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The security of measurement device-independent quantum key distribution (MDI QKD) relies on a thorough
characterization of one’s optical source output, especially any noise in the state preparation process. Here, we
provide an extension of the loss-tolerant protocol [Phys. Rev. A 90, 052314 (2014)], a leading proof technique
for analyzing the security of QKD, to MDI QKD protocols that employ mixed signal states. We first reframe the
core of the proof technique, noting its generalization to treat d-dimensional signal encodings. Concentrating on
the qubit signal state case, we find that the mixed states can be interpreted as providing Alice and Bob with a
virtual shield system they can employ to reduce Eve’s knowledge of the secret key. We then introduce a simple
semidefinite programming method for optimizing the virtual twisting operations they can perform on the shield
system to yield a higher key rate, along with an example calculation of fundamentally achievable key rates in the

case of random polarization modulation error.
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I. INTRODUCTION

There has been significant interest in quantum hacking
against practical quantum key distribution (QKD) sys-
tems [1,2]. In particular, single photon detectors (SPDs) have
been identified as the weakest link in the security of practical
QKD. To completely bypass all possible attacks on SPDs, the
concept of measurement-device-independent (MDI) QKD has
been introduced and widely deployed. MDI QKD allows two
distant parties, Alice and Bob, to distribute a shared, secret
cryptographic key, even in the presence of an eavesdropper,
Eve, who has complete control of their quantum channels and
measurement devices [3,4]. Typically, Alice and Bob prepare
a set of signal states, send them to a central measurement
node potentially controlled by Eve, which then makes an
announcement based on a measurement it may not have faith-
fully executed. The cost of information-theoretic security in
this setting is that Alice and Bob need to trust and characterize
the optical sources they employ to send signals. Thus, it is es-
pecially valuable to account for the source features and flaws
in a security proof when quantifying the key rates offered by
an MDI protocol.

In this work, we answer a seemingly simple question: How
does one construct a security proof for an MDI QKD protocol
that employs trusted, yet noisy—i.e., mixed—signal states?
To clarify, protocols that employ the decoy state method [5,6]
call for mixed optical states in the form of phase-randomized
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weak coherent pulses. However, in those protocols, the signal
states—i.e., the single photon contributions—used for key
generation are still often assumed to be pure. Unfortunately,
a realistic source will not be able to initialize signal states
with perfect purity. Therefore, our task is to build a consistent
framework for optimally determining the security of MDI
QKD protocols in the case of mixed signal states from a
trusted source, using to our advantage that Eve may not hold
the purification of the mixture.

There are several leading proof techniques for handling
state preparation errors in a QKD protocol. The first major
analysis was performed in [7]; however, the authors assumed
pessimistically that Eve could amplify such noise to her bene-
fit, so the technique was not robust over long distances against,
e.g., coherent modulation errors. An improved technique was
provided in the loss-tolerant protocol [8], which uses basis
mismatch statistics to infer phase error rates that cannot be
directly observed when state preparation is nonideal. How-
ever, the technique leaves ambiguous how to treat mixed signal
states, a gap this work closes. Different extensions of the
loss-tolerant protocol were considered in [9-11]; however,
their focus was primarily on leaky sources, so treatment of
mixed states was analogous to [8]. Another notable technique
for characterizing security given pure qubit signal states is
provided by [12]; however, their technique for generalizing to
mixed signal states uses a suboptimal approach of averaging
the key rates for each of the pure states in the mixture, which
yields an equal or lower key rate than the key rate produced
from the true average signal state. Lastly, an approach for
finding a numerical lower bound on the Devetak-Winter secret
key rate [13] for MDI-QKD protocols is provided by [14,15];
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FIG. 1. (a) A real MDI QKD protocol: Alice and Bob send mixed states associated with bit (x, y) values to a central node controlled by
Eve, who announces Z. (b) A virtual (purified) picture of sending the key generation states: Alice and Bob’s mixed signal states are entangled
with virtual qubits AB which coherently store the bit values (x, y) until they are revealed by a computational-basis measurement. The AB
systems are additionally purified by the A’B’ systems to account for trusted noise in the source. Only the A, B systems are sent to Eve. (c) An
alternative virtual picture: All purifications are related by unitary operations applied to, in general, a joint purifying ancilla, yielding private
states in ABA’B’. These “twisting” operations can optimally boost the secret key rate as they modify the phase error rates which Alice and Bob
need to estimate. In (a)—(c), the signal states sent and the observed detection and bit error rates are the same.

their technique is in principle extendable to noisy state prepa-
ration. In our work, we take a conceptually simpler strategy
of directly optimizing the key rate formula from [16], which
uses the bit and phase errors of qubits in a virtual picture of
the protocol.

In the case state preparation noise can be trusted and
characterized, but perhaps not reduced; we provide here a
simple analytical and numerical toolbox for calculating an
optimal secret key rate. First, we provide a re-framing of
the tilted four-state loss-tolerant protocol which provides a
method for fixing Eve’s degrees of freedom in the secret key
rate [8,17,18]. However, as the signal states are mixed, the
security also depends on how we treat the trusted noise in
the signal state generation. Typically, the security of QKD is
analyzed in terms of Alice and Bob’s ability to virtually distill
maximally entangled EPR pairs, since measurement of such
pairs yields perfectly correlated keys, and by the monogamy
of entanglement, the results cannot be correlated with anyone
else, including Eve. However, it is known that a larger class
of states known as private states [19-22] are fundamentally
what is required to produce secret key. Formally, private states
can be constructed from an EPR pair if Alice and Bob take
ancillary shield systems they control, and apply a “twisting”
unitary operation between the EPR pair and the shields, the
condition being that this twisting leave unaffected the mea-
surement results that generate secret key. Since twisting does
not change the key, private states can then be understood as de-
flecting some of Eve’s attack on the systems that generate key
to the shield systems. See Fig. 1 for a diagram of this concept.

In our technique, we show that the mixing noise of the
signal states can be treated in a virtual picture as being equiv-
alent to Alice and Bob employing shield systems. Completely
within this virtual picture, we can apply unitary twisting op-
erations to the shields to decrease the phase errors of the
protocol, increasing the secret key rate. We provide simple
semidefinite programs to find the optimal twisting operations,
yielding the optimal key rate under this framework. Semidef-
inite programming [23] has recently become a powerful
tool for quantifying the asymptotic security of QKD proto-
cols [14,15,24-29]. While private states have been of signif-
icant conceptual interest, as far as we are aware, this is the
first application of private states in a practical QKD setting.
Finally, we apply our technique to calculating fundamentally
achievable key rates in an MDI QKD protocol with random-
ized modulation error in the state preparation procedure. We

note that our technique is applicable to a wide class of MDI
QKD protocols in which Alice and Bob each employ four
qubit signal states that must not fall in the same plane of the
Bloch sphere (which is easy to impose in practice), but which
can be subject to general asymmetric preparation noise. More-
over, these signal states can be the single photon components
of phase randomized coherent states in a decoy state protocol.

II. CHARACTERIZING EVE’S STATE

We consider an MDI QKD protocol in which Alice and
Bob each prepare four mixed qubit signal states {p,"} and
{o3”}, that they will send, respectively, with probabilities p™*
and ¢/ to the central measurement node controlled by Eve.
Alice and Bob can characterize their initial states by, e.g.,
performing tomography on their sources before the protocol,
as in [17]. When Alice and Bob choose (i, j) = (0, 0) these
are the key generation states with (x, y) corresponding to their
key bit values. All other combinations (i, j, x, y) correspond
to test states used to constrain the phase errors. Following the
security proof of the loss-tolerant protocol [8], we require that
the sets of states {pi;x} and {aé’y} each form a tetrahedron on
the Bloch sphere, meaning the Bloch vectors cannot all lie
in the same plane. In Appendix A, we provide steps for how
to embed our technique within a decoy state protocol in the
asymptotic limit of an infinite number of decoys. Note we are
also assuming collective attacks, with an extension to coherent
attacks available in [8].

As qubits, our signal states can be fully characterized with
two orthonormal basis vectors, which we take to be the polar-
ization states |[H) , |V):

Lx _Jy _
Py Op~ =

\%

Dt dln imon) (' nly . (1)
m,m’,
nn =H

Under unitary evolution, each of these basis vectors evolves
to a (subnormalized) state in Eve’s possession as well as a
classical announcement z, which we take to be pass or fail:
lm, n)s p — Zf:}, les, ) 12)z- This process generalizes sim-
ply to multiple announcement events, such as which Bell state
Eve claims to have detected.

The probabilities that Eve announces a round successfully
passed conditioned on the signal states sent p;’™"" = p(z =
Pli, j, x,y), provide constraints on the inner product of Eve’s
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PLI5Y are observable statistics in the protocol, and they can

also be used to directly calculate some quantities required for
the secret key rate formula, such as the detection probability in
the key basis, pye = 3", | py ., and the bit error rate ez =

P30T 4 pLO10y/pS0, where we have taken |®) to be the
target Bell state that Alice and Bob wish to distill in a virtual
picture we describe in the next section.

We see that Eq. (2) can be written compactly as

Paa = §8 =& ="' Pacs (3)
where & = (e}, lef Wprs=1,..,16, is the vectorized
form of the Gramian matrix of Eve’s states associated with
a passing announcement; (Paet)s = psy . t =1,..., 16, is a
vector containing all the successful detection probabilities;
and P, = pgc); hx dn’ ” is a matrix dependent on the initial
states from Eq. (1) used in the protocol. As long as 7 ~! exists,
then we can exactly solve for é, Wthh can then be used to
calculate any objective function of (e’ |em a) > including all
the phase error rates in the six- state protocol key rate for-
mula [1,8,16,30], even though we are only using four states,
which were chosen to provide complete characterization of
Eve’s strategy. In Appendix B, we show that the invertibility
of { is equivalent to sending four states that form a tetrahedron
on the Bloch sphere, as found in the original security proof
of the tilted four-state loss-tolerant protocol [8]. Additionally,
we provide a generalization of the proof technique to high-
dimensional MDI QKD [27,31-34].

III. OPTIMAL CHOICE OF VIRTUAL PROTOCOL

Having characterized Eve’s Gramian matrix entirely from
observable parameters in the protocol, we now move to a
virtual picture for the key generation signal states to calculate
the remaining parameters of the secret key rate. In this virtual
picture, which is depicted in Fig. 1, systems A, B from Eq. (1)
are entangled with virtual qubits A, B that Alice and Bob keep
in their laboratory [8]. Importantly, since these signal states
are mixed, we require additional purifying ancillary systems
A’B’. We assume that the sources of noise are confined to
Alice and Bob’s labs, meaning Eve does not have access
to manipulate A’B’. The mixedness of the signal states then
results in an effective virtual shield Alice and Bob can use to
minimize Eve’s knowledge of the secret key.

The key generation states, p®*q"p,
purified to

0y 0‘ can be

Z|x Y)az Z |y2) o g, ) ap. @

m,n=H
where we have constraints from the states in Eq. (1):
()/ X))AB,_p qOVCOx dO\ (5)

mm nn

since to generate key, Alice and Bob measure AB in the com-
putational basis. The crucial point is that this purification is

not unique [35], and so we have freedom to choose the virtual
picture that yields the optimal key rate. Since Eve does not
have access to A’B’, any purification will yield a suitable lower
bound on the key rate, but we will show how to choose the
optimal purification with simple semidefinite programs.

We can parametrize all purifications using twisting unitary
operations [19-22] applied to the virtual ancillary systems
in |£):

1
Ussaw = ), 15 0)(x, Ylag © Uy (6)

x,y=0

Such an operation is entirely virtual, so it can be nonlocal in
general and never needs to be executed in the real protocol.
Twisting does not affect any of the real observed detection
probabilities, which correspond to Alice and Bob first
projecting AB in the computational basis, as we show in
Appendix C. Moreover, since only the A, B portion of |¢)
evolves unitarily to E, Z, the twisting operation need not be
fixed from the beginning of the protocol, and its choice can
and should be informed by the statistics of the protocol. Such
twisting operations applied to Bell states yield private states.
We next show exactly how these twisting operations affect
the secret key formula.

To quantify the security of the protocol, we employ the
key rate formula from the six-state protocol [1,16,30], noting,
however, that our protocol employs only four states:

1 _
R= pdet (1 — hy(ez) —ezhy [M]

I —(ex +ey +€Z)/2i|)

l—ez

- (1- ez)hz[ (7
where 5, (-) is the binary entropy function, and ex and ey are
the phase error rates of the virtual qubits AB in the X and
Y Pauli bases. These can be understood as the probability of
the virtual qubits being projected into the incorrect Bell states
given a passing announcement from Eve:

(CILAW )T+ (27X (P 7 Dag @ IP)(PIZ]IT)
(CIAPY(PIZ)IT)

(®)
(CILA) W+ [@7) (P Dag ® IP)(PIZ]IT)
(TCIAPY(PIZ)IT) '

Here, |I") denotes the joint state between ABA’B’'EZ after the
AB portion of twisted purified state Uzgsp |¢) is sent to Eve.
Note (I'|(|P)(P|z)|T") = pge? The six-state protocol key rate
provides generally higher key rates than the Shor-Preskill key
rate [36] because it takes into account correlations between
the bit and phase error patterns.

Employing Eq. (4), the twisting operation in Eq. (6),
and the unitary evolution |m, n), g — Zf:,, les, ) 1202, we
find that ey = ey £ ey are linear functions with respect
to the elements of Eve’s Gramian matrix (e |em ) o
which are already known from Eq. (3). Additlonally, these
phase errors are linear with respect to matrix elements
VUL U v ) > Which are functions of the twist-
ing operation we control. Since our task is to modify the
twisting operation to boost the key rate, these elements form
the optimization variables of our problem. We note these
elements form the Gramian matrix of the twisted ancillary sys-

ey =
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tem states, which is a positive semidefinite (PSD) matrix by
construction. They are constrained linearly by Eq. (5), since
by construction when (x, y) = (x/, y'), the twisting operations
cancel to not affect the form of the real protocol signal states.

The additional benefit of choosing e, as our objective
functions is that we overcome any nonlinear optimization
introduced by %,(-). We find that e, (e_) only depends on
Uy =U0SULL (U- = UYLTULS). Intuitively, we have such
a dependence since e_ involves the Bell states that underwent
a bit flip, so Alice and Bob’s bit values will be (0,1) and (1,0),
and only those twisting unitaries will be used. Similarly e
reflects Bell states that did not undergo a bit flip, so twisting
will only involve (0,0) and (1,1). Since the unitaries {U}3 }
can be defined independently of each other, the optimizations
of ex can be decoupled. Finally, since h,(x < 1/2) is mono-
tonic, optimization of the arguments e is sufficient.

Taking stock, we have two independent objective functions
e, which are linear with respect to our optimization variables
()/;f, IUX,, gf/ TUX%, |Vmn) , > the elements of a PSD matrix sub-
ject to linear constraints. Thus, these optimization problems
take the form of semidefinite programs which can be solved
numerically on a standard laptop in a few seconds using
packages for PYTHON [37,38] or MATLAB [39]. While previous
literature on twisting operations had noted the opportunity
for optimizing U [22], no explicit procedure was constructed.
Here, we have closed this gap, increasing the practicality of
utilizing a virtual twisting operation as a step in the security
proof. In Appendix C, we provide complete details for fram-
ing the problem in terms of semidefinite programs.

A comment is in order regarding our ability to choose an
optimistic and optimal purification to increase the key rate,
as it is common in other QKD security proofs to assume Eve
holds the purification and thus one might assume we need to
choose the most pessimistic purification. Recall from Fig. 1
that the qubits from which the secret key is extracted are AB.
These qubits are entangled with the signal states AB, and with
A'B’, since the signal states are mixed. We are assuming that
the sources are imperfect, but not malicious, so Eve does not
have access to A’B’. This means that we are able to choose the
virtual state of A’B’ in the most optimistic manner, which is
equivalent to using A’B’ as a shield system upon which we can
apply twisting operations to yield private states with AB. After
the initial states in AB are sent to Eve, who also holds system
E, Eve then holds a partial purification of the key systems
AB as well, but she still does not hold the entire purification
since she does not have A’B’. Indeed, for a general protocol we
would need to determine the most pessimistic state Eve could
hold, which would correspond to finding the most pessimistic
form of her Gramian with respect to the secret key rate; how-
ever, as we are using the tilted four-state protocol, we have
from Eq. (3) that Eve’s Gramian is fixed, so there is no room
to modify the parameters of the secret key rate that depend
on Eve. That is, we do not need to take the most pessimistic
partial purification that Eve can hold, because we have already
uniquely specified her Gramian. Thus, the only remaining free
parameters come from the state of the shield system, which we
have the benefit of treating optimally by applying the twisting
operation in Eq. (6). Picking the optimal purification of virtual
systems Eve cannot access has been used to advantage in

QKD security proofs before, as in choosing the state for the
fictitious quantum coin in [7].

IV. KEY RATE RESULTS

The only requirement for applying our technique is that Al-
ice and Bob’s initial qubit signal states cannot fall in the same
plane of the Bloch sphere, which is easy to satisfy in practice.
Otherwise, our technique can handle quite general noisy state
preparation: Alice and Bob need not prepare the same sets of
states; they can send states with different probabilities; and,
the noise channel applied to each state can be dependent on
the state.

As a study of fundamentally achievable key rates, we con-
sider the following two-parameter (8, p) model for the initial
states. We suppose Alice and Bob attempt to prepare the
states {|H) , |[V), IH+IV)/ /2, IH)=ilV)//2}; however, each state is
subject to a modulation error which we treat as a random vari-
able. Given a state-dependent distribution for the modulation
error on the surface of the Bloch sphere, the resulting average
states can be treated as having a coherent modulation error,
i.e., a constant offset angle from the ideal state parametrized
by 4, as well as a depolarization noise parametrized by p,
which introduces incoherent mixing to the states, shortening
the Bloch vector. For exact definitions of the signal states, see
Appendix E. For the case p = 0, we expect no improvement
in our key rate over the standard loss-tolerant protocol, since
no mixing implies no virtual ancillary shield system.

In Fig. 2, we plot the asymptotic key rate found using our
technique as a function of distance for various pairs (6, p).
For comparison with the key rate produced with our opti-
mization, we plot the key rate calculated using a suboptimal
purification, which was constructed by diagonalizing Alice
and Bob’s signal states and having A’B’ index the eigenvalues
in decreasing order. We find that our technique provides a
modest increase over the “naive” purification, our technique’s
advantages being most significant as the depolarizing noise
gets stronger (making the initial states more mixed), and at
longer distances when the untrusted channel noises (loss and
dark counts) accrue. Additionally, we see a better key rate
can be produced by reducing state preparation noise; how-
ever, once one has improved as best possible, our technique
provides an optimized key rate given that level of noise. That
is, our technique provides confidence that one has optimized
over all possible ancillary states of the purification that are
consistent with the protocol statistics without worry that one
has chosen a pessimistic virtual picture.

V. CONCLUSION

We have presented an extension of the proof technique
from [8] to quantify the security of MDI QKD protocols that
employ general noisy qubit signal states. We first reframed the
analytical technique used for characterizing the parameters in
the secret key rate that depend on Eve’s system, noting that
this approach lends itself clearly to a generalization for higher-
dimensional signal states. Next, we observed that employing
trusted but mixed signal states means Alice and Bob have not
a single but a set of virtual pictures they can use to analyze
security in their protocol; we observed this was equivalent to
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FIG. 2. (Top) Key rate vs Alice-Charlie distance for various val-
ues of modulation error and depolarizing noise (8, p) (same color
indicates same model parameters). The dotted lines are the results
from a suboptimal purification, while solid lines indicate our opti-
mized key rates over all virtual twisting operations. (Bottom) For
each pair (8, p), the percentage increase offered by optimizing over
twisting operations. We assume a single photon source, symmetric
distances from Alice and Bob to Charlie, and a Bell state detection
scheme similar to [3], with overall detection efficiency of 50%, a
dark count probability of 10~ per pulse per detector, loss in fiber of
0.2 dB/km, and error correction efficiency of 1.

Alice and Bob employing a virtual shield system onto which
they can apply virtual twisting operations to minimize Eve’s
knowledge of the key [19,20]. Finally, we provided a simple
numerical technique leveraging semidefinite programming to
optimize over all twisting operations to optimize the six-state
protocol secret key rate formula, examining the implications
for state preparation subject to random modulation error.
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APPENDIX A: EMBEDDING OUR TECHNIQUE WITHIN A
DECOY STATE PROTOCOL

In the main text, we showed that, using two independent
semidefinite programs (SDP), we can optimize the secret key
rate of a loss-tolerant protocol where the signal states are
two-dimensional mixed states. In the context of quantum key
distribution, those states are normally encoded in the mode
(such as polarization or time bin) of single photons. However,
in practice, many protocols employ weak coherent pulses with
decoy states [5,6]. In this section, we outline how we can
embed our technique in a loss-tolerant protocol which uses
decoy states. In this work, we will consider a protocol with
an infinite number of decoy states as in [8]. We leave the case
where a finite number of decoy states are used for future work.
Like in the main text, we work in the asymptotic limit where
we can ignore finite key effects.

Recall from the main text that to use our technique, we
need two pieces of information: Before sending optical signals
to Eve, we need the density matrices of the qubit signal states
(the single photon component), and then once the optical
signals are sent, we need the probability of successful Bell
state measurement given the states that Alice and Bob chose.
As such, to apply our technique when phase-randomized weak
coherent pulses are used together with a decoy state protocol,
we need to calculate the state of the single photon component
of the optical signal as well as the probability of successful
Bell state measurement given that Alice and Bob send the
corresponding single photon signals. In the literature, that
conditional probability is often referred to as the single photon
yield, denoted by Y/;"".

To obtain the single photon component of the signals, we
can simply project the coherent signal states to their single
photon components. Suppose that Alice and Bob prepare the
phase-randomized coherent state p** and 5}"** with inten-
sity ua and up, respectively, the single photon components of
those states can be easily obtained by performing the follow-
ing projection and then normalizing the resulting states:

W=

iy (10) 0l ®11) (1ly, + 11) (1], ® 10) (Oly, )

)

eHA Ly

55" (10) Olp, ® 1) (LI, +11) (115, ® 10) Oly, )

(AL)

3

e Mg
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where |0),, and |1),, are the vacuum and single photon states
in mode m, respectively.

Hence, it is important that we characterize the sources of
each legitimate party before performing the protocol. Ideally,
this should be done by performing tomography on the signal
states ,o’ M4 and Gg‘y "M% Alternatively, one can have a model
for the source, taking into account the finite precision and
randomness in the modulation of the signal states. Once we
have the single photon component of the signal states [i.e.,
pi* and a’ ¥ in Eq. (1) of the main text], we can use them
to construct the $ matrix in Eq. (3) of the main text, and
to impose the constraints on the ancillary systems A’B’ as
described in Eq. (5) of the main text.

On the other hand, from the parameter estimation step
of the protocol, we can estimate the gain Q7 for each
choice of states (i, x) and (j, y) and intensities (4, up. When
using an infinite number of decoy states, Alice apd Bob can
determine the values of the single photon yield ¥} exactly

forall i, j, x, y. Once the values of ¥, are obtained, we can

replace the pji/*" with ¥,/ in Eq. (3) of the main text and
then proceed with our method

APPENDIX B: RELATIONSHIP BETWEEN THE
INVERTIBILITY OF y AND THE STATES IN THE BLOCH
SPHERE FORMING A TETRAHEDRON

In the main text, we demonstrated that we could solve for
the elements of Eve’s Gramian matrix using the following
equation:

Paet = 78 =& =P Paets (B1)

where & = (e, ,le, ), are the elements of the vectorized
form of the Gramian matrix of Eve’s states associated with
a passing announcement. (Bae); = pyyl > form a vector con-
taining all the successful detection probabilities, and P, =
P e d form a matrix dependent on the initial states

m, m' “n,n’
used in the protocol which were taken to be

pilog” = Z et A m,n) (m |y

nn_H

(B2)

Here we show that the invertibility of § is equivalent to the
condition in the loss-tolerant protocol [8] that Alice and Bob
each need to choose four signal states that form a tetrahedron
in the Bloch sphere, as shown in Fig. 3.

We begin by noting that
P = PGP A = gt (monl ol od ')

(B3)
meaning we can always choose the basis ordering of § so that
its rows are vec(p"* ;") ® vec(g/o )", the tensor product
of the vectorized forms of the probability-weighted signal
states. Invertibility of ¥ is equivalent to showing its rows are
linearly independent. Since all the row vectors have tensor
product form, we just need to show that the {vec(p™*p;*)}
and the {vec(g/*o}")} each form sets of linearly 1ndependent
vectors.

Next, we recall that four states forming a tetrahedron in
the Bloch sphere is equivalent to them having linearly inde-

FIG. 3. A tetrahedron in the Bloch sphere representing qubits
encoded in horizontal, vertical, diagonal, and clockwise circularly
polarized single photons. A tetrahedron is formed so long as the
states don’t all fall in the same plane.

pendent Stokes vectors. Let’s focus on Alice’s states, since
the states are qubits, they can be expressed in terms of Stokes
parameters:

3
ix QX 1 i,x

P"py ZEZP’ o, (B4)
where oy is the identity and U,, r=1,2,3 are the Pauli
matrices, while P = =p> “Tr(o,py") form the elements of the

Stokes vector P'* for that state. Thus,

3
1 )
=3 E P vec(o,).
r=0

It is easy to show that Vec(U,)Tvec(a,)— 8,, which
means the inner product of any two Vec(p”“ ) is related
to the inner product of the Stokes vectors by a constant
factor:

vee(p" o) (B5)

1,X l.x l)C xz

vec! (p" o) vee(p" pi") Zplem _ sz P

(B6)

Thus, since the inner product structure of the rows of  is
identical to that of the Stokes vectors up to a factor, the
linear independence of the Stokes vectors is equivalent to the
invertibility of P.

Generalization to high-dimensional protocols. Having re-
framed the security proof from the loss-tolerant protocol in
this form, we observe that the matrix inversion Eq. (B1)
can also generalize straightforwardly to MDI QKD proto-
cols employing discrete-variable high-dimensional degrees of
freedom, such as those employing orbital angular momen-
tum [31-33] or time-bin encodings [27,34].

For Alice and Bob each sending d-dimensional systems,
Eve’s Gramian matrix will have d* elements that we can
flatten to a vector €. Thus, Alice and Bob can each prepare
d? states within the d-dimensional space, that will in turn
yield d* observable detection probabilities that we can store
in the vector pge. The basis ordering of $ can be chosen so
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that its rows are the tensor product of the vectorized forms
of the probability-weighted signal states vec(p™*py*)! ®
vec(g” ’a’ "), Since invertibility of  is equivalent to 1ts rOws
being hnearly independent, this provides a clear minimum
requirement for state preparation, namely that the vectorized
forms of the states which Alice and Bob use in the protocol
must be linearly independent.

If they can prepare their states so that the d* rows of § are
linearly independent, then they will be able to satisfy Eq. (B1).
This condition of linear independence for the vectorized den-
sity matrices is a much less stringent condition to satisfy
for high-dimensional protocols than, e.g., employing mutually
unbiased bases [40,41], while still allowing for complete char-
acterization of the parameters in the high-dimensional secret
key rate formula that are dependent on Eve’s system [42].

APPENDIX C: THE VIRTUAL PICTURE AND
OPTIMIZATION OF THE KEY RATE WITH
SEMIDEFINITE PROGRAMMING

In the main text, we provided an overview of how to de-
termine the optimal virtual picture for our protocol using a
virtual twisting operation [19] and semidefinite programming.
Here we provide the full mathematical details of our analytical
and numerical techniques.

1. Moving to a virtual picture

Given states of the form in Eq. (1), we can define a virtual
purified picture for the key generation states:

0x 0 0,y 0y
{P ‘ot q o }—> 1$) zBarB aB

=Y %Yz

Z |yrﬁ3‘; AB”'m’ n)ABs

X,y m,n=H
(C1)
where we know from the 1n1t1a1 states that
0,
Trapap (1, ¥) (%, Y145 1¢) (¢ | zBarpas) = P P xqo VUB s
which fixes the constraint:
, , 0,
(Vo v og = PP g e dy, (C2)

where these also correspond to a subset of the matrix elements
from Eq. (B3) for the key generation states.

The constraint in Eq. (C2) on the ancillary systems is not
sufficient to identically fix the purification. Rather, any unitary
twisting operation of the form,

1
Uspaw = D, 1% )x. Y145 ® Uy, (C3)

x,y=0
preserves the real signal states, since
Tragap (1%, y) (X, Yl Usgarp 1) (¢l asapas UABA z)
= TrABA’B/( Ix, ¥ (¥, ¥lag Up 1) (¢ L igarmas UA”Bi)
= ()XquO_OV‘ (C4)

Since the produced signal states are independent of this
twisting operation, it cannot affect any of the real detection
probabilities observed in the execution of the protocol which
depend only on the A, B systems. Thus, the characterization
of Eve’s Gramian matrix elements (e’ |em a) 18 indepen-
dent of the twisting operation. Moreover since the produced
signal states are independent of the twisting operation it never
needs to actually be implemented in the real protocol, and can
remain a useful virtual analytical tool in the characterization
of security after the real signal exchange. Finally, the twisting
operation can be chosen after the detection statistics are pro-
duced, which gives Alice and Bob the power to adjust their
virtual strategy based on what they observe.

The major change when adding the twisting operation is
the definition of the phase error rates, i.e., how we use the
information about Eve’s state from é,. Consider the joint state
between Alice, Bob, their ancillae, and Eve in the purified
picture after they apply a twisting operation and send the
systems A, B to Eve:

Uipap 18) agapag = ITU ))ABA’B’EZ
Z|X Y)iB Z Uy V;%AB’
m,n=H
F
x Z ¢, ) 120z (C5)

z=P

Thus, taking the target virtual Bell state to be |®1) (®T|5, the
phase error rates now become the twisted phase error rates:

ex(U)=é(F(U)I[(I‘P_M‘I’_I+|d>_)(d>_|) & |PY(PIZIITWU)) spap ez
=3 2 Rl by + U U Sy ) el )
ey(U)=%(F(U)I[(Idf)(qfl+|‘1’+)(‘1’+|) & |PYPIzIITW)) agapEz
:
o rr 2 Rl VRS Ul — B U U il ] ()

pdetmnm Ny
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In general, there exists an optimal purification provided by
some Ujzzap such that the key rate is maximized. As it is
unlikely to choose this optimal purification at random when
constructing the problem, we expect the calculation of ex (U)
and ey (U) to benefit from an optimization over Uz, p, and
thus, in general, for the key rate to increase by employing an
optimal twisted phase error rate.

Remark. Employing noisy, i.e., mixed, signal states in the
protocol begs the question of how best to purify the states in
the virtual protocol when defining the phase error rate. This
necessarily leads to the definition of a twisted phase error rate
and a search for an optimal twisting operation with respect to
the key rate. The twisting operation is entirely in the virtual
picture, so the optimal Ujzs p can and should be computed
after the exchange of signals and observation of detection
probabilities and bit error rates. Although the form of the
optimal twisting operation can even be nonlocal across AB
in practice, it does not need to be implemented in the real
protocol, so its locality does not matter.

It is worth emphasizing that employing a twisting operation
is an optional step in the security proof. Indeed, any phase
error rates of the form Eq. (C6) will supply a suitable lower
bound on the key rate, since Eve does not have control over
the A’B’ systems. Nonetheless, optimizing over the twisting
operation will in general boost the key rate, safeguarding
against a poor, overly pessimistic initial choice of purification.

We next demonstrate how optimizing the phase error rates
over twisting operations can be framed as two semidefinite
programs, closing a gap in the previous literature on twisting
operations [22].

J

€+(U)=1—W

det m,n,m’,n’'
and

=5 Y Re(fr)

det m,n,m',n’

e_(U)=-

o
Z Re(<ym n |U£§, UAIBI”

"
|Uf(\)l;” A’B’|ymn>A/B/( '

2. Semidefinite programs for evaluating the six-state key rate

A general optimization problem is of the form [23],
minimize fy(x)
s.t. fix)=2b,i=1,...,m,

where x = (x, ..., x,) are the variables over which we op-
timize; fp : R” — R is the objective function; f; : R” — R
are the constraint functions; and, b; are the constraint bounds.
An optimal solution, x* would mean that for all z such that
fi(z) = b; then fo(z) > fo(x*).

Semidefinite programs (SDPs) are a class of convex op-
timization problems with linear objective and constraint
functions over a cone of positive semidefinite (PSD) ma-
trices [23]. That is, the optimization variables x form the
elements of a matrix with non-negative eigenvalues, and
fi(x) = ¢; - x. They have become an incredibly versatile tool
for QKD security proofs in recent years [14,15,24-27].

a. Objective functions

At first glance, the optimization problem required for the
six-state key rate in Eq. (7) of the main text looks daunting. It
appears we have two quantities to optimize with the twisting
operation, ex (U) and ey (U ), appearing in a nonlinear function
due to the binary entropy. However, consider a simple change
of variable so that the two unknowns are given by

e-(U) = (ex —ey)U), er(U) = (ex +ey)U). (C7)
These remain linear objective functions of the only free vari-

ables in the problem {(ym " |U:é‘, Ujg,h/ AP E
Yl (et €l ) = e+ (Uniz Unip)- (C8)
el ) = e-(Ux's Unin)- (€9)

The only free parameters over which we can optimize are the twisting unitaries, {U olu Al,g,, Uy, 90U f:, ;,} where each of the four

A'B'? A'B?

unitaries can be defined independently of the others. Here, we have found that the two objective functions in the key rate ei(U )
are functions of independent variables: e, (U) only depends on Uy = U, /? g,TU g and e_(U) only depends on U_ = U 2 é,l U Al g
This is very good, since it means the difficult task of nonlinear optimization of the six-state key rate formula can be avoided.
Using the monotonicity of the binary entropy, we can directly optimize e, (U, ) within the binary entropy functions:

R= maxpgé?(l — hy(ey) — ezhz[l + e—(U)/€z:| _a- ez)h2[1 —les(U)+ ez]/zD
: ) e (C10)
= pgé?<1 — hy(ey) — ezhz[l + maxuze(U)/ez] a- ez)hz[l — [minu+1e+(eU+) + ez]/2}>’
— ¢z

(

variables.
programs.

(i) For the linear objective function e_(U_), we note the
optimization variables,

with the extra conditions 0 <e_(U_)< ez and ez <
e+ (U;) < 1 so that the arguments of the binary entropy func-
tions remain between 0 and 1.

This leads to two independent semidefinite

b. Two independent semidefinite programs
We recall that (eP

mn

< x, (e mod 2) |, (v+1 mod 2)TUy (y+1 mod 2) yy(w]mod 2)

ym N A'B’ A'B m,n >A’B' s

(C11)

ey,

mn)y are known from Eq. (3),

while (7 UL U: wVmn),p are the optimization
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form the 8 x 8 positive semidefinite Gram matrix for the
vectors (U4 |y g U Vo) 41> subject to the eight
linear constraints from Eq. (C2):

X, (x+1 mod 2) |y 7x,(x-+1 mod 2) T 7x, (x+1 mod 2) x(x+1 mod 2)
( |UA’B’ UA’B’ YVin.n >A’B’
X,(x+1mod 2)| _,x,(x+1 mod 2)
(ym n |Vm n )A/B’ . (C12)

The optimization is
e_(U.) < eyz.

(i1) For the linear objective function e, (U, ), we note the
optimization variables,

additionally constrained by 0 <

x,x T ),
(Vi Ui Ui Vi) (C13)
form the 8 x8 PSD Gram matrix for the vectors
{Uf g, |ym n) A UAI,’;, [yt n) gt subject to the eight linear
constraints from Eq. (C2)

.XXI X, X
UA’B’ UAB’

(ym’ n ym:n)ArB/ = (Vr/:z;,n }ym n)ArBr ‘ (C14)
The optimization is additionally constrained by ez <
er(Up) < 1

With that, we have two independent semidefinite programs
which can be used to optimize the six-state key rate formula.
In Appendix D, we provide a pseudocode overview of our

numerical technique for calculating the key rate.

APPENDIX D: PSEUDOCODE FOR KEY RATE
CALCULATION

Here we present a sketch of our numerical implementation
for calculating key rates. For the semidefinite programs we
employed CVXPY [37,38], a convex optimization library for
PYTHON. All codes are available upon request.

APPENDIX E: (4, p) MODEL FOR SIGNAL STATES

We consider the following two-parameter (8, p) model for
the initial states which Alice and Bob prepare:

102‘ = O—B ={1-p ’Eoo)(ggo‘ + r/21,
102’1 = GB ={1-p) ’§QI><§(§1| + p/21,
10 5 (ED)
Py _UB _(1 _p)}é%lo)(élo“i‘pﬁﬂ,
pit =0y =1 —p)|EN)(E | +p1L,

where the states |£%) are of the form,

&5) = |1H), |£5;) = —sin ° |H) + cos ° V),
2 2

T+ T+
|5150) = cos |H) ~|—smT vy,

7)) = cos |H) —i—isinnT_I_ Vy. (B2

4

Algorithm 1: Key rate function

function KEYRATE(04, 0p, Pa, B85 Pdarks 15 1)
# pa and op are arrays containing Alice and Bob’s four density
matrices, s.t. pa[i, x] = pfg", oglj,y] = Ut{’y
# pa and gp are lists of the probabilities for sending their four
=P 452 +31 = q5
# paak 1s the dark count probability per detector

states, S.t. pa[2i + x]

# 1 is the overall transmissivity
# [ is the Alice-Charlie distance (same for Bob)

#
# Probability of losing a photon
Po = 1— n10—0.21/20

# Extract protocol statistics

Pdet> V= stats(pa, 0, Pa» s, Pos Paark)

# Key generation detection probability

Pl = Y0 Paalil

# Bit error rate

ez = Paet[1] + Paec[2]

# Solving for Eve’s Gramian matrix [Eq. (3) of main text]

€= ?71ﬁdet

# Phase error rates

e_ = emin(py4, 08, Pa, g3, &, €z, p‘j;?)

e, = eplus(pa, 03, pa, gz, €, €z, pﬁ;‘f)

# Key rate

R = peil[1 = halez) = ezha(M512) — (1 — ex)hy (L2 ]

return R

end function

The states |£%) parametrized by 8 are a model for Alice and
Bob attempting to prepare {|H), |V), IH)+V)/ 2, IH)=iV)//2},
but each state is subject to a different, constant state-
dependent modulation error. The pure |£°) states and the
resulting key rates were considered in the loss-tolerant pro-
tocol [8]. Additionally, were the modulation error a random
variable subject to a distribution on the Bloch sphere, we

Algorithm 2: Protocol statistics function

function STATS(p4, 0B, pa, 4B, Pos Pdark)
# Loop over all 16 combinations of states in lists: i, j=0,1; x,
y=0,1
# Probability of passing if both photons arrive
Ppass[81 +4j + 2x +y] = pal2i + xlgs[2j + y1Tr(pali, x]
Lj. Y11 ®F) (D]
# Detection probability including dark counts and loss
pdel[gi + 4.] +2x +Y] = (1 - Po)z(l - pdark)zppass
[8i+4j+2x +y]
Pael8i +4j + 2x + yl+ =2pal2i + x]qpl2j + ]
(P8 P2k (1 = Paar)” + Po(1 = P0)Paaric(1 = Paask)’]
# Filling the 16 rows of the $ matrix
PI8i+4j + 2x + y] = pal2i + xlgsl2j + ylvec(pali, xloslj, y1)
return pye, ¥
end function
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Algorithm 3: Phase errors

function EMIN(p4, 03, pa, 45, €, €z, pg'e?)
# Reshape € into a matrix
é = reshape(é)
# We use the CVXPY and MOSEK packages for solving semidefinite programs
import CVXPY
# Define the 8 x 8 Gramian matrix from Eq. (C11) for the A’B’ systems as the optimization variables of the system
G = CVXPY.Variable((8,8))
# Define a list of constraints on G, such as PSD and constraint from Eq. (C12)
constraints = [G > 0]
#Forx=0,1;m,m ,n,n =0,1
constraints += [G[4x + 2m + n, 4x + 2m’ + n'] = palxlgp[(x + 1) mod 2]p4[0, x][m, m']op[0, (x + 1) mod 2][n, n']]
# Define the objective function
e_ = —ﬁ Y RE@2m + 1, 2m' +n'1G[2m +n, 4 + 2m’ +n'])

constraints += [e_ > 0, e_ < ez]
# Use CVXPY to solve problem
prob = CVXPY. Problem (CVXPY.Maximize(e_ ),constraints)
prob.solve(solver = CVXPY. MOSEK)
e_ = prob.value
return e_
end function

function EPLUS(p,, 03, pPa, ¢B, €, €z, pg'e?)
# Reshape ¢ into a matrix
é = reshape(é)
# We use the CVXPY and MOSEK packages for solving semidefinite programs
import CVXPY
# Define the 8 x 8 Gramian matrix from Eq. (C13) for the A’B’ systems as the Variable of the system
G = CVXPY.Variable((8,8))
# Define a list of constraints on G, such as PSD and constraint from Eq. (C14)
constraints = [G > 0]
#Forx =0, 1;m,m',n,n =0, 1
constraints += [G[4x + 2m + n, 4x 4+ 2m' + n'] = pa[xlgs[x]pal0, x]1[m, m']os[0, x][n, n']]
# Define the objective function
e, =1— é D g RE@2m + 1, 2m +n'1G[2m + n, 4 + 2m' + n'])

constraints += [e, = ez, e, < 1]
# Use CVXPY to solve problem
prob = CVXPY. Problem (CVXPY. Minimize(e, ),constraints)
prob.solve(solver = CVXPY. MOSEK)
e4 = prob.value
return e
end function

expect the average state to be mixed with a shorter than unit ~ Bloch vector. The depolarizing channel can also be used to
Bloch vector. This effect is accounted for with the depolar- model any thermal photons that are accidentally produced
izing channel parametrized by p, which indicates with some during state preparation.

probability the maximally mixed state is sent, shortening the
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