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The communication cost of a classical protocol is typically measured in terms of the number of bits
communicated for this determines the time required for communication during the protocol. Similarly, for
quantum communication protocols, which use finite-dimensional quantum states, the communication cost is
measured in terms of the number of qubits communicated. However, in quantum physics, one can also use
infinite-dimensional states, like optical quantum states, for communication protocols. Communication cost
measures based on counting the (equivalent) number of qubits transmitted during communication cannot be
directly used to measure the cost of such protocols, which use infinite-dimensional states. Moreover, one cannot
infer any physical property of infinite-dimensional protocols using such qubit-based communication costs. In this
paper, we provide a framework to understand the growth of physical resources in infinite-dimensional protocols.
We focus on optical protocols for the sake of concreteness. The time required for communication and the energy
expended during communication are identified as the important physical resources of such protocols. In an
optical protocol, the time required for communication is determined by the number of time-bin modes that are
transmitted from one party to another. The mean photon number of the messages sent determines the energy
required during communication in the protocol. We prove a lower bound on the tradeoff between the growth
of these two quantities with the growth of the problem size. We call such tradeoff relations optical quantum
communication complexity relations.

DOI: 10.1103/PhysRevA.102.062608

I. INTRODUCTION

Communication complexity studies the amount of com-
munication required by two parties in order to compute a
particular function f on their private inputs. In classical
communication complexity, the amount of communication
required during a protocol is quantified by the number of bits
the two parties communicate. Analogously in quantum com-
munication complexity, the number of qubits communicated
is used for this purpose. The field of quantum communication
complexity is interesting both because it offers significant
advantages compared to the classical setting [1–4] and also
because it allows us to understand the fundamental properties
of quantum physics [5–7].

In qubit-based quantum communication protocols, a single
qubit is viewed as a unit of communication. If one were to use
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particles with d-dimensional quantum states or qudit for com-
munication during a protocol, the communication complexity
would only be linearly scaled by a factor of (log2(d ))−1

as compared to a protocol using qubits. Thus, it is suffi-
cient to study qubit-based protocols in order to understand
the communication complexity of qudit-based protocols as
well. However, quantum mechanics also allows the parties
involved in the communication protocol to send individual
particles whose state is described by infinite dimensional
Hilbert spaces. In fact the light modes used in most optical
implementations, which are one of the most common and
easiest ways of implementing quantum communication pro-
tocols, have an infinite dimensional Hilbert space associated
with them. For these protocols, one can no longer directly
use the qubit-based communication complexity lower bounds.
One way to measure the complexity of these protocols would
be to estimate the number of qubits that would be required to
approximate the infinite dimensional states so that the error
in a protocol implemented using these states is negligibly
different from the original protocol [8–10]. Another way is
to instead measure the complexity of these protocols using the
amount of information transmitted [11–13]. Alternatively, one
can view the infinite dimensional particles themselves as units
of communication in these protocols and we can count the
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number of such particles communicated during the protocol
to measure the complexity of these protocols. This would
provide us greater insight into the physical resources required
for communication during such protocols. In this paper, we
use this approach to study optical quantum communication
protocols.

In order to define the complexity of a protocol this way, one
has to constrain these particles according to some measure,
otherwise such a complexity measure would be trivial as one
can always embed an arbitrarily large Hilbert space in the
infinite dimensional Hilbert space of a single particle. In par-
ticular, one of the parties can encode her input on the infinite
orthonormal basis of the Hilbert space of her particle and send
it to the other party, who can use it to compute the function.
In time-bin encoded optical protocols, the number of modes
(denoted by m) used in a protocol determines the duration of
time required for communication during the protocol. Further,
as mentioned above the Hilbert space associated with each
optical mode is infinite dimensional. The mean photon num-
ber of the optical messages sent during a protocol (denoted
by μ) determine the energy required during the protocol. In
general both m and μ would depend on the problem size n.
In this paper, we study the tradeoff between the growth of
these two quantities with the problem size and we call such
tradeoff relations optical quantum communication complexity
relations of f . We will mainly restrict our attention to optical
protocols in the simultaneous-message-passing (SMP) model.
However, we also describe how the results presented here may
be translated to other communication models. The main result
of our paper can be informally stated as follows.

Theorem 1 (Informal statement). If � is an optical quan-
tum communication protocol which computes the function f
in the SMP model with error at most 1/3, then the number
of modes m, and the maximum mean number of photons the
parties may be required to send to the Referee μ during �

satisfy

min{μ log2(m), m log2(1 + μ/δ)} = �(Q||
1/3( f )), (1)

where δ > 0 is a constant and Q||
1/3( f ) is the (qubit-based)

SMP quantum communication complexity for protocols com-
puting f with at most 1/3 probability of error. In particular,
this implies

min{μ log2(m), m log2(1 + μ/δ)} = �(log2(D( f ))), (2)

where D( f ) is the classical deterministic communication
complexity of f .

We introduce the concepts and results required from quan-
tum optics and communication complexity in Sec. II A. The
theorem above is proven in Sec. III. A comparison with a
classical analog of the above result is provided in Sec. IV.

II. BACKGROUND

A. Quantum optics

We only require a few basic concepts from quantum optics
for the purpose of this paper. We cover all of these briefly
in this section. To begin, the Hilbert space for a single optical
mode H is a countably infinite dimensional Hilbert space, also
called the Fock space. Formally, we identify this Hilbert space

with �2, the set of all square summable sequences. If n̂ is the
photon number operator on this Hilbert space, then we can let
{|k〉}∞k=0 be the eigenvectors of n̂. These form an orthonormal
basis for H called the Fock basis. A concrete way to view H
is as

H =
{ ∞∑

k=0

xk |k〉 :
∞∑

k=0

|xk|2 < ∞
}

.

The photon number operator on this space is given by

n̂ :=
∞∑

k=0

k |k〉 〈k| .

The total number operator on the Hilbert space of m-
modes H⊗m is given by N̂ := ∑m

i=1 n̂i, where n̂i := I ⊗ · · · ⊗
n̂ ⊗ · · · ⊗ I (the number operator acting on the ith Hilbert
space). Since N̂ is Hermitian, it can also be associated with
a measurement. Using eigenvalue decomposition, write N̂ as
N̂ = ∑∞

n=0 nPn, where Pn is the projector onto the n-photon
subspace, i.e.,

Pn =
∑

(n1,··· ,nm )∈Sn

|n1, n2, · · · , nm〉 〈n1, n2, · · · , nm| ,

where Sn := {(n1, n2, · · · , nm) :
∑m

i=1 ni = n}. The measure-
ment corresponding to N̂ is the measurement {Pn}n. We will
also refer to the random variable corresponding to the mea-
surement result in this basis as N̂ . Thus, the probability of
measuring n photons in the state ρ will be denoted by

P rρ[N̂ = n] = Tr(Pnρ).

The mean number of photons of the state is given by

Eρ[N̂] =
∞∑

n=0

nP rρ[N̂ = n] = Tr(N̂ρ).

Finally, we note that the Markov inequality for N̂ (viewed as
a random variable) implies that

P rρ[N̂ � a] � Eρ[N̂]

a
. (3)

B. Communication complexity

Communication complexity is the study of the number of
bits two parties need to communicate in order to be able to
compute a function on their inputs. There are different models
of communication one can consider to quantify the communi-
cation complexity of a function. In this paper, we will mainly
deal with the simultaneous-message-passing (SMP) model.
We will, however, use results connecting the complexity of
a function in the SMP model with the two-party deterministic
communication complexity of a function. In this section, we
describe these settings and the results we use in this paper.
We point the reader to the books [14,15] for a more thorough
introduction to this subject.

We begin with an overview of classical communication
complexity. Consider two parties Alice and Bob who wish to
collaborate and compute a function f : X × Y → {0, 1} on
their inputs x ∈ X and y ∈ Y exactly using a deterministic
protocol �. The number of bits they need to communicate
with each other for this purpose is called the communication
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cost of the protocol on inputs x and y and is denoted by
cost�(x, y). The communication cost of the protocol is given
by

cost(�) := max
x,y

{cost�(x, y)}.

Further, we define the deterministic communication complex-
ity of a function f to be the minimum communication cost for
computing f . That is,

D( f ) := min
�

cost{�},
where the minimization is over all deterministic protocols �

which compute f exactly. The definitions given above can also
be extended to randomized protocols which allow for an error
ε � 0 during the protocol. A randomized protocol � is said
to compute a function f with error at most ε, if for every pair
of inputs x, y we have

P r�[�(x, y) �= f (x, y)] � ε. (4)

The communication cost of a randomized protocol is once
again defined to be the maximum number of bits which Alice
and Bob may be required to communicate during the proto-
col, and the randomized communication complexity of f is
defined as the minimum protocol cost for computing f .

The simultaneous-message-passing model is a more re-
stricted setting in communication complexity. In the SMP
model, there are three parties: Alice, Bob, and a Referee. Alice
and Bob receive inputs x and y, which are only visible to
them. Further, throughout this paper we consider the model
where Alice and Bob have access to private randomness as
well. Alice and Bob both send messages to the Referee, so
that he is able to compute f (x, y) with high probability. A
protocol is said to compute function f with error at most ε if
it satisfies the condition in Eq. (4) for every input x, y. The
communication cost of a SMP protocol � is the maximum
number of bits Alice and Bob have to send to the Referee
for any input and randomness. The SMP communication com-
plexity of computing a function f with error at most ε denoted
by R||

ε ( f ) is the minimum communication cost of any SMP
protocol which computes f with error at most ε.

We can define similar settings in the quantum case as
well. In this paper, however, we will only consider quantum
communication protocols in the SMP model. The setting of
the model is the same as the classical model above. However,
now Alice and Bob can send quantum states as messages to
the Referee. In the model that we consider in this paper, there
are no shared resources between any of the parties. Now the
communication cost of the protocol is quantified using the
maximum number of qubits sent by Alice and Bob during
the protocol. Suppose � is a SMP quantum communication
protocol, then we define costQ�(x, y) to be the total number of
qubits sent by Alice and Bob to the Referee. As before, we
define the quantum communication cost of the protocol as

costQ(�) := max
x,y

{costQ�(x, y)}.

The quantum SMP communication complexity of computing
f with error at most ε denoted by Q||

ε ( f ) is

Q||
ε ( f ) := min

�
{costQ(�)},

where the minimization takes place over quantum SMP pro-
tocols which compute f with error at most ε.

We are typically interested in the asymptotic growth of
communication complexity with the size of the inputs. In
order to study this growth, we suppose that the parties wish
to compute a family of functions { fn : n ∈ N} where fn :
{0, 1}n × {0, 1}n → {0, 1}, that is, each function fn is defined
for inputs of length n. The reader should think of this family
as a generalization of a function defined for a particular input
length to strings of all possible lengths. For example, the
family of Equality functions Eqn : {0, 1}n × {0, 1}n → {0, 1}
is defined as

Eqn(x, y) =
{

1 if x = y
0 if x �= y

, (5)

and can be regarded as a generalization of the Equality func-
tion to all possible input lengths. We collectively refer to the
family of functions { fn}n as f . The communication complex-
ity C of the family of functions f is a function of the input size
n defined as (C( f ))(n) := C( fn), where the communication
complexity C can be chosen to be any of the communication
complexities defined for a function above. Further, f is com-
monly referred to as a function instead of a family of functions
and we say that a protocol computes the function f for inputs
x, y ∈ {0, 1}n to mean that the protocol computes fn(x, y) on
these inputs.

We will now state some well-known results in communi-
cation complexity, which will be used later on in this paper. It
should be noted that all these results are about the asymptotic
communication complexity of a family of functions. Theorem
2 shows that up to multiplicative factors the communication
complexity of a family of functions is the same for different
errors. Theorem 3 lower bounds the randomized SMP com-
munication complexity of a family of functions in terms of
its deterministic SMP communication complexity. Theorem
4, on the other hand, lower bounds the quantum SMP com-
munication complexity in terms of the classical randomized
SMP communication complexity.

Theorem 2 (Confidence Amplification; see, for example,
Ref. [14]). Consider a family of functions f as defined above
and any 0 < ε, δ < 1/2. Then, in the SMP setting, we have

R||
ε ( f ) = O(R||

δ ( f )φ(ε, δ)),

Q||
ε ( f ) = O(Q||

1/3( f )φ(ε, δ)),

where φ(ε, δ) = O(log2(1/ε)/((1/2 − δ)2(1 − δ))) is a func-
tion independent of n. In other word this theorem implies that
Q||

ε ( f ) = 	(Q||
δ ( f )) for all 0 < ε, δ < 1/2.

Theorem 3 (Babai and Kimmel [16]). The classical SMP
communication complexity of a family of functions f as de-
fined above satisfies

R||
1/3( f ) = �(

√
D( f )).

Theorem 4 (see, for example, Sec. 2 in Ref. [2]). For any
family of functions f , the quantum and classical SMP com-
munication complexities are related as follows:

Q||
ε ( f ) = �(log2(R||

ε ( f ))).
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III. OPTICAL QUANTUM COMMUNICATION
COMPLEXITY

In order to implement a quantum communication protocol
optically, the quantum messages sent by the parties to each
other must be implemented as optical states in a multimode
Fock space. The communication cost of such protocols is
infinite according to the definitions given in Sec. II B, since
the dimension of the Hilbert space is itself infinite. In standard
communication complexity, the number of bits or qubits com-
municated during the course of the protocol is related to the
time that would be spent communicating during the protocol if
the protocol were to be implemented. Thus, the qubit commu-
nication complexity serves as a good way to quantify the cost
of the protocol. However, for optical protocols this viewpoint
is no longer valid as the Hilbert space of a single mode is itself
infinite dimensional. For time-bin encoded optical protocols,
the number of time-bin modes transmitted determines the
duration of the protocol. On the other hand, the mean photon
number of the signals is directly proportional to the mean
energy carried by the signals and hence determines the energy
required to create the signals. In this section, we will study the
tradeoff between the number of modes and the mean number
of photons required to run an optical quantum SMP proto-
col. We are essentially studying the tradeoff relation between
the time required for communication during the protocol and
the energy required for communication. As stated earlier, we
call tradeoff relations between these two quantities for any
protocol computing the function f the optical quantum SMP
communication complexity relation of f .

We will study the tradeoff between the number of modes
and the mean photon number for a family of optical SMP
protocols computing a function f : {0, 1}n × {0, 1}n → {0, 1}
defined for every n, for example, the Equality function or the
Inner Product function (i.e., f is a family of functions as de-
fined in Sec. II B). Let {�n}∞n=1 be a family of SMP protocols,
which computes the function f (x, y) with error at most 1/3.
The exact value of error is not relevant, since our bounds use
the classical and quantum communication complexity lower
bounds, which are equal up to multiplicative factors for fixed
error rates (Theorem 2). The protocol �n can be used to
compute the function f (x, y) when x and y are n-bit strings.
We suppose that these protocols are implemented optically.
That is, the states sent by Alice and Bob while running �n

are part of a m(n)-mode Hilbert space H⊗m(n), where H is
the single mode Fock space. Note that the states used depend
on the problem parameter n, and hence the number of modes
is a function of n, m = m(n). We will call the states sent by
Alice and Bob on inputs x and y during protocol �n, ρ (n)

x
and σ (n)

y . Further, we define the maximum mean number of
photons μ(n), which Alice or Bob may have to send during
�n as1

1We could have also defined μ(n) as a maximum over the sum of
the mean number of photons of the states sent by both Alice and Bob.
This definition would be equivalent to the one given in Eq. (6) up to
constant factors and hence would not lead to any change in the final
results of this paper.

μ(n) := max
{{Tr(N̂ρ (n)

x ) : x ∈ {0, 1}n} ∪
{Tr(N̂σ (n)

y ) : y ∈ {0, 1}n}}. (6)

For notational convenience, we will drop the explicit depen-
dence of μ(n) and m(n) on n and denote the number of modes
and the maximum mean photon number by m and μ.

Our strategy will be to use the fact that the maximum mean
photon number is μ to find a projector P, which has high
overlap with the states ρ (n)

x and σ (n)
y used in the protocol.

The rank or the dimension of this projector will be shown
to depend only on m and μ. We will use it to transform
the given protocol into another protocol, where Alice and
Bob send the finite dimensional states Pρ (n)

x P/Tr(Pρ (n)
x ) and

Pσ (n)
y P/Tr(Pσ (n)

y ) on inputs x and y. This protocol would
require the communication of only O(log2(rank(P))) qubits,
which has to satisfy the known lower bounds for the SMP
communication complexity of f .

Consider a fixed value of n. For any state ρ (n) ∈ {ρ (n)
x : x ∈

{0, 1}n} ∪ {σ (n)
y : y ∈ {0, 1}n} sent by Alice or Bob during �n

and δ > 0 (a parameter which will be chosen later), using the
Markov inequality [Eq. (3)] we have

P rρ (n) [N̂ � μ/δ] � δ
Eρ (n) [N̂]

μ
� δ

⇒ P rρ (n) [N̂ < μ/δ] � 1 − δ. (7)

Define P := ∑
(n1,··· ,nm )∈S<μ/δ

|n1, · · · , nm〉 〈n1, · · · , nm| where
S<μ/δ := {(n1, n2, · · · , nm) :

∑m
i=1 ni < μ/δ}. We can rewrite

Eq. (7) as

Tr(Pρ (n) ) � 1 − δ. (8)

Now, using Lemma A.2, we have for every x, y,

1

2

∥∥∥∥ρ (n)
x − Pρ (n)

x P

Tr(Pρ
(n)
x P)

∥∥∥∥
1

�
√

δ,

1

2

∥∥∥∥σ (n)
y − Pσ (n)

y P

Tr(Pσ
(n)
y P)

∥∥∥∥
1

�
√

δ.

Using Lemma A.3, we can create a SMP protocol
for f with error at most 1/3 + 2

√
δ, which uses the

states {Pρ (n)
x P/Tr(Pρ (n)

x ) : x ∈ {0, 1}n} ∪ {Pσ (n)
y P/Tr(Pσ (n)

y ) :
y ∈ {0, 1}n}. This protocol requires the communication of
only O(log2(rank(P))) qubits. Further, the rank of the projec-
tor P can be estimated as follows.

The rank of the projector is equal to |S<μ/δ| which is
equal to the number of non-negative integer solutions of the
equation,

m∑
i=1

ni <
μ

δ
.

If we introduce a slack variable s, this is equal to the number
of non-negative integer solutions of

m∑
i=1

ni + s =
⌊μ

δ

⌋
,

which is equal to (
a + m

m

)
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for a = �μ/δ using standard combinatorics. Further, using
Lemma A.4, this expression can be bounded by (1 + m)a and
(1 + a)m. Thus, we have

log2(rank(P)) � μ

δ
log2(1 + m), (9)

log2(rank(P)) � m log2

(
1 + μ

δ

)
. (10)

We can choose δ = 10−4, so that the error of the protocol
is strictly smaller than 1/2. Since quantum communication
communication complexity is asymptotically equivalent up
to constant factors for all errors less than 1/2 (Theorem 2),
this does not affect the asymptotic bounds we are working
towards. Thus, moving forward we can ignore the dependence
of the upper bound in Eq. (9) on δ. Further, if assume m � 2
(we can always add an extra mode to the messages if neces-
sary), then we can simplify the bound to

log2(rank(P)) = O(μ log2(m)). (11)

Our modified protocol, which uses only finite dimensional
quantum states, leads us to the following bound which links
the growth of optical resources of a SMP protocol of f with
its qubit-based SMP communication complexity Q||

1/3( f ).

min{μ log2(m), m log2(1 + μ/δ)} = �(Q||
1/3( f )). (12)

Recall that the SMP communication cost for quantum pro-
tocols for function f is lower bounded by �(log2(R||

1/3( f ))),

where R||
1/3( f ) is the classical SMP communication complex-

ity for computing f with error at most 1/3 (Theorem 4).
Further, the classical SMP communication complexity is
lower bounded by �(

√
D( f )), where D( f ) is the deterministic

communication complexity of f (Theorem 3). Thus, the num-
ber of qubits used by any quantum protocol is lower bounded
by �(log2(D( f ))). For any family of optical quantum SMP
protocols for f , the following optical communication com-
plexity relations hold true:

μ log2(m) = �(log2(D( f ))), (13)

m log2(1 + μ/δ) = �(log2(D( f ))). (14)

We state the results developed in this section so far as
Theorem 5, which is also a formal restatement of Theorem
1.

Theorem 5. If � is a family of optical quantum
communication complexity protocols which computes
f : {0, 1}n × {0, 1}n → {0, 1} in the SMP model with error at
most 1/3, then the number of modes m (assuming m � 2 for
the protocol) and the maximum mean number of photons μ

of the protocol � as defined above satisfy

min{μ log2(m), m log2(1 + μ/δ)} = �(Q||
1/3( f )), (15)

where δ = 10−4 and Q||
1/3( f ) is the (qubit-based) SMP quan-

tum communication complexity for protocols computing f
with at most 1/3 probability of error. In particular, this implies

min{μ log2(m), m log2(1 + μ/δ)} = �(log2(D( f ))), (16)

where D( f ) is the classical deterministic communication
complexity of f .

As an example, let us consider optical quantum SMP pro-
tocols for the Equality function [defined in Eq. (5)]. Protocols
to compute the equality function are also called fingerprinting
protocols. The deterministic communication complexity for
the Equality problem is 	(n) (see, for example, Theorem 1.15
in [15]). If the maximum mean number of photons for a family
of quantum fingerprinting protocols is constant or bounded,
as is the case with Arrazola and Lütkenhaus’ coherent state
quantum fingerprinting (QFP) protocol [8], then we have

log2(m) = �(log2(n)).

These bounds show that in a weak sense the QFP protocol
given by Arrazola and Lütkenhaus is optimal. We use the
phrase weak because these bounds do not rule out the pos-
sibility of a family of optical protocols with constant mean
photon number and sublinear growth of m in n, as compared
to Arrazola and Lütkenhaus’ protocol where m = 	(n).

We can extend this method to lower bound the growth of
the mean photon number and the number of modes in the
messages sent during one-way communication protocols. For
protocols in this model, too, the bound will be similar to
the one obtained in Eq. (15). One can also use the method
described above to derive optical quantum communication
complexity relations for interactive two-way communica-
tion protocols from the corresponding lower bounds on the
qubit-based communication complexity.2 However, for these
protocols, the number of rounds of the protocol is also a part
of the bounds and as a result these bounds are much weaker.

IV. COMPARISON TO BOUNDS FOR CLASSICAL
OPTICAL COMMUNICATION COMPLEXITY RELATIONS

In this section, we will try to compare the optical quantum
communication complexity relations with similar relations for
classical optical protocols in the SMP model. In quantum
optics, the line between “classical” and “quantum” states is
extremely blurry. For example, in quantum optics coherent
states are usually viewed as classical states of light [17–19],
but in a communication complexity setup even such states can
provide a tremendous advantage when compared to classical
protocols, which use only orthogonal messages. Arrazola and
Lütkenhaus’ coherent state quantum fingerprinting protocol
provides an example of this advantage. For the sake of sim-
plicity, we will call an optical state, which is diagonal in the
Fock basis, a “classical” state in the following.3 Now, suppose
Alice and Bob are restricted to using these classical states

2The average mean number of photons and the number of modes
have to be defined appropriately in the case of interactive two-way
communication protocols.

3It should be noted that this description is equivalent to describing
“classical” messages using a m-tuple (n1, n2, . . . , nm ), where ni is an
integer, which denotes the “power level” of the signal in the ith mode.
The modes can be viewed as time- bin modes, and the power level of
the signal ni as the ratio of the power observed by the detector used
during the protocol and its least count. For example, suppose that
a protocol uses a detector, which is able to measure the power of a
signal in steps of 0.1 W, then if the power measured in the ith time bin
is 10 W during the protocol, ni would be 100 (= 10W/0.1W ). In this
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as messages and asked to compute a function f in the SMP
model. Once again we denote the number of modes used
during the protocol using m and the maximum mean number
of photons using μ. Following the arguments of the previous
section, we can modify the states ρx and σy used by Alice and
Bob, so that the support of the modified states ρ ′

x and σ ′
y lies in

the subspace spanned by {|n1, n2, . . . , nm〉 :
∑m

i=1 ni < μ/δ}
for some δ ∈ (0, 1), which will be determined later. We can
once again do this in such a way that the additional error
is small. This implies that in the modified protocol, on an
input x, Alice chooses a pure state |n1, n2, . . . , nm〉 such that∑m

i=1 ni < μ/δ with probability Px(n1, n2, . . . , nm) to send to
the Referee. Similarly, we can think of Bob also randomly
choosing such pure states to send to the Referee. As we
showed in the previous section, the number of such pure
states is (

a + m
m

)

for a = �μ/δ. We can transform this classical optical
protocol into a standard classical communication complex-
ity protocol, where all the messages are binary, using

log2 ((
a + m

m
)) bit messages. Now, we can use the classical

SMP lower bound (Theorem 3) on this protocol to get

log2

((
a + m

m

))
= �(R||

1/3( f )) = �(
√

D( f )) (17)

⇒ min{μ log2(m), m log2(1 + μ/δ)} = �(
√

D( f )), (18)

for say δ = 10−4. We can see that these classical bounds
are exponentially stronger than their quantum counterpart
[Eq. (16)]. This is simply because we were able to lower
bound the classical optical communication complexity using
the classical randomized SMP communication complexity
instead of the qubit-based SMP communication complexity.
Further, we note that this classical optical communication
complexity relation is tight. If we trivially implement the
optimal classical communication complexity protocol for
fingerprinting given by Ambainis [20], which has a com-
munication complexity of 	(n), in the optical regime using
classical optical states (that is, if a party wishes to send the
binary message x1x2 . . . xm, then in the optical protocol they
send |x1x2 . . . xm〉), then the number of modes m = 	(

√
n)

and the maximum mean number of photons μ = O(
√

n). For
these values, using a standard bound for binomial coefficients
(see, for example, Example 11.1.3 in Ref. [21]) we have(

a + m
m

)
� 2(a+m)h( m

a+m ),

where h(.) is the binary entropy. This implies that

log2

((
a + m

m

))
� O(

√
n),

which matches the lower bound provided by Eq. (17).

equivalent representation, μ would represent the maximum average
total power of a message that might be sent during the protocol.

We would like to point out that Fock states and some of
their mixtures are considered highly nonclassical in quantum
optics (for example, they have negative Wigner functions).
We use them here for our description of classical protocols
because they are orthogonal states and from an operational
and mathematical point of view the mixtures of orthogonal
states behave classically. Moreover, as we point out in Foot-
note 3, this model can be used to describe a large class of
classical models, which are allowed to send signals of un-
bounded power. It might be more useful to study the optical
communication complexity protocols restricted to coherent
states or Gaussian states to get a better understanding of the
difference between classical and quantum in this regime.

V. CONCLUSION

In this paper, we adapt the concept of communication
complexity to understand the growth of physical resources
for optical protocols. We demonstrate simple lower bounds
on the growth of the mean number of photons and the number
of modes required to implement optical SMP protocols. As
motivated in the Introduction, the communication complexity
of optical protocols needs to be studied separately as these
protocols do not fit the model used by qubit-based quantum
communication complexity. These relations are a true analog
of classical communication complexity for optical protocols,
as we can infer lower bounds on the time required for commu-
nication during a protocol from these bounds. Moreover, these
relations are important from a practical point of view, since
a lion share of communication protocols are implemented
optically [9,10,22,23]. Optical communication complexity re-
lations are important to understand the limits of the optical
implementations of such protocols (also see [24]). Further
work in this area may also help us develop better optical
protocols.

This paper leaves several questions open for future work.
First, it is also not clear at this point if the bounds obtained
in this paper are the tightest possible lower bounds for these
resources. If indeed these are the tightest bounds it would be
interesting to show this using an example. Further, it would
also be interesting to see if one can come up with tighter
tradeoff bounds for communication protocols which use only
coherent states or Gaussian states, since these are the simplest
states to experimentally implement.
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APPENDIX: LEMMAS REQUIRED FOR THE PROOF
OF THE MAIN RESULT

Lemma A.1 (Winter’s gentle measurement lemma; see
Corollary 3.15 in [25]). Let H be a Hilbert space, ρ ∈ D(H)
be a density operator, and P ∈ Pos(H) a positive operator
satisfying P � 1 and Tr(Pρ) > 0. Then, we have

F

(
ρ,

√
Pρ

√
P

Tr(Pρ)

)
�

√
Tr(Pρ).

Lemma A.2. Let P be a projector and ρ ∈ D(H) be a den-
sity matrix in the Hilbert space H, such that Tr(Pρ) � 1 − δ

for δ ∈ (0, 1). Then, we have

1

2

∥∥∥∥ρ − PρP

Tr(PρP)

∥∥∥∥
1

�
√

δ. (A1)

Proof. Let us define σ = PρP
Tr(Pρ) . As a result of Lemma A.1,

we have

F (ρ, σ ) �
√

Tr(Pρ) �
√

1 − δ.

Using the Fuchs–van de Graaf inequality, the trace distance,

‖ρ − σ‖1 � 2
√

1 − F (ρ, σ )2

� 2
√

1 − (1 − δ)

� 2
√

δ.

�
Lemma A.3. Suppose in a quantum simultaneous-

message-passing (SMP) protocol to compute the function f
with error at most ε, Alice and Bob send the quantum states
ρx and σy on inputs x and y. If ρ ′

x and σ ′
y are quantum states

such that 1/2‖ρx − ρ ′
x‖1 � δ and 1/2‖σy − σ ′

y‖1 � δ for all
x and y, then the states used in the actual protocol can be
replaced by these to create a SMP protocol with error at most
ε + 2δ.

Proof. Suppose that on inputs x and y, Alice and Bob send
the quantum state ρx and σy to the Referee, who applies �ref

(quantum-classical CPTP map) to the joint state to compute

f (x, y). For such a protocol, we have for every x, y,
1
2‖�ref(ρx ⊗ σy) − | f (x, y)〉 〈 f (x, y)| ‖1 � ε,

which is equivalent to saying that for inputs x and y the error
probability is less than ε. Now, if we replace the states used
by Alice and Bob by ρ ′

x and σ ′
y such that 1/2‖ρx − ρ ′

x‖1 � δ

and 1/2‖σy − σ ′
y‖1 � δ for all x and y, then we have for every

x and y,
1
2‖�ref(ρ

′
x ⊗ σ ′

y) − | f (x, y)〉 〈 f (x, y)| ‖1

� 1
2‖�ref(ρx ⊗ σy) − | f (x, y)〉 〈 f (x, y)| ‖1

+ 1
2‖�ref(ρx ⊗ σy) − �ref(ρ

′
x ⊗ σ ′

y)‖1

� ε + 1
2‖�ref(ρx ⊗ σy) − �ref(ρ

′
x ⊗ σy)‖1

+ 1
2‖�ref(ρ

′
x ⊗ σy) − �ref(ρ

′
x ⊗ σ ′

y)‖1

� ε + 2δ,

where we have used the fact that for all ρ ∈ D(H), ‖ρ‖1 =
1 and for all CPTP maps �, ‖�‖1 � 1 (Corollary 3.40
in [25]). �

Lemma A.4. For n, m ∈ N we have(
n + m

m

)
� min{(1 + m)n, (1 + n)m}.

Proof. Observe that(
n + m

m

)
= (n + m)!

m! n!

= m + n

n
· m + n − 1

n − 1
· · · m + 1

1

� (1 + m)n.

Since, (
n + m

m
) = (

n + m
m

) we also have(
n + m

m

)
� (1 + n)m.

The bound follows by taking the minimum of these two upper
bounds. �
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