
10 333.32 3.352 16.478 333.269 3.356 16.052
δmax 0.45 0.004 0.424
δrms 0.34 0.003 0.130

following implicit equations:

De + V (Rν ) = Eν . (19)

For each ν we have two solutions of Eq. (19), denoted Rν
min

and Rν
max, and both of them are listed in Table IX.

One can see an excellent agreement between the theoretical
and experimental vibrational energy levels in Table IX. The
maximum absolute deviation is found for ν = 7 and amounts
to about 0.4 cm−1. On average, the deviation is of the order of
0.3 cm−1. Let us point out that resolution of the spectroscopic
data of Linton et al. is about 0.1 cm−1, so that the actual
error of our calculations can be even smaller. Moreover, our ab
initio values are more accurate than reported recently by Lau
et al. [55] based on a semiempirical model potential. Their
data exhibits the maximum Eν deviation of about 1.5 cm−1

if they use the accurate ωe in the potential. By relaxing the
value of ωe by about 1% the accuracy improves to about
0.5 cm−1 on the average, but this may be due to a fruitful
cancellation of errors. In fact, our results support the semiem-
pirical value of ωe. Let us also point out that our potential
reproduces the binding energy of the last vibrational level with
surprising accuracy. While the experimentally derived value
is 12.47 ± 0.04 GHz [51], the PEC developed in this work
gives 10.5 GHz.

Let us now turn our attention to the theoretical description
of the Li-Li scattering process. The main goal is to evaluate
the s-wave scattering length (a) for two lithium atoms in
the ground state from the first-principles PEC developed in
this work. This can be accomplished by solving the radial
Schrödinger equation (18) with J = 0 at zero energy [131].
It is well known that for large R the solutions �E=0(R) behave
asymptotically as a linear function [132,133]

�E=0(R) → C(R − a) + · · · , (20)

where a is the desired scattering length. Very sophisti-
cated methods for numerical calculation of a were presented
[134–138], but our case is not particularly technically chal-
lenging and we adopt the following simplistic procedure.
First, we propagate the radial Schrödinger equation at zero
energy up to very large R (≈105). The initial conditions are
�E=0(R0) = 0, where R0 is deep within the repulsive wall, and
an arbitrary value of the derivative at R0. Next, we continue
the asymptotic straight line (20) to the point where it crosses
the r axis. By the virtue of Eq. (20) this point corresponds to
the value of a.

The s-wave scattering length for the 7,7Li2 isotopomer cal-
culated from the PEC developed in this work is −9.2 a.u. This
is by a factor of 3 too small compared with the experimental
result of Abraham et al. [51] who report −27.3 ± 0.8 a.u.
Despite this deviation being large, we note that the sign of the
scattering length calculated by us is correct. This is sufficient
to predict the stability of the corresponding Bose-Einstein
condensate [139,140]. Moreover, the rough magnitude of the
scattering length is also correct, which makes it useful for
other predictions [141,142]. To predict a with the accuracy
of a few percent the errors in PEC must be reduced probably
by an order of magnitude. We believe that this is possible in
the foreseeable future.
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V. CONCLUSIONS

In this paper we have developed an ab initio potential
energy curve for the a 3�+

u state of the lithium dimer. To
bring the accuracy down to the sub-cm−1 regime, we have em-
ployed state-of-the-art techniques of the electronic structure
theory. In particular, large (double to sextuple zeta) one-
electron basis sets composed of Slater-type orbitals have been
developed specifically for the present purposes. The Born-
Oppenheimer potential has been calculated by using a com-
posite scheme utilizing high-order coupled cluster and full CI
methods. Moreover, we have included several minor correc-
tions to account for the the adiabatic, relativistic, and QED
effects.

The computed ab initio data points have been fitted with
theoretically motivated analytic functions. When available, we
employed van der Waals asymptotic constants Cn obtained
from the most accurate theoretical methods. By solving the
nuclear Schrödinger equation we have obtained the molecular
parameters (De, D0, ωe, etc.) for this system, as well as the
corresponding vibrational energy levels, which are directly
comparable with the experimental data. For example, the bond
dissociation energy determined by us (D0 = 301.61 cm−1)
differs by only about 0.2 cm−1 from the empirical values re-
ported by Linton et al. [24] We have also reproduced all eleven
bound vibrational levels with an accuracy of 0.2–0.4 cm−1. In

particular, the position of the last vibrational level has been
predicted to within 2 GHz, or 15% of the experimental value.
Crucially, all these results have been obtained without prior
adjustment to match the empirical values.

The data presented in this paper are probably the most
accurate ab initio results available for this system in the lit-
erature thus far. Moreover, this paper constitutes a proof that
Slater-type orbitals can now be used routinely in calculations
for diatomic systems with large basis sets (up to several hun-
dred functions) and are capable of providing spectroscopically
accurate results.
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