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Long-range Rydberg molecule Rb2: Two-electron R-matrix calculations
at intermediate internuclear distances
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The adiabatic potential energy curves of Rb2 in the long-range Rydberg electronic states are calculated using
the two-electron R-matrix method [M. Tarana and R. Čurík, Phys. Rev. A 95, 042515 (2017)] for the intermediate
internuclear separations between 37 and 200 a.u. The results are compared with the zero-range models to find
a region of the internuclear distances where Fermi’s pseudopotential approach provides accurate energies. A
finite-range potential model of the atomic perturber is used to calculate the wave functions of the Rydberg
electron and their features specific for the studied range of internuclear distances are identified.
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I. INTRODUCTION

The diatomic long-range Rydberg molecule (LRRM) is an
exotic system of two atoms, one in its ground state and one
in its high excited state (typically n ∼ 10–80), bound to each
other at the distances of the nuclei varying between tens and
thousands of Bohr radii. The mechanism of this bond consists
in the scattering of the Rydberg electron off the distant neutral
atom (perturber). This interaction can affect the phase of the
Rydberg wave function in such way that the molecular elec-
tronic bound state is formed. When its energy, as a function of
the internuclear distance, forms a sufficiently deep well, the
vibrational states of the LRRMs can be bound.

Existence of the LRRMs was first theoretically predicted
by Greene et al. [1] almost two decades ago, along with
their unusually large permanent electric dipole moments, even
for the homonuclear diatomic molecules. Two categories of
the electronic bound states were identified: those formed by
the perturbation of the nondegenerate atomic Rydberg states
with low angular momenta and the trilobite states involving
the hydrogen-like degenerate atomic states with high angu-
lar momenta. It took almost nine years since then until the
first experimental evidence of the LRRMs was provided by
Bendkowsky et al. [2] and their electric dipole moments were
measured by Li et al. [3].

Since then, the LRRMs have become a subject of intensive
theoretical and experimental research. The trilobite-like states
were observed in cesium by Booth et al. [4]. The existence of
the butterfly states, predominated by the p-wave interaction of
the Rydberg electron with the neutral perturber, predicted by
Hamilton et al. [5], was experimentally confirmed by Nieder-
prüm et al. [6]. The LRRMs have been so far predominately
prepared in ultracold atomic ensembles of heavy alkali metals
[2,4,6]. However, DeSalvo et al. [7], and more recently Ding
et al. [8], reported successful creation of the LRRMs in ultra-
cold strontium gas.
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The LRRMs have also provided ways to explore other phe-
nomena. Schmid et al. [9] proposed an experiment where the
ionized LRRM Li2 provides a well defined initial state for the
Li-Li+ collision in the quantum regime that was not available
to previously developed experimental techniques. The LRRM
Rb2 has also been utilized to study the effects of spin-orbit
interactions in electron collisions with rubidium atoms at low
scattering energies [10,11].

A summary of the related research exceeds the scope of
this article. For a comprehensive review, see the recent papers
[12–14] and references therein.

The first and so far most frequently utilized theoretical
model of the LRRMs is based on the representation of the
neutral perturber by Fermi’s zero-range pseudo-potential [1,5]
that couples the atomic eigenstates of the Rydberg electron.
This delta-function interaction possesses a singularity at the
position of the perturber. It is usually considered nonzero
only in the partial waves s and p and is parametrized by
the generalized energy-dependent electron-perturber scatter-
ing length [1,15] in the s wave. Following Omont [16], the
p-wave component, particularly important for the alkali met-
als supporting the low-energy 3Po resonance, is parametrized
by the low-energy p-wave phase shift of the electron-perturber
scattering [5]. This simple model was more recently enhanced
by taking the spin effects into account [17,18], and provided
an insight into several experimental results.

The computational method beyond the level of the pertur-
bation theory, frequently employed to calculate the potential
energy curves (PECs) of the zero-range model, is based on
the diagonalization of the corresponding Hamiltonian in the
finite basis set of the unperturbed atomic Rydberg states. This
approach is associated with the issue that the eigenenergies
do not converge with the increasing number of the Rydberg
manifolds included in the basis set [19]. Another complica-
tion inherent to this method is the selection of the kinetic
energies at which the scattering lengths are taken. The clas-
sical kinetic energy of the Rydberg electron at the position
of the perturber, that determines their interaction in the zero-
range model, depends on the total energy of the molecular
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electronic state. This is, however, not known at the stage of the
computation when the Hamiltonian matrix is constructed. An
alternative approach to the direct diagonalization of the zero-
range Hamiltonian in the finite basis set of the atomic Rydberg
states is the solution of the integral equation involving the
corresponding Green’s function [19].

The first study where the neutral perturber was repre-
sented by a finite-range potential was due to Khuskivadze
et al. [20]. This interaction was, similarly to the zero-range
Fermi’s pseudopotential, optimized to correctly reproduce
the phase shifts of the electron collisions with the atomic
perturber.

The most frequently utilized experimental technique to
prepare the LRRMs is their photoassociation in the ultracold
atomic ensemble via excitation of the atoms into the Rydberg
states (see the review by Shaffer et al. [13] and references
therein). The involved atomic states typically possess the prin-
cipal quantum numbers n > 30, and corresponding relevant
internuclear distances lie above 200 a.u. [13] where Fermi’s
zero-range model provides quantitatively satisfactory accu-
racy of the calculated electronic and vibrational energies.

However, Bellos et al. [21] carried out an experiment
in which a different mechanism was utilized to prepare
the LRRM Rb2: First, weakly bound Rb2 molecules in
their lowest excited electronic and high vibrational state
|a3�+

u , ν = 35〉 were photoassociated in a magneto-optical
trap containing ultracold rubidium atoms. The LRRMs with
energies between the states 5s + 7p and 5s + 12p (in the
asymptotic limit of the separated atoms) were then directly
photoexcited. Information about the populations of different
electronic and vibrational energy levels of the LRRMs was
retrieved using autoionization spectroscopy of the molecular
cations Rb+

2 . Later, the states slightly redshifted with respect
to the 5s + 7p energy were studied in more detail by Carollo
et al. [22].

The outer vibrational turning point of the initial molecu-
lar state |a3�+

u , ν = 35〉 is approximately at the internuclear
separation ≈35 a.u., and relatively low Rydberg energies are
populated by the subsequent photo-excitation. As a result, the
LRRMs prepared by Bellos et al. [21] possess significantly
lower internuclear separations than those produced via the
direct photoassociation of the atomic pair utilized in the ma-
jority of other experiments.

Although Bellos et al. [21] successfully associated some
of the features observed in their experimental spectra with the
structures in the PECs calculated using the Fermi’s pseudopo-
tentials [1,5], the validity of this model becomes questionable
at these small internuclear separations and low energies. Since
the size of the perturber is not negligible compared to its dis-
tance from the Rydberg atomic core, their mutual interaction
may become relevant. Similarly, the size of the perturber is
not negligible compared to the de Broglie wavelength of the
Rydberg electron.

In order to address the validity of the zero-range model of
the LRRMs at small internuclear distances, this article deals
with the PECs of Rb2 calculated using different models. The
calculations are focused on the intermediate range of the inter-
nuclear separations below 200 a.u., similar to that studied by
Bellos et al. [21]. A more advanced approach, suitable for this
range of nuclear distances, where the valence electron of the

alkali-metal atomic perturber is explicitly represented as well
as the Rydberg electron, was formulated by Tarana and Čurík
[23] (hereafter referred to as TC). The construction of this
model for Rb2 is discussed in the present article along with
a comparison between the obtained PECs and those published
by Bellos et al. [21] to establish the range of internuclear
distances where the zero-range model provides quantitatively
accurate results.

The two-electron R-matrix approach does not utilize any
external parametrization of the interaction between the Ryd-
berg electron and neutral perturber that depends on the kinetic
energy of the electron. Instead, the solutions of the two-
electron Schrödinger equation are calculated in the vicinity
of the perturber affected by the positive Rydberg core. These
are, in terms of the logarithmic derivative, smoothly matched
to the wave functions calculated farther from the perturber that
satisfy the bound-state asymptotic boundary conditions.

This paper presents an application of the two-electron R-
matrix approach [23] to molecular systems other than H2.
Another goal of this work is to present the PECs associated
with the perturber in its excited state, as these exist below
the ionization energy in Rb2 and can be calculated using the
approach developed in TC.

The probability densities of the Rydberg electron are also
presented in terms of a one-particle finite-range model of
the LRRMs [20] in order to understand their features that
are specific to the range of the distances between the nuclei
studied in this work.

The spin-orbit couplings and spin-spin couplings are not
considered in the calculations presented here. Although their
effects can be experimentally recognized in the heavy alkali
metals [11,13,14], the phenomena investigated in this article
are not directly related to the relativistic effects. Adding cor-
responding degrees of freedom to the two-electron R-matrix
method formulated in TC would, for the study presented here,
yields computationally more demanding calculations without
providing equivalent additional insight into the underlying
mechanisms.

The rest of this article is organized as follows: The es-
sentials of the two-electron R-matrix theory of the LRRMs
are reviewed in Sec. II. Sections III and IV deal with the
parameters of the two-electron and one-electron R-matrix
calculations, respectively. The results of the calculations are
analyzed in Secs. V and VI. The conclusions are formulated
in Sec. VII. The model potential of Rb+ and corresponding
quantum defects are discussed in the Supplemental Material
[24].

Unless explicitly stated otherwise, atomic units are used
throughout the rest of this article.

II. SUMMARY OF TWO-ELECTRON R-MATRIX METHOD

Only the essential elements of the two-electron R-matrix
method are summarized in this section. For its detailed de-
scription, an interested reader is referred to the paper TC.
Following the notation used in TC, the core of the perturber
and the Rydberg core are denoted by A and B, respectively.

The Rydberg electron is explicitly represented in the model
as well as the valence electron of the perturber. The center
of the coordinate system is located on the nucleus of the
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perturber and the Rydberg core is located on the z axis. The
coordinates of the electrons are denoted by r1 and r2, the
position of the positive Rydberg core B is denoted by R (R
is the internuclear separation). The radial coordinate of ri is ri

and �i is used for the corresponding angular component.
The Hamiltonian of this system is

Ĥ =
∑

p=1,2

[K̂p + VA(rp) + VB(|rp − R|)] + 1

r12
, (1)

where K̂p = −(1/2)� is the kinetic-energy operator of the
pth electron, VA(r) and VB(r) are the potentials representing
the positive cores A and B, respectively. The last term is
the repulsion between the Rydberg and valence electron. The
interaction of the nuclei 1/R is a constant that is added to the
final calculated energies and it omitted from all the equations
for brevity of notation. The corresponding time-independent
Schrödinger equation for a fixed internuclear distance R
reads

Ĥ�(r1, r2) = E�(r1, r2), (2)

where �(r1, r2) is the two-electron bound-state wave function
and E denotes the corresponding eigenenergy. Projection of
the total angular momentum M = m1 + m2 on the nuclear axis
is conserved. The projections of the single-electron angular
momenta on the nuclear axis are denoted by m1 and m2.

The valence electron is located exclusively in the vicinity
of the perturber core A and only the Rydberg electron can
appear in the remaining space. A sphere S centered on the
core A is introduced with radius r0 < R and large enough to
confine all the region where the probability density of the
valence electron does not vanish. Then it is sufficient to treat
the complicated two-electron Schrödinger equation only in
the relatively small inner region and to smoothly match its
solutions on the sphere to the single-particle wave functions
calculated in the outer region.

A. Outer region

When the Rydberg electron is located in the outer region,
the solution �(r1, r2)|r2�r0

can be expressed using the bound
states ϕim1 (r1) of the valence electron weakly affected by the
Coulomb tail of VB(|r1 − R|) defined by the equation

[K̂1 + VA(r1) + VB(|r1 − R|)]ϕim1 (r1) = εim1ϕim1 (r1), (3a)

ϕim1 (r1)|r1�r0 ≡ 0, (3b)

where i indexes the bound states of the valence electron
and εim1 are the corresponding discrete energies. Using these
states, the total two-electron wave function �(r1, r2)|r2�r0

can
be expressed as

�(r1, r2)|r2�r0
=

∑

im1

ϕim1 (r1)Xim1 (r2). (4)

Projection of the Schrödinger equation (2) on the states
ϕim1 (r1), along with the assumption that the interaction be-
tween the Rydberg electron and the perturber can be neglected
in the outer region [VA(r � r0) ≡ 0], yields the following un-
coupled set of the equations:

[
K̂2 + VB(|r2 − R|) − (

E − εim1

)]
Xim1 (r2) = 0. (5)

Introducing the spherical harmonics Ylm(�2) on the unit
sphere centered on the core A, Xim1 (r2) can be expanded as

Xim1 (r2) =
∞∑

l2
m2 = M − m1

x j (r2)

r2
Yl2m2 (�2), (6)

where the multi-index j = {i, m1, l2}. The radial wave func-
tions x j (r2) satisfying the asymptotic bound-state bound-
ary conditions can be obtained using the Green’s func-
tion Gim1 (r2, r′

2) for the interaction VB(r2) defined by the
equation

[
K̂2 + VB(|r2 − R|) − (

E − εim1

)]
Gim1 (r2, r′

2)

= −δ3(r2 − r′
2) (7)

with the following expansion in terms of the spherical har-
monics:

Gim1 (r2, r′
2) =

∑

l2m2l ′2

g jl ′2m2
(r2, r′

2)

r2r′
2

Y ∗
l2m2

(�2)Yl ′2m2 (�′
2). (8)

Subtraction of Eq. (5) multiplied by Gim1 (r2, r′
2) from Eq. (7)

multiplied by Xim1 (r2), integration throughout the whole outer
region in the variable r2, and evaluation on the sphere S using
the partial-wave expansions (6) and (8) yields the following
relation between the values x j (r0) and the radial derivatives of
x′

j
(r0) of the radial wave functions on the sphere:

∑

l2∈ j

[

 jl2 x′

j
(r0) − 
′

jl2
x j (r0)

] = 0, (9)

where 
 jl2 = g jl2m2
(r0, r0), and the index m2 was dropped

from 
 jl2 for brevity of notation as m2 = M − m1. The radial
derivative of the Green’s function on the sphere is defined as


′
jl2

= g′
jl2

(r0, r0) = lim
r′

2→r−
0

∂

∂r

∣∣∣∣
r2=r0

g jl2 (r2, r′
2). (10)

Equation (9) holds for the wave functions of the Rydberg elec-
tron on the sphere that vanish asymptotically for an arbitrary
negative value of E . The discrete energies of the bound states
are determined by the condition that the inner-region wave
functions are required to satisfy Eq. (9) as well. This selects
the energies at which the solutions of the Schrödinger equa-
tion (2) are continuous everywhere in the space and satisfy the
asymptotic bound-state boundary conditions.

The Green’s function Gim1 (r2, r′
2) is the Coulomb Green’s

function [25] with the correction for the short-range interac-
tion introduced by Davydkin et al. [26], parametrized by the
quantum defects. Therefore, VB(|r − R|) does not explicitly
appear in the outer-region calculations.

The treatment of the outer region discussed above is con-
ceptually identical to that used by Khuskivadze et al. [20].
Technically, the ground and excited bound states of the va-
lence electron are in this work explicitly considered in the
inner region and this additional degree of freedom is taken into
account also in the outer-region equations presented above.
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B. Inner region and R matrix

The relation between the values and radial derivatives of
the wave functions on the sphere calculated from the inner
region, necessary for Eq. (9), is expressed by the R matrix.
Since the eigenstates of the valence electron ϕim1 (r1) vanish
on the sphere, the solutions of the Schrödinger equation (2)
calculated for the Rydberg electron in the inner region can be,
on the R-matrix sphere, expanded as [27]

�β (r1, r2)|r2=r0
=

∑

im1l2
m2 = M − m1

ϕim1 (r1)
q jβ (r0)

r0
Yl2m2 (�2),

(11)

where β indexes the linearly independent solutions in the
inner region corresponding to the same energy E . Then the
R matrix is defined as [27]

q jβ (r0) =
∑

j
′

Rj j
′q′

j
′
β

(r0). (12)

When a linear combination of the general solutions

x j (r0) =
∑

β

Aβq jβ (r0) (13)

satisfying also Eq. (9) exists, the corresponding energy E is
the eigenenergy of the bound state. Substitution of Eqs. (12)
and (13) into Eq. (9) yields a homogeneous system of lin-
ear algebraic equations. The energies at which a nontrivial
solution of this linear system exists are identified as the
bound-state eigenenergies. Defining the matrix

M = 
 − 
′R, (14)

the condition for the energy of the bound state can be formu-
lated as det(M ) = 0.

The R matrix (12) is in this work calculated by a single
diagonalization of the modified Hamiltonian [28]. First, the
Bloch operator L̂B [23,27] is added to the Hamiltonian (1).
The resulting operator Ĥ ′ is Hermitian inside the R-matrix
sphere. Its matrix representation H ′ is constructed using the
set of two-electron basis functions restricted to the inner re-
gion and antisymmetric with respect to the mutual exchange
of the electrons. Their angular components are the spherical
harmonics coupled to form the eigenstates of the total angular
momentum L, its projection on the nuclear axis M, and total
spin S of the spherical two-electron system. The only element
in the Hamiltonian (1) that is not spherically symmetric in
the selected coordinate system is the potential VB. Inside the
R-matrix sphere, it is a tail of the off-center Coulomb potential
that is expressed as the multipole expansion and it couples the
basis functions with different total angular momenta L. The
radial components of the two-electron basis functions are the
B-splines used to represent the open and closed functions that
are non-zero and vanishing on the sphere, respectively.

The diagonalization of H ′ yields a set of the real eigenval-
ues Ek and corresponding eigenstates. The projections of the
latter on the sphere yields the surface amplitudes w jk that can
be used to explicitly construct the energy-dependent R matrix

as a pole expansion [28,29]:

Rj j
′ (E ) = 1

2

∑

k

w jkw j
′
k

Ek − E
. (15)

The benefit of this approach is that the computationally de-
manding treatment of the two-particle Schrödinger equation
in the inner region is not performed for every energy of
the interest. Instead, H ′ is diagonalized only once for every
internuclear distance, the R-matrix poles and amplitudes are
obtained, and the matrix M is numerically constructed on the
energy grid using the explicit formula for the R matrix (15).

Note that this computational method does not explicitly in-
volve the classical local kinetic energy of the Rydberg electron
at the position of the perturber, that is an essential quantity
in the zero-range approach. As a result, in the approach dis-
cussed above, the internuclear distances at which the classical
kinetic energy of the Rydberg electron is negative do not
require different treatment from those where it is positive.

III. PARAMETERS OF TWO-ELECTRON R-MATRIX
CALCULATIONS

The representation of the perturber with the core A, includ-
ing the details of the potential VA(r), as well as the quantum
defects of the Rydberg center B, are discussed in Sec. I of the
Supplemental Material [24].

In order to treat the polarization effects between the Ryd-
berg electron and the valence electron of the neutral perturber
accurately, the radius of the R-matrix sphere centered at the
core A was set to r0 = 30 a.u. The formulation of the R-matrix
method for the LRRMs [23] assumes that the polarization po-
tential of the perturber can be neglected outside the R-matrix
sphere. Therefore, larger r0 allows for a larger portion of the
polarization potential included in the calculation.

It is well known that the accurate treatment of the elec-
tron interactions with the alkali metals at very low energies,
that are relevant in this study, requires propagating the wave
function in the polarization potential to very large distances
[30]. In order to converge the phase shifts at the low energies,
thousands of atomic units are typically necessary [30,31].
This is due to their large polarizability and the polarization
potential affecting the phase of the scattering wave func-
tion even at large distances from the target. However, in
the LRRMs, except in a relatively small vicinity of the per-
turber, it is the Coulomb tail of VB(|r − R|) that dominates
over the polarization potential of the perturber and its ef-
fect is treated accurately by the Coulomb Green’s function
[20,23,25]. Therefore, the calculations of the LRRMs PECs
performed with r0 = 30 a.u. yield very accurate energies
although the same radius, while neglecting the polarization
potential outside the R-matrix sphere, would not provide ac-
curate scattering phase shifts at low energies.

The angular basis set used inside the R-matrix box consists
of the eigenstates Y (LM )

l1l2
of the total two-electron angular

momentum with quantum numbers L and M. The one-particle
angular momenta of the individual electrons are denoted as l1
and l2. A wider range of the angular momenta was included
in the basis set for the calculations performed at smaller inter-
nuclear separation R than for those at bigger R. The reason is
that the Coulomb tail of VB that breaks the overall spherical
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symmetry of the two-electron system, varies within the
R-matrix sphere more rapidly at smaller R. As a result, com-
ponents of the wave function with higher angular momenta
are required to converge the calculation inside the R-matrix
sphere. The basis functions with l1,2 � 5 were used for R �
70 a.u. For 70 > R � 55 a.u., the angular basis set was ex-
tended to l1,2 � 6, for 55 > R � 42 a.u. to l1,2 � 7 and to
l1,2 � 8 for even smaller internuclear distances. All the ele-
ments with L where |l1 − l2| � L � l1 + l2 were included in
the basis set and corresponding blocks coupled by VB were
included in the Hamiltonian matrix H ′.

Every extension of the angular space significantly in-
creases the size of the Hamiltonian matrix H ′. This raises
issues with computer memory and the time necessary for the
construction and diagonalization of H ′. In order to keep the
calculations computationally tractable, the angular space was
extended only at smaller values of R where it is necessary.

The high computational demands of inner-region calcula-
tions for small R restrict the research of the PECs to R � 37
a.u. A more fundamental lower limit of the internuclear dis-
tances at which the R-matrix method can be applied is the
radius of the R-matrix sphere r0. The presence of the positive
core B inside the R-matrix sphere would require its different
representation and consequently reformulation of the inner-
region treatment.

As discussed in TC, the two-electron configurations in
the close-coupling expansion of the wave function inside the
R-matrix sphere involve the closed one-particle orbitals that
vanish on the R-matrix sphere: the lowest bound states of the
bare perturber and the open one-electron orbitals represented
by all the B-splines. In this study, the closed orbitals 5s, 5p,
4d , 6s, and 6p were used.

Four lowest eigenstates ϕim1 (r1) of the perturber in the
Coulomb tail of the potential VB(|r − R|) were included in the
calculations as the scattering channels [see Eqs. (3), (4), and
(11)]. They correspond to the ground state 5s of Rb and the
excited state 5p split by the nonspherical off-center Coulomb
potential VB. They are essential for the calculation of the PECs
involving the excited states of the perturber.

IV. ONE-ELECTRON R-MATRIX CALCULATIONS

The two-particle character of the electronic wave func-
tion inside the R-matrix sphere taken into account in the
two-electron R-matrix method [23] limits its possibilities to
visualize this wave function. Although its single-particle com-
ponent in the outer region, that is most important for this
study, can be plotted easily, that information is not sufficient
at the energies and internuclear distances discussed in this
paper, as the size of the R-matrix sphere is comparable with
the size of the overall region where the Rydberg electron can
be located.

Another motivation for these finite-range single-particle
calculations is the fact that the energies obtained within the
zero-range model can be sensitive to its particular compu-
tational implementation (direct diagonalization in the finite
basis set or calculations directly involving the Green’s func-
tions) and to the parameters of the particular calculation, i.e.,
the number of basis functions involved in the diagonaliza-
tion [19]. However, Refs. [21,22] do not include a detailed

discussion of the numerical parameters used to obtain the
results. Therefore, their correspondence with the finite-range
single-particle PECs presented in this study, in addition to
the agreement with the experimental spectra, further supports
their accuracy. Both approaches represent different technical
realizations of similar physical approximations: the model-
potential e−-Rb interaction that yields

correct scattering phase shifts.
In order to investigate the features of the Rydberg wave

functions, another single-particle model of the LRRMs was
utilized where the perturber was represented by a finite-range
potential. Although this model is more approximate than the
two-electron treatment, the PECs obtained from both ap-
proaches (discussed in Sec. V) are, except in several specific
regions, in good qualitative and quantitative agreement.

The finite-range potential representing the neutral rubid-
ium perturber in the single-particle part of this study was
constructed by Khuskivadze et al. [20] and successfully uti-
lized in the context of the LRRMs [20] as well as the
near-threshold photodetachment of alkali metal anions [32]. It
was optimized to accurately reproduce the low-energy phase
shifts of the e−-Rb collisions (the same condition as in the
case of the zero-range potentials; see [14] and the references
therein). Note, however, that the potential itself is energy
independent and it is not a function of the kinetic energy of
the electron. The e−-Rb interaction is considered only in the
partial waves s and p.

Although Khuskivadze et al. [20] also included the spin-
orbit term in their potential, it was disregarded in this work
in order to construct a model that is consistent with the
two-electron approach, and only the triplet component was
used.

The computational method used to obtain the PECs of the
LRRMs is also similar to that of Khuskivadze et al. [20]. The
configuration space of the Rydberg electron is separated by
a sphere centered on the perturber and is sufficiently large
so that the interaction of the Rydberg electron with the per-
turber can be neglected outside. The treatment of the outer
region utilized in the single-electron calculations presented
here is the same as in Ref. [20]. It is a special case of the
approach discussed in Sec. II A. The single-electron finite-
range calculations were performed with the quantum defects
of Rb+ published by Lorenzen and Niemax [33], while the
two-electron R-matrix results are obtained using the quantum
defects calculated from the model potential VA (see Sec. I of
the Supplemental Material [24]).

In the calculations presented here, the Schrödinger equa-
tion inside the sphere was not directly numerically integrated
for every energy of the interest as in Ref. [20]. Instead, the
inner-region problem was formulated in terms of the R matrix
and treated along the same lines as in Sec. II.

The spherical harmonics Ylm with l = 0, . . . , 9 and m = 0
were used as an angular basis in the inner region, where
the wave function was expanded with respect to the center
of the sphere. Although the model potential [20] is nonzero
only for l = 0, 1, the off-center Coulomb potential due to
the Rydberg core requires higher angular momentum, partic-
ularly at smaller internuclear separations. The radius of the
R-matrix sphere was, in the single-electron calculations, set to
30 a.u. The radial part of the inner-region wave function was
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expressed as a linear combination of 200 B-splines of the sixth
order.

V. COMPUTED POTENTIAL ENERGY CURVES

The 3� PECs of the long-range Rydberg states in Rb2

were calculated using the two-electron R-matrix method for
internuclear distances R between 37 and 200 a.u. The ener-
gies of our interest span the interval between the dissociation
thresholds corresponding to the states 5s + 7p and 5s + 13p
of the noninteracting atoms.

The single-electron R-matrix calculations based on the
finite-range potentials by Khuskivadze et al. [20] discussed in
Sec. IV were performed for the same interval of energies and
internuclear distances. Since these potentials were constructed
to accurately fit the same low-energy e−-Rb phase shifts as
the contact potentials used by Bellos et al. [21], it is not
surprising that these two approaches yield quantitatively very
similar results. Therefore, the comparison of these single-
electron approaches throughout the whole studied range of the
energies and R is not presented here. Instead, their similarity
is illustrated for the selected states below in this section and
the regions where they yield qualitatively different PECs are
discussed.

Small segments of several PECs presented below are miss-
ing near the energies corresponding to the infinite separation
of the nuclei, or small discontinuities appear there. It is due
to the finite energy grid used in the numerical matching of the
wave functions on the R-matrix sphere. Near the asymptotes,
the energy grid is not sufficiently fine to separate the molecu-
lar states where det(M ) = 0 [see Eq. (14)] from the energies
of unperturbed atomic Rydberg states where the Green’s func-
tion possesses poles.

Among the other curves discussed below, the figures with
the calculated PECs also show four very steeply rising PECs
that do not appear in the results of the zero-range model.
They are artifacts of the utilized computational method that
are further explained in the Appendix.

Note that the two-electron and one-electron finite-range
R-matrix results presented below take into account the polar-
ization of the neutral perturber by the positive Rydberg core.
The inner-region wave function is in the two-electron method
expanded in terms of the eigenstates ϕim1 of the perturber
affected by the positive Rydberg center [see Eqs. (3)]. The
term

Vpol = − αd

2R4
, (16)

where αd is the static dipole polarizability of rubidium, is
included in the finite-range model potential [20] used in the
one-electron finite-range model. In order to achieve a like-to-
like comparison of these methods with the zero-range model,
the term (16) was also added to all the zero-range energies
taken from Ref. [21] that are presented below. It has been
utilized in previously published studies based on the zero-
range model to partially represent the interaction between the
neutral atom and positive ion [34–37].
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FIG. 1. PECs 3� calculated using the two-electron R-matrix
technique (black dotted lines) compared with the curves obtained
from the zero-range model by Bellos et al. [21] (red dashed lines).
Zero energy corresponds to two noninteracting Rb(5s) atoms. The
marks on the right side denote the nondegenerate electronic states of
the noninteracting atoms. The vertical arrows denote the degenerate
hydrogen-like manifolds of the Rydberg electron l > 3.

A. PECs associated with Rb− resonance

As can be seen in Fig. 1, the two-electron R-matrix method
yields results qualitatively similar to those obtained from
the zero-range potentials used by Bellos et al. [21]. The
quantitative differences are visible for the PECs that detach
from the degenerate hydrogenic manifolds 5s + n(l > 3) (n =
7, . . . , 10, denoted by the vertical arrows in Figs. 1 and 2) and
descend as R decreases. These curves are a consequence of
the low-energy p-wave resonance in Rb− [5,38,39]. The prob-
ability density of the Rydberg electron is in the corresponding
electronic states localized around the perturber more than in
the general molecular Rydberg states.

The zero-range potential is constructed to yield the same
phase shifts as the true multielectron interaction. Its appli-
cation assumes that the interaction region spanned by the
perturber is infinitesimally small, as the parametrization by
the phase shifts is used everywhere in the space. On the
other hand, the two-electron R matrix takes into account the
full repulsion between the Rydberg electron and the valence
electron while their relative distance is small, and treats the
two-electron wave function in the small interaction region of
the perturber where its parametrization by the phase shifts is
not accurate. Simultaneously, the influence of the positive core
B on both electrons is included as well. These subtle two-
electron effects along with the finite size of the perturber can
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FIG. 2. Detail of the 3� PECs between the asymptotes 5s + 9p
and 5s + 13s also shown in Fig. 1. The notation is identical to that in
Fig. 1.

play an important role in the states where the Rydberg electron
is predominately localized in the vicinity of the perturber.

The importance of the interplay between the electron-
electron repulsion and effect of the positive Rydberg core
treated in the finite volume is also supported by the one-
electron R-matrix calculations. Figure 3 shows that even
the finite-range one-electron approximation of the neutral
perturber yields PECs involving the atomic resonance (the
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FIG. 3. Detail of the PECs with the asymptotes 5s + 11d and
5s + 13s calculated using the single-electron and two-electron mod-
els (a). The labeled points are those at which the Rydberg electron
densities are plotted in Fig. 2 of the Supplemental Material [24].
Radial values of the atomic Rydberg function 11d at the perturber’s
center (b). The vertical guiding lines connect the structures in the
PECs with corresponding extremes and nodes of the atomic Rydberg
wave functions.
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FIG. 4. Detail of the PECs with the asymptote 5s + 12p cal-
culated using the finite-range one-electron representation of the
perturber [20] (a). The labeled points are those at which the Rydberg
electron densities are plotted in Fig. 7. The radial values of the
atomic Rydberg wave function 12p plotted at the perturber’s center
(b). The vertical guiding lines connect the structures in the PECs
with corresponding extremes and nodes of the atomic Rydberg wave
function.

segment steeply descending with decreasing R from the
asymptote 5s + 13s), very similar to those obtained from the
contact model. This similarity is not affected by the term
∼ − r · R/(Rr)3 that in the finite-range single-electron model
[20] represents the interaction between the Rydberg electron
and positive Rydberg core via the dipole moments induced
on the perturber. The two-electron wave function and the
true Coulomb repulsion of the electrons inside the sufficiently
large R-matrix sphere are the factors responsible for the dif-
ferences between the two-electron PECs and those obtained
from the single-particle potential models.

These factors are also responsible for the disparities be-
tween the two-electron and one-electron avoided crossings
involving the PECs associated with the Rb− resonance. Simul-
taneously, both single-particle approaches yield these avoided
crossings that are very similar to each other for all the states
studied here. This is for a subset of the PECs illustrated in
Figs. 3 and 4.

B. Oscillating PECs near asymptotes 5s+np

Avoided crossings between the oscillating PECs located at
energies closest to the asymptotes 5s + np (curves α and β

in Fig. 4 for the asymptote 5s + 12p) also show differences
between the single-electron and two-electron approaches. As
can be seen in Figs. 1, 4, and 5 for the asymptotes 5s + np
where n = 10, . . . , 13, the avoided crossing left of the out-
ermost deep potential well (near the points b and d in Fig. 4
for the asymptote 5s + 12p) obtained from the two-electron
R-matrix approach is less narrow than the same struc-
ture calculated using the finite-range or zero-range single-
electron model. The avoided crossings of the same curves at
smaller internuclear distances show improving agreement be-
tween the single-electron and two-electron calculations with
decreasing R.
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FIG. 5. PECs 3� calculated using the two-electron R-matrix
technique (black dotted lines) compared with the curves obtained
from the one-electron finite-range calculations [20] (red dotted lines).
Zero energy and the meaning of the labels are identical to those in
Fig. 1.

It is not straightforward to attribute these differences to a
single effect. Although the probability densities of the Ryd-
berg electron in the states near these avoided crossings are
not localized around the perturber as much as in the states
involving the e−-Rb resonance, they are not negligible in this
region. Therefore, the two-electron effects can play a role here
in a way similar to that discussed above. On the other hand, the
classical kinetic energy of the Rydberg electron at the position
of the perturber is, in the case of these avoided crossings,
higher than 100 meV. As a result, the e−-Rb interaction in
the d wave can also partially contribute to the different dis-
tances between the avoiding curves. This d-wave interaction
is included in the two-electron R-matrix approach and disre-
garded in the one-particle models. Its effect was supported by
the test two-electron calculation where the interaction of the
Rydberg electron with the perturber was artificially restricted
only to the partial waves s and p. Obtained avoided crossings
between the oscillating PECs near the 5s + np asymptotes
were narrower than those calculated using the full interaction,
although not as narrow as the single-particle crossings. These
arguments, however, do not explain the improving correspon-
dence among different models for the avoided crossings at
smaller R.

C. Classical turning points

Both single-electron approaches considered in this work
yield, in the region of the energies and internuclear distances
discussed above, PECs that are qualitatively and quantitatively
similar to each other. This is because both e−-Rb potentials
model the same physical properties of this system: the s-wave
and p-wave scattering phase shifts.

This general agreement breaks when the perturber is lo-
cated in the classically forbidden region of the Rydberg
electron. Application of the zero-range model there requires
its extension. To the best of the author’s knowledge, the most
frequent generalizations utilized in the previously published
works are either based on setting the local kinetic energy of
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FIG. 6. Segments of the PECs calculated using the one-electron
and two-electron models where the Rydberg electron is classically
forbidden. The vertical blue dashed lines denote the positions of
the classical turning points RCT = −1/εnl , where εnl is the energy
of the unperturbed atomic Rydberg state nl . The variations in the
asymptotic energies among compared models are due to different
quantum defects used in different models.

the Rydberg electron to zero everywhere in the classically
forbidden region [14,17] or on the smooth extension of the
e−-Rb phase shifts to negative energies [40]. According to
Shaffer et al. [13], these unphysical approximations do not
have a considerable impact on the nuclear dynamics of the
LRRMs discussed there and in the references therein. Appli-
cation of the zero-range interaction in this region can cause
cusps in the calculated PECs at the classical turning points
of the Rydberg electron [13,14,17]. Although the description
of the zero-range potential in the classically forbidden region
is not included in Ref. [21], these cusps can be clearly rec-
ognized for the low-lying PECs with the asymptotes 5s + 9p
and 5s + 8d in Figs. 1 and 6. Their amplitudes decrease with
increasing energy, and for the higher PECs the cusps cannot be
clearly distinguished from the shallow potential wells formed
near the classical turning points (see Fig. 6).

Unlike the contact interaction, the finite-range potential
[20] does not directly depend on the local kinetic energy of the
Rydberg electron. Consequently, the classical turning points
do not appear in the calculation. Technically, the general so-
lutions of the Schrödinger equation with this potential can be
obtained for arbitrary energies. The bound states are identified
with those wave functions at particular negative energies that
satisfy the corresponding boundary conditions. As a result, the
obtained PECs are smooth near the classical turning points of
the Rydberg electron. However, this does not imply that they
are more accurate in the classically forbidden regions than the
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PECs calculated using the zero-range model. Although the
local classical kinetic energy of the Rydberg electron does
not explicitly appear in the calculations, the model potential
was optimized by fitting the e−-Rb phase shifts only for the
positive kinetic energies. Utilization of the same potential
in the classically forbidden regions is another arbitrary, al-
though smooth, extrapolation of the model interaction towards
the negative local classical kinetic energies of the Rydberg
electron.

As can be seen in Fig. 6, the mutual deviation of the ener-
gies obtained from both approaches becomes significant even
in the classically allowed region on the length scale similar to
the size of the neutral atom. It is a consequence of the finite
size of the perturber considered in the model interaction by
Khuskivadze et al. [20],

The two-electron R-matrix method is, in the classically
forbidden region, free of all the issues associated with the
single-electron approaches mentioned above as the e−-Rb
interaction is not constructed by a parametrization of any
quantity that depends on the kinetic energy of the impinging
electron. Instead, the two-electron wave function inside the
R-matrix sphere for the Hamiltonian (1) is obtained at an
arbitrary energy without imposing any outer-boundary con-
ditions. At the energies of the bound states, it is possible to
perform its smooth matching with the asymptotically van-
ishing outer-region wave function in terms of the R matrix.
This object is not associated with any particular outer-region
boundary conditions [27] or types of the wave functions in
the outer region that depend on the electron kinetic energy.
As a result, the whole problem can be solved in terms of the
total energy E . As can be seen in Sec. II, it is not necessary to
express the kinetic energy of the Rydberg electron anywhere
in the calculation. The details of the two-electron PECs in the
classically forbidden region are plotted in Fig. 6.

D. Short internuclear distances

Another region where the PECs obtained from the models
discussed here deviate from each other is the range of the
small internuclear distances among those studied in this work.
An illustration of their discrepancies at small R can be seen in
the top PEC visualized in Fig. 4, where each single-particle
model yields different energies at R � 60 a.u. The differ-
ences between the one-electron models are due to the fact
that, at these small distances of the nuclei, the variation of
VB(|r − R|) is not negligible on the scale comparable to the
size of the perturber. Therefore, the local kinetic energy of
the Rydberg electron is not constant throughout the region
occupied by the neutral atom. This effect is not treated by
the zero-range model [21] and it is taken into account by the
finite-range potential [20].

The differences between the one-particle models and the
two-electron R-matrix calculations are caused by the polar-
ization of the valence electron of the perturber by both the
Rydberg electron as well as the positive Rydberg core, ac-
curately treated by the two-electron R-matrix method [see
Eqs. (3)]. The deviations of the PECs can be seen in Fig. 1
for the states with the asymptotes 5s + 7 f and 5s + 10p at
R � 50 a.u. and R � 40 a.u., respectively. Figure 2 provides
further illustrations for the state with the asymptote 5s + 11p.

The polarization term (16) in the one-electron approaches
improves the overall agreement of the corresponding PECs
with the two-particle model at small R. It suggests that this
simple term reasonably treats the polarization of the perturber
by the positive Rydberg core.

Among the other PECs at small internuclear distances
mentioned above, the curve with the asymptote 5s + 7p plot-
ted in Fig. 6 is worth mentioning here since the corresponding
classical turning point of the Rydberg electron is located at the
small internuclear distance R = 37.6 a.u. Beyond this value,
the differences among the PECs obtained from the models
discussed here are caused by two effects: the polarization
of the perturber by the positive Rydberg core as well as the
different treatment of the interaction between the perturber
and the Rydberg electron in its classically forbidden region.
In the higher PECs mentioned above, each of these effects is
dominant in different segment of the curve.

The states near the asymptote 5s + 7p were also subjects
of the experimental study by Carollo et al. [22]. The energies
of the vibrational states supported by this PEC were measured
and their good agreement with those calculated from the zero-
range PEC was reported.

E. PECs associated with excited perturber

The two-electron R-matrix method allows for calculation
of the PECs associated with the excited states of the perturber
as its valence electron is directly represented. In the limit
of infinitely separated nuclei, three dissociation thresholds
involving the perturber in its excited state lie below the low-
est ionization threshold: 5p + 5p, 5p + 4d , and 5p + 6s. The
lowest (5p + 5p) and highest (5p + 6s) among them lie below
and above the energy interval studied in this article, respec-
tively. The PECs with the asymptotic energy corresponding to
the separated atomic states 5p and 4d are displayed in Figs. 1
and 2.

Since the excitation energy of the perturber represents here
a large portion of the total energy, the Rydberg electron is
confined deeper in the potential VB than in the molecular
states in the studied energy range, where the perturber is in its
ground state. As a result, the potential barrier formed by the
Coulomb tail of VB and polarization potential of the perturber
in its excited state is too high for the Rydberg electron to
classically reach the perturber for every internuclear separa-
tion beyond ≈43 a.u. Therefore, all the segments of the PECs
located at R � 43 a.u. can be very accurately approximated
as E (R � 43 a.u.) = ε2m1 (R) + ε42, where ε42 is the energy of
the atomic Rydberg state 4d and ε2m1 (R) are the energies of
the perturber in the excited state 5p polarized by the Coulomb
tail of VB [see Eqs. (3)]. The triply degenerate state 5p of the
perturber is split by VB into the lower state with m1 = 0 and the
higher doubly degenerate state where m1 = ±1. The angular
momenta of the Rydberg electron are then coupled to form
�-states of the two-electron system.

Validity of this approximation breaks at R � 43 a.u. where
the lower PEC shows clear minimum and the higher doubly
degenerate antibonding curve shows even more steep anti-
bonding character. Although the lower curve supports the
bound vibrational states, their experimental realization or
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observation might be generally difficult due to low lifetimes
of the involved low excited atomic states [41].

VI. RELATION BETWEEN RYDBERG WAVE FUNCTIONS
AND STRUCTURES IN PECs

The structures in the calculated PECs are related to the
character of corresponding electronic wave functions. Several
categories of the LRRM states, that have previously been well
studied at larger nuclear distances, show different character in
the range of smaller R studied in this work.

Since the two-electron wave functions obtained from the
R-matrix calculations are complicated to analyze, especially
inside the R-matrix sphere, the structure of the Rydberg
electron wave functions was studied by means of the single-
particle finite-range model.

As can be seen in Fig. 5, the one-electron finite-range
model yields PECs qualitatively very similar to those obtained
from the two-electron approach. Therefore, it is reasonable to
anticipate that the structures found in the corresponding wave
functions of the Rydberg electron are also qualitatively correct
and allow for the characterization of the two-electron PECs.

The overall qualitative agreement among the PECs calcu-
lated using all three models discussed in this article implies
that, except small R � 40 a.u., the features discussed in the
rest of this section are not consequences of the finite size
of the perturber. In fact, as discussed below, they can be, at
least qualitatively, explained in terms of the zero-range model.
They are specific for the range of the energies and internuclear
separations discussed in this work.

The PECs with the asymptotes 5s + ns, 5s + nd , and 5s +
n f plotted in Figs. 1, 2, and 5 possess oscillatory structures.
As illustrated in Fig. 3 for the state with the asymptote
5s + 11d , the positions of the local maxima and minima in
these PECs very accurately agree with the locations of the
radial nodes and local extremes in corresponding unperturbed
atomic Rydberg wave functions, respectively. This is consis-
tent with the perturbative treatment of the zero-range model
[1] where the negative energy shift is proportional to the
probability density of the unperturbed Rydberg electron at
the position of the perturber. Corresponding illustrative two-
dimensional maps of the probability density of the Rydberg
electron are presented in Sec. III of the Supplemental Material
[24]. For the nuclear geometries where the PECs attain their
local minima and maxima, the wave functions of the Rydberg
electron are in the vicinity of the neutral perturber dominated
by the s wave and p wave (with respect to the perturber),
respectively.

A. PECs with asymptotes 5s+np and 5s+n(l >3)

The electronic wave functions of the states with the
asymptotes 5s + np have very different character from those
discussed above. As can be seen in Figs. 1, 2, 4, and 5, three
curves appear at energies close to every asymptote 5s + np:
Two of them (denoted as α and β in Fig. 4) cross each
other and show clear oscillatory behavior. The third curve (de-
noted as γ in Fig. 4) is monotonically decreasing towards the
nearest lower asymptotic degenerate hydrogen-like threshold
5s + (n − 3)(l > 3). Although the discussion in the rest of
this subsection is focused on the curves near the threshold

FIG. 7. Two-dimensional maps of the Rydberg electron proba-
bility densities in the molecular states where the atomic states 12p
and 10(l > 3) are perturbed. The perturber is located in the center
of the coordinate system and the white circle denotes the R-matrix
sphere. The internuclear distances are marked on the vertical axes
and corresponding points on the PECs are labeled in Fig. 4. The
small vicinities of the atomic centers are discussed in Sec. III of the
Supplemental Material [24].

5s + 12p magnified in Fig. 4, it is valid for all the Rydberg
states np considered in this article.

At the internuclear separations near the dissociation limit,
the wave function (not visualized here) retains the overall
p -symmetry (with respect to the Rydberg core) with the
perturbation localized in the vicinity of the perturber. Be-
low the avoided crossing with the PEC involving the Rb−

resonance (R � 140 a.u. in Fig. 4), none of the wave func-
tions can be characterized as predominated by the np states
(see Fig. 7). All three of them have complicated structure
with significant contributions of the higher angular momenta.
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Correspondingly, as illustrated in Fig. 4 for the state 12p, the
local minima and maxima of the oscillations in the PECs do
not accurately correspond to the extremes and zeros of the
radial atomic Rydberg wave functions np.

The character of the PECs α and β in Fig. 4 can be partially
explained by the coupling of the degenerate hydrogen-like
manifolds by the neutral perturber represented by the zero-
range model. In that theory, the pseudopotential of the
perturber in the partial waves s [1] and p [5,16] yields in the
basis of the degenerate atomic states two PECs that detach
from the degenerate unperturbed asymptote. One of them
descends with decreasing internuclear distance R due to the
e−-Rb resonance [38] and becomes oscillatory at smaller
internuclear separations. This corresponds to the curve β in
Fig. 4. Hamilton et al. [5] associated it with the butterfly elec-
tronic states of the LRRM. However, the probability density
maps of the Rydberg electron corresponding to the points of
the PEC β calculated in this work do not show the butterfly
character [see Figs. 4(c) and 4(d)].

In the energy range studied in this work, these oscillating
PECs are intersected by the asymptotic energy 5s + np. This
suggests that this state np is coupled to the nearest degen-
erate manifold above it and its perturbation by the neutral
atom cannot be treated separately. As a result, there are no
states in the studied region where the perturbation of the np
atomic Rydberg levels would be localized to the vicinity of the
perturber [see Figs. 4(a) and 4(b)]. This coupling is also the
reason for the character of the Rydberg electron probability
density being different from the butterfly-like shape.

The authors in Ref. [5] studied higher excitations of the
Rydberg atoms where the oscillatory segments of these deeply
bound PECs are well separated from the other asymptotic
thresholds. Therefore, the weakly locally perturbed Rydberg
states np exist and the perturbed high-l states show the butter-
fly character.

The role of the coupling with the states np was verified by
performing a set of the test one-electron finite-range R-matrix
calculations where the model potential of the perturber [20]
was artificially made more attractive. The oscillatory struc-
tures in the obtained PEC β descended towards lower energies
while separating from the curve α. The PEC α became con-
sistent with other weakly perturbed nondegenerate states with
the asymptotes 5s + n(l = 0, 2, 3).

B. Trilobite-like states

The other type of PEC detaching from the degenerate
hydrogen-like manifolds at large values of R in Figs. 1, 2,
and 4 is monotonically increasing with the nuclei approaching
each other (curve γ in Fig. 4).

The Rydberg electron probability distributions [Figs. 7(e)
and 7(f)] along this curve show the dominating s-wave compo-
nent in the vicinity of the perturber and the overall similarity
to the trilobite states [1,42].

Absence of the oscillatory structures in the PECs that sup-
port the bound vibrational states is a qualitative difference
from the previously studied trilobite states at higher energies
and larger R (see [14] and references therein).

In the zero-range model, the oscillating segment of the
trilobite PEC spans the interval of R between two charac-
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FIG. 8. Detail of the PECs calculated using the finite-range one-
electron model [20] (red dotted lines) near the asymptotes 5s + 9 f
and 5s + 9(l > 3) plotted along with the PECs obtained neglecting
the e−-Rb interaction in the p wave (blue crosses) (a). Mapping
between the internuclear distance R and the classical kinetic energy
of the Rydberg electron Ek at the location of the perturber (b), aligned
by the R axis to panel (a). Dependence of the 3Se phase shift on Ek

[20] (c), aligned by the axis Ek to panel (b). The green dashed-dotted
vertical guiding line denotes the point where Ek = 0.

teristic points. On the side of the large R, it is bounded by
the classical turning point of the Rydberg electron, beyond
which the perturber interacts only with the nonoscillating
exponentially decreasing region of the atomic Rydberg state.
The left boundary of this segment is defined by the condition
that the local kinetic energy of the Rydberg electron at the
position of the perturber coincides with the Ramsauer mini-
mum (≈45 meV) in the triplet s-wave e−-Rb phase shift. The
repulsive character of the electron-atom interaction at smaller
internuclear distances consequently yields repulsive PEC.

In order to elucidate the absence of the bound vibrational
states associated with the trilobite electronic wave functions
emerging from the calculations presented here, an artificial
one-electron R-matrix calculation was performed where only
the s-wave e−-Rb interaction was considered. The detail of the
calculated PECs near the dissociation thresholds 5s + 9 f and
5s + 9(l > 3) is plotted in Fig. 8(a) by the blue crosses. This
artificial trilobite-like PEC has a single shallow minimum be-
low the dissociation threshold 5s + 9(l > 3) at R ≈ 148 a.u.
This suggests that, in the range of energies and R considered
in this study, the attraction of the atoms due to the low-energy
s-wave e−-Rb interaction is weak and it is compensated by
the repulsive effect of the p-wave interaction included in the
complete models.

The small extent of R where the artificial trilobite-like PEC
becomes attractive can also be qualitatively understood in
terms of the zero-range model. The atomic Rydberg states that
are subjects of this study are relatively compact. Therefore, a
small increase of the distance from the positive core yields
a rapid decrease of the local kinetic energy of the Rydberg
electron [Fig. 8(b)]. As a result of this mapping, the e−-Rb
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interaction in the s wave is attractive (and consequently in-
duces attraction of the centers) in the narrow interval of
distances from the positive core between the the point cor-
responding to the Ramsauer minimum at 127 a.u. and the
classical turning point at 162 a.u.

As can be seen in Fig. 8, the point where the artificial
trilobite PEC changes its nature from attractive to repulsive (at
R ≈ 135 a.u.) does not accurately correspond to the Ramsauer
minimum in the 3Se e−-Rb interaction. It is visible as the
difference in R and in Ek marked by the magenta region. Since
the difference of 8 a.u. is similar to the size of the ground-state
Rb atom, this variation can be attributed to the effects of the
finite atomic size. This is taken into account in the PECs
calculated in this work while it is disregarded in the zero-range
interpretation.

VII. CONCLUSIONS

The two-electron R-matrix method [23] was applied to
Rb2 for a range of the internuclear separations between 37
and 200 a.u. in order to calculate the excited 3� electronic
states of this LRRM. In addition to the interaction between
the Rydberg electron and the neutral perturber, considered
also in the zero-range models of the LRRMs, this approach
also takes into account the effect of the Coulomb potential
due to the positive Rydberg core on the valence electron of
the perturber. The valence electron is explicitly represented
and its interaction with the Rydberg electron is treated as true
Coulomb repulsion.

The goal of the study presented in this article was to
compare this advanced two-electron approach with the simple
zero-range model at intermediate internuclear separations R <

200 a.u. where these can yield different energies. The PECs
calculated using the two-electron R-matrix method showed
overall character similar to that obtained from the zero-range
model. The most notable differences appeared in the regions
where the curves detach from the asymptotic energies of the
degenerate hydrogen-like Rydberg states. Due to the low-
energy e−-Rb resonance, significant probability density of the
Rydberg electron is localized in the vicinity of the perturber.
It is not surprising that these states are sensitive to the details
of all the interactions involving the perturber.

The two-electron R-matrix technique also yields different
energies than the one-electron methods in the classically for-
bidden regions of the Rydberg electron. These differences
were attributed to the fact that the model e−-Rb interaction is,
in the one-particle models, directly or indirectly parametrized
by the kinetic energy of the Rydberg electron, and their ap-
plication in the classically forbidden region requires their
extension towards the negative energies. These assumptions
are not required in the two-electron R-matrix approach.

The zero-range model [1,5] and the two-electron approach
also yield different results at small internuclear separations,
among those studied in this work. This is due to the polariza-
tion of the perturber by the Coulomb tail of the potential due
to the positive Rydberg atomic core. This effect can be, in the
one-electron models, partially taken into account by including
the polarization term −αd/2R4 [34–37].

The two-electron approach allowed for the calculation of
the PECs associated with the excited state of the neutral

perturber. The curves with the asymptotic energy of the state
5p + 4d were presented in this article. The PECs can be well
approximated by the atomic energy of the perturber in the
state 5p weakly polarized by the distant Rydberg core. This
character changes only at R � 43 a.u.

The wave functions of the Rydberg electron were calcu-
lated using the one-particle model based on the finite-range
potential representation of the perturber [20].

The perturbation of the nondegenerate atomic Rydberg
states ns, nd , and n f (with respect to the positive Rydberg
center) by neutral Rb atom yields wave functions that re-
tain their overall angular structure of the unperturbed atomic
Rydberg states; the modification is localized in the vicinity
of the perturber. On the other hand, the global character of
the perturbed atomic Rydberg states np changes rapidly even
while the perturber is distant from the Rydberg core, and
the wave functions show very complicated nodal structure
involving high angular momenta. This is due to the fact that
in Rb2, at the internuclear separations studied in this work,
the energies of the long-range molecular butterfly-like states
involving high angular momenta with respect to the positive
core are very close to the energy levels of the atomic Rydberg
states np.

Another category of molecular states, involving high an-
gular momenta of the Rydberg electron, is the trilobite states.
In the range of the internuclear separations studied here, the
PECs associated with these states are antibonding (monoton-
ically decreasing with the internuclear distance) and they do
not possess any vibrationally bound states. This is due to very
small interval of R where the classical energy of the Rydberg
electron allows it to interact attractively with the rubidium
perturber in the s wave. Moreover, the s-wave attraction is
too weak and the overall nature is dictated by the repulsive
p wave.
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APPENDIX: UNPHYSICAL STEEPLY RISING PECs

Figs. 1 and 5 show, among others, four very steeply rising
PECs that do not appear in the results of the zero-range model.
They are artifacts of the way in which the smooth matching of
the inner-region and outer-region wave functions is performed
on the R-matrix sphere. In the case when the matrix 
 in
Eq. (14) becomes singular, an additional degree of freedom
appears in the matching equations (9) and (12). The number of
matching conditions is not sufficient at those singular energies
and the matching procedure yields an unphysical bound state.

For a fixed internuclear separation R, these artificial bound
states appear at such energies Ex where det [
(Ex )] = 0. Note,
as can be seen from Eqs. (7) and (8), that 
 depends on the
distance of the nuclei and on the radius r0 and it does not
depend on the interaction inside the R-matrix sphere. At each
Ex, a vector x′

0(r0) with the components (x′
0) j (r0) exists on the

sphere so that 
(Ex )x′
0(r0) = 0. As a result, Eq. (9) yields at

062802-12



LONG-RANGE RYDBERG MOLECULE Rb2: … PHYSICAL REVIEW A 102, 062802 (2020)

the energy Ex, for an arbitrarily selected outer-region solution
x(r0), a more general set of corresponding radial derivatives
x′(r0) than at other energies. Specifically, when x′(r0) is a
vector of the radial derivatives corresponding to the vector of
the solutions x(r0) via Eq. (9), then x′(r0) + τx′

0(r0) is also
a vector of the radial derivatives corresponding to the same
solution x(r0) for any real value of the scalar factor τ .

Existence of at least a single value of τ for which Eqs. (12)
and (13) are satisfied, in addition to Eq. (9), is a sufficient
condition for a smooth matching of the outer-region solution
to the inner-region wave function and, consequently, for an
existence of the bound state at energy Ex. However, this is
always possible, as the additional variable τ increases the total
number of the variables in the homogeneous N-dimensional
linear system formed by Eqs. (12), (13), and (9) to N + 1.

This explains the fact, observed in the performed numerical
calculations, that these steeply rising PECs do not depend on
the interaction inside the R-matrix sphere.

Since these PECs are monotonic and they possess clear
crossings with the other PECs, they can be easily distin-
guished from the physical PECs and they do not represent any
complication for interpretation of the results. Another simple
way to identify them is the identification of the energies and
internuclear distances where the matrix 
 becomes singular.

These unphysical PECs descend in energy with increasing
radius r0. This is the reason for their absence in the PECs
of H2 presented in TC. Since the R-matrix sphere used there
(r0 = 10 a.u.) was significantly smaller than used in the results
presented here, all the unphysical PECs were located above
the studied energy interval.
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