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Accelerated adiabatic quantum search algorithm via pulse control in a non-Markovian environment
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Adiabatic quantum computation requires that the system remains in its ground state. However, an adiabatic
process often loses partly or entirely its quantumness, such as entanglement in its long runtime, due to the
system-environment interactions. Here we put forward an effective quantum control technique to realize the
adiabatic quantum search algorithm in a nonadiabatic regime and in the presence of environment. Using the non-
Markovian quantum state diffusion equation approach, we numerically study the system dynamics characterized
by the success probability. The results show that the probability increases with decreasing coupling strength and
temperature. In particular, non-Markovianity from the environment can help to enhance the success probability.
By choosing a suitable pulse intensity and period, a high success probability can be obtained in a short runtime
for weak system-bath coupling, low temperature, and strong non-Markovian heat baths.
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I. INTRODUCTION

Adiabatic quantum computation (AQC) [1,2], polynomi-
ally equivalent [3] to the corresponding circuit quantum com-
putation [3–5], uses a network of quantum nodes (such as in
superconducting [6,7], photonic [8], and atomic quantum de-
vice [9,10]) that can be configured to represent a complicated
computational problem. The solution to the problem is en-
coded in the ground state of the node system. Starting from the
ground state of an easily prepared node Hamiltonian, the node
system is gradually switched to a final Hamiltonian, whose
ground state encodes the solution of a complicated compu-
tational problem. The dynamical process requires that the
system remains in its ground state, as stated in the adiabatic
theorem [11,12] that holds if a time-dependent Hamiltonian
H (t ) changes slowly enough such that the eigenstate is suf-
ficiently separated from neighboring eigenstates. The total
evolution time required by the adiabatic conditions could
be used to measure the computational cost of an adiabatic
algorithm [13,14].

When performing AQC, the node system will be immersed
in its environment. As a result, the influence of the envi-
ronment is not negligible and decoherence will be present
[15]. For such open systems, when the memory effects can
be completely neglected, a standard Lindblad equation can
be derived under Markovian approximation [16,17]. The in-
fluence of the environment on AQC has been investigated
under the Markovian approximations, e.g., using master equa-
tions [18], superoperators [19], or Markovian noises [20,21].
The effects of the thermal environment [22] or a structured
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environment [14] may improve the performance of a quantum
adiabatic algorithm. When the memory effects of the envi-
ronment cannot be neglected, a non-Markovian description is
required [23]. Non-Markovianity could be very different; e.g.,
it could regenerate entanglement in the system [24]. How-
ever, it is often a daunting task to solve the non-Markovian
dynamics of the system. The quantum state diffusion (QSD)
equation provides an effective approach [25,26]. For some
interesting systems, the analytical or exact solutions can be
obtained. Non-Markovian decoherence in the adiabatic search
algorithm has been investigated and the scalability depends on
the infrared behavior of the environment [27].

When dealing with a real system, decoherence is in-
evitable due to the existence of the system-bath interactions.
Both theoretical and experimental efforts have been made to
combat the decoherence problems in quantum computation.
The strategies include using decoherence-free subspace [28],
dynamical decouplings [29–31], quantum error corrections
[32,33], or robust quantum control [34]. Because of its re-
quirement for a long coherence time, an AQC is often ruined
in a noisy environment. Recently, the speedup of adiabatic-
ity by applying a sequence of fast pulses has been studied
[35–37], as a result the detrimental effects of the environ-
mental noise are suppressed [36]. By knowing the adiabatic
basis, the speedup can be made by counterdiabatic driving
[38–42]. In this paper, we focus on the adiabatic quantum
Grover’s search algorithm [43] in an environment [44]. The
model is that each qubit is surrounded by its individual finite-
temperature heat bath [45,46], and the system dynamics is
governed by the QSD equation. As expected, our calculation
results show that the success probability of this algorithm
decreases with increasing temperature and system-bath in-
teraction strength. Specifically, we study the effects of the
bath non-Markovianity on the system and find that it can be
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helpful in boosting the success probability. Since an adiabatic
process requires a long runtime, decoherence could proceed
long enough to break down the system quantumness. To sup-
press the decoherence, we propose a protocol to speed up the
adiabatic search algorithm in a nonadiabatic regime of the
system. The strategy is to add a sequence of pulses on the
system. The required pulse conditions have been obtained in
a time-independent frame [47] or time-dependent frame [48]
when the energy gap is a constant. However, in the adiabatic
quantum search algorithm problem, the energy gap between
the nearest neighbor energy level is time dependent. We derive
pulse control conditions for a time-dependent energy gap. The
calculation results show that once the required pulse condi-
tions are satisfied, the success probability becomes almost
perfect in weak system-bath coupling, low temperature, and
strong non-Markovian heat baths.

II. ADIABATIC GROVER’S ALGORITHM

The adiabatic version of quantum Grover’s algorithm is
formulated by the Hamiltonian [1]

Hs(t ) = [1 − s(t )]H0 + s(t )Hm, (1)

where H0 = (1 − |ψ0〉〈ψ0|) is the initial Hamiltonian with
|ψ0〉 = 1√

N

∑N−1
x=0 |x〉 as the ground state, and Hm = (1 −

|m〉〈m|) is the final Hamiltonian with |m〉 ∈ {|x〉}N−1
x=0 as the

ground state and also the solution of the search algorithm.
The time-dependent Hamiltonian Hs(t ) is constructed by a
smoothly interpolation function s(t ) between H0 and Hm.
s(t ) ∈ [0, 1] is a dimensionless parameter. It was used to solve
the problem of finding a marked item |m〉 in an unstructured
database with length N . The state |x〉 which labels the items is
represented by the n qubit basis states in a Hilbert space with
dimension N = 2n.

Now let s(0) = 0, s(S) = 1, where S is the runtime of the
algorithm. If the adiabatic condition is satisfied, the final state
will be |� f 〉 = |m〉, so s(t ) represents the adiabatic parameter
and it controls how quickly the Hamiltonian changes. For
example, s(t ) = 1 − t/S corresponds to a constant velocity
ṡ(t ) = 1/S and the scaling S = O(N ) is obtained as the classi-
cal case. When ṡ ∝ (�E )2 or ṡ ∝ �E , the quadratic speedup
S = O(

√
N ) or S = O(

√
NlnN ) will be recovered, respec-

tively [13]. This is due to adjusting the velocity of change
of the Hamiltonian to the instantaneous gap; the interpolating
function with ṡ ∝ (�E )2 is [13]

s(t ) = 1

2

(
1 + tan[2εt (

√
N − 1)/N − arctan

√
N − 1]√

N − 1

)
,

(2)

where ε � 1, and the final overlap with the solution is 1 − ε2.
The total running time of the algorithm is Sopt � π

√
N/2ε

for N 	 1 [14]. Recently, quantum adiabatic algorithm design
using reinforcement learning has been investigated, where the
qubit number from n = 1 to n = 16 is discussed [49]. Quan-
titatively, the reinforcement-learning-designed algorithm can
automatically produce an adiabatic quantum algorithm that
has the quadratic speedup. With the same amount of time, it
has a better performance in comparison with the analytical
nonlinear path in Eq. (2).

III. ADIABATIC EVOLUTION OF THE SYSTEM COUPLED
TO NON-MARKOVIAN BATHS

Now suppose that the adiabatic quantum computer is im-
mersed in an environment. The total Hamiltonian has the
form

Htot = Hs + Hb + Hint, (3)

where Hs is the time-dependent Hamiltonian (1) of the quan-
tum computer and Hb = ∑N

j=1 H j
b are the N-independent bath

Hamiltonian with H j
b = ∑

k ω
j
kbj†

k bj
k . ω

j
k is the frequency of

the kth bosonic mode and bj†
k , bj

k are the bosonic creation
and annihilation operators. This bosonic bath could consist
of phonons in a solid lattice or the radiation field at finite
temperature.

The system-bath interaction is

Hint =
∑

j,k

(
gj∗

k L†
j b

j
k + gj

kL jb
j†
k

)
. (4)

The Lindblad operator Lj describes the coupling between
the system and the jth bath and gj

k is the coupling constant
between the system and kth mode of the jth bath.

Initially the system’s Hamiltonian has to be prepared in
the ground state |ψ0〉 with energy E0 = 0. Assume that all
baths are initially in a thermal equilibrium state at temper-
ature Tj with the density operator ρ j (0) = e−βH j

b /Zj, where

Zj = Tr[e−βH j
b ] is the partition function, β = 1/(KBTj ). The

evolution equation of the system within the weak system-bath
coupling approximation is given by (see the Appendix for
further details)

∂

∂t
ρs = −i[Hs, ρs] +

∑
j

{[
Lj, ρsO

j†
z (t )

] − [
L†

j , O
j
z (t )ρs

]

+ [
L†

j , ρsO
j†
w (t )

] − [
Lj, O

j
w(t )ρs

]}
, (5)

with O
j
z,(w) = ∫ t

0 dsα j
z,(w)(t − s)O j

z and α
j
z,(w)(t − s) is the

correlation function. The operator O is an ansatz (see, for
instance, Refs. [50,51]).

To calculate the correlation function, we need to know
the spectral density of the bath. Here we use the ohmic type
with a Lorentz-Drude cutoff as an example, whose spectrum
density is given by J (ω) = 

π
ω

1+( ω
γ

)2 [52–54], where , γ is

real parameters. γ is the characteristic frequency of the bath
and  represents the strength of the system-bath coupling.
For weak system-bath coupling,  � 1 [27]. Using the above
approximations, we have

α j
z (t − s) =  jTj� j (t, s) + i j

·
� j (t, s), (6)

α j
w(t − s) =  jTj� j (t, s), (7)

where � j (t, s) = γ j

2 e−γ j |t−s| is an Ornstein-Uhlenbeck corre-
lation function. The parameter γ j controls the correlation time
of the bath and it decays as 1/γ j . The larger γ j corresponds to
the smoother spectral function, and thus the shorter time the
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bath takes to relax to equilibrium and a more Markovian bath.
The operator O

j
z,(w) satisfies

∂O
j
z

∂t
=

(
 jTjγ j

2
− i jγ

2
j

2

)
Lj − γ jO

j
z

+
[
−iHs −

∑
j

(
L†

j O
j
z + LjO

j
w

)
, O

j
z

]
, (8)

∂O
j
w

∂t
=  jTjγ j

2
L†

j − γ jO
j
w

+
[
−iHs −

∑
j

(
L†

j O
j
z + LjO

j
w

)
, O

j
w

]
. (9)

Now by using Eqs. (8) and (9), the master equation in
Eq. (5) can be numerically solved.

We now analyze the effects of the heat baths on the per-
formance of the adiabatic quantum search algorithm, where
as an example the number of sites is taken as n = 6 in the
simulations. We calculate the final success probability of the
algorithm under different types of interactions. The Lindblad
operators are taken as Lj = σ z

j , σ
−
j , σ x

j , which represent three
types of one-qubit errors [27]. σ−

j = (σ x
j − iσ y

j )/2 is the low-
ering operator for a qubit.

First we consider L = σ z. Note that for the N individual
baths, the parameters for each bath in this paper are taken
as the same, i = , Ti = T, γi = γ for i = 1, 2, . . . , N . In
Figs. 1(a), 1(b) and 1(c), we plot the final success probability
P as a function of the normalized time t/S for different pa-
rameters , T , and γ . The function s(t ) takes a nonlinear path
as in Eq. (2), the total evolution time S = 0.81Sopt ≈ 102. In
Fig. 1(a), the success probability decreases with parameters
 for fixed parameters γ = 0.1 and T = 20. In the absence
of baths, the final success probability P(s = 1) = 0.96, while
with bath  = 0.001, P(s = 1) = 0.32. Figure 1(b) plots the
effects of the temperature on the performance of the al-
gorithm. Obviously P decreases with increasing T , where
 = 10−4, γ = 0.2. Higher temperature correlates with worse
performance of the algorithm. Figure 1(c) plots P versus the
normalized time t/S for different γ with  = 10−4 and T =
20. Larger γ correlates with lower P. The lowest P(s = 1) =
0.23 corresponds to the Markovian case. Non-Markovianity
or the memory effect of the baths plays an important role on
enhancement of the success probability.

Next we consider L = σ− and L = σ x. In Figs. 2(a) and
2(b), we plot the time evolution of the success probability
for different parameters γ (L = σ−) and T (L = σ x), respec-
tively. The results show again that P decreases with increasing
T or γ . Then with the same parameters , T , and γ , how do
the three types of interactions affect the success probability?
Figure 2(c) plots the comparison of evolutions of the success
probability for three models, where  = 10−4, γ = 1.0, and
T = 30. It shows that the detrimental effect of the case L = σ z

is the most severe, and L = σ− is at the last. It is interesting
to note that the result is different from that in the state transfer
[55], where the case L = σ z affects the least.

AQC requires the system to remain in its adiabatic regime,
and the theoretically required evolution time is infinitely long.
On the other hand, the existence of the environment ruins

FIG. 1. L = σ z: The success probability of the Grover algorithm
vs the normalized time t/S for (a) different coupling constants ,
γ = 0.1, T = 20; (b) different temperature T ,  = 10−4, γ = 0.2;
and (c) different parameters γ ,  = 10−4, T = 20. Results from
adiabatic algorithms using a tailored nonlinear path [13]. The total
adiabatic time is chosen to be S = 102 for qubit number n = 6,
following S = 0.81Sopt = 102 with ε = 0.1 [14].

adiabatic passages. This detrimental effects are accumulated
with the runtime [36]. In Fig. 3, we plot the evolution time
S = 10, 100, 400 with and without environment, where the
number of qubits n = 7, s(t ) = 1 − t/S is taken as a lin-
ear path,  = 10−3, γ = 1.0, T = 10, and L = σ−. Figure 3
shows that without environment the survival probability P
will increase with S. P(1) > 0.99 when S = 400 and the
system can be regarded as in the adiabatic regime. Now in
the presence of environment, P will decrease. For a shorter
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FIG. 2. The success probability of the Grover algorithm vs the
normalized time t/S for (a) different parameters γ ,  = 10−4, T =
10, L = σ−; (b) different temperature T ,  = 10−4, γ = 1.0, L =
σ x; and (c) different Lindblad operators,  = 10−4, γ = 1.0. T =
30. We use a tailored nonlinear path and S = 102 as in Fig. 1.

S = 10, environment does not affect the survival probability
very much; however, for a longer S = 100, it reduces the
probability considerably and P becomes much lower in the
long-time limit. When S = 400, the survival probability P =
0.09 almost vanishes. Because of the existence of environ-
ment, the runtime of an algorithm is required to be as short
as possible to avoid accumulation of the detrimental effects,
which is contradictory to the adiabatic conditions. As it is
not possible to isolate the node system from the system, here
we propose a strategy to speedup the adiabatic process using

FIG. 3. The success probability of the Grover algorithm vs the
normalized time t/S for different S with and without environment;
with environment  = 10−3, γ = 1.0, T = 10, L = σ−. Results from
adiabatic algorithm using a linear path s(t ) = 1 − t/S. The number
of qubits n = 7.

external control. We show that the external control helps to
shorten the adiabatic evolution time and meanwhile the envi-
ronmental detrimental effects are reduced [55]. As a result, a
high success probability of the algorithm can be reached in a
nonadiabatic regime.

IV. ADIABATIC QUANTUM SEARCH ALGORITHM
UNDER EXTERNAL CONTROL

In what follows, we will apply a sequence of pulses on
the system to speed up the algorithm. We consider a dressed
Hamiltonian,

Hd (t ) = [1 + c(t )]Hs(t ), (10)

where c(t ) is a control function, and it can be realized by a
sequence of fast pulses in this paper. We here use the so-called
zero-energy-change pulses to realize the effective control. The
pulses take alternating positive and negative values. For ex-
ample, for the rectangular pulses c(t ) = ±I (+ for first half
period, − for another half period), it was proved that when the
energy gaps �Ekl = Ek − El are constant, the pulse condition
is I0τ = 2mπ (m = ±1,±2, ...) [47], where I0 is the pulse
intensity and τ is the half pulse period. The control functions
such as sine and triangular have also been studied to obtain
effective control [48,56,57]. Now we focus on developing a
control technique for the adiabatic search algorithm, where
the energy gap �E10 between the ground state and the first
excited state is time dependent. It has the analytic expression
[13]

�E10 =
√

1 − 4(1 − 1/N )t (1 − t/S)/S. (11)

This implies that the pulse condition derived by a constant
energy gap cannot be directly used. The new condition with
time-dependent energy gaps will be [47]

∫ t+τ

t
I (t ′)�E10(t ′)dt ′ = 2πm, m = ±1,±2, . . . . (12)
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If the pulse intensity is time dependent, I (t ) = I0/�E10(t ), the
pulse condition becomes

I0τ = 2mπ, m = ±1,±2, . . . . (13)

Note that the alternating positive-negative pulse sequence can
be equivalent to the always-positive pulse sequence where
the pulse intensity profile is smooth [36]. This can also be
intuitively seen from Eq. (13) that changing I0 to −I0 does not
affect the control conditions. The advantage of the positive-
negative pulse sequence is that the average value of the energy
is almost zero after a complete control cycle. We will use this
positive-negative pulse sequence to speed up the quantum adi-
abatic process and discuss the success probability. Dynamical
decoupling control (B-B control) has been shown to be an
effective way to control a quantum dynamical process, where
the pulse duration is short and the intensity is ultrastrong
[58]. For our nonperturbative control pulse, the pulse intensity
and duration are finite and tuneable. Experimentally, time-
dependent intensity-modulated [59] or phase-modulated [60]
continuous dynamical decoupling has been realized to over-
come decoherence against fluctuations in a dense ensemble of
nitrogen-vacancy centers in diamond. The additional Hamilto-
nian can be generated by a time-dependent modulation of the
amplitude or phase of the original driving. For implementing
our protocol, the energy scales should have I times bigger
than the original driving with a pulse duration τ . Furthermore,
the pulse imperfections should be considered in a practical
experiment. Theoretically the fluctuations of pulse intensity
or duration has been considered in the adiabatic speedup via
pulse control in a spin system [56]. It shows that the adiabatic
speedup is fault tolerant against noise in the pulse intensity or
duration.

We consider L = σ z, which has the most severe destruction
on the system’s adiabatic dynamics in our case. Figure 4(a)
plots the success probability versus the normalized time t/S
with ( = 0, 0.001, 0.005) and without ( = 0.001) con-
trol. We set γ = 1.0 and T = 10. The control pulses satisfy
Eq. (13) with I0 = 100, τ = π/50, and m = 1. The total evo-
lution time S = π , which is in a nonadiabatic regime without
control [P(s = 1) = 0.07]. With control, we obtain a high
success probability [P(s = 1) = 0.88] even when there ex-
ists a strong system-bath interaction  = 0.005. Figure 4(b)
plots the time evolution of success probability for various
parameters γ , where  = 0.001 and T = 10. S and I0 are
the same as in Fig. 4(a). Figure 4(b) shows that the success
probability decreases with increasing γ . It can be dramatically
enhanced in the non-Markovian cases, or in other words non-
Markovianity helps in enabling the pulse controllability [55].
As for the Markovian cases, it is well known that a control
pulse sequence, say, a σ z

j pulse sequence, is effective mainly
for its “orthogonal” component or direction Lj = σ x

j in the
system-bath interaction (4). However, our control “rotates”
along all directions, so that those directions that do not in-
teract with the bath, for example, σ z

j , benefit. As a whole,
the Markovian cases benefit from the control pulses that are
not “perpendicular” to the Markovian baths. We also plot the
pulse intensity I (t ) versus the normalized time t/S in the
inset of Fig. 4(b). The pulse intensity is time dependent and
tuned by the energy gap. Narrower energy gaps require bigger
pulse intensity to attain the speedup. Figure 4(c) plots the

FIG. 4. The success probability of the Grover algorithm vs the
normalized time t/S with and without control for (a) different cou-
pling constants , γ = 1.0, T = 10; and (b) different parameters
γ ,  = 0.001, T = 10. To clearly show the pulses we applied, in
the right bottom of Fig. 4(b) we plot the pulse intensity vs time.
(c) Different temperature T ,  = 0.002, γ = 0.5. Results from adia-
batic algorithm using a linear path s(t ) = 1 − t/S. S = π , L = σ x .
For panels (a) and (b), the half-pulse period is taken to be τ =
π/50, which satisfies the condition I0τ = 2mπ, m = 1. For panel (c),
τ = π/20, m = 2.

time evolution of success probability for different tempera-
ture T , where  = 0.002, γ = 0.5, I0 = 80, and τ = π/20.
Figure 4(c) shows that the control is more effective in a lower
temperature. The physics is that the transitions between the
ground state and the first excited state take place more easily
in a higher temperature bath and as a result the adiabaticity
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is ruined more than in the case in a lower temperature bath.
Again, the effective pulse control can be realized even for a
high temperature T = 50 [P(s = 1) = 0.88] as long as the
bath is non-Markovian.

V. CONCLUSIONS

When performing a AQC task, the computational system
inevitably suffers from environmental decoherence due to the
system-bath interaction. In this paper, we have studied the
performance of the adiabatic quantum search algorithm in
finite-temperature and non-Markovian heat baths. By using
the QSD technique, we are able to study the dynamics of
the search algorithm in terms of the success probability. We
have focused on the influence of baths on the system for
three types of one-qubit error. The results show that the suc-
cess probability always decreases due to the presence of the
environment; in particular the probability decreases with in-
creasing coupling strength  and temperature T . Specifically,
we have analyzed the effects of non-Markovianity param-
eter γ on the algorithm. We find that non-Markovianity is
crucial in enabling the pulse controllability and enhancing
the success probability. To combat the detrimental effects
of the environment, we propose an effective pulse control
scheme to speed up the adiabatic process, where we add
a sequence of zero-energy-change pulses on the system.
The pulse conditions which include suitable pulse inten-
sity and period are obtained for a time-dependent energy
gap. Once the pulse conditions are satisfied, enhancement of
the success probability can be obtained in a much shorter
runtime in a nonadiabatic regime for both Markovian and
non-Markovian cases. However, it is found that this control
strategy can be more effective for a more non-Markovian
environment.
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APPENDIX: DERIVATION OF THE NON-MARKOVIAN
MASTER EQUATION

The finite-temperature problem can be transformed into the
zero-temperature one by adding N fictitious heat baths to the
original baths [50,51]. The corresponding QSD equation is
[51]

∂|�t 〉
∂t

=
{

−iHs +
∑

j

[
Ljz

j∗
t − L†

j

∫
dsα j

z (t − s)
δ

δz j∗
s

+ L†
j w

j∗
t − Lj

∫
dsα j

w(t − s)
δ

δw
j∗
s

]}
|�t 〉, (A1)

where

α j
z (t − s) =

∑
k

(
n̄ j

k + 1
)∣∣gj

k

∣∣2
e−iω j

k (t−s), (A2)

α j
w(t − s) =

∑
k

n̄ j
k

∣∣gj
k

∣∣2
eiω j

k (t−s), (A3)

are the correlation functions. n̄k j = 1
exp(h̄ω

j
k/kBT )−1

is the mean

thermal occupation number of quanta in mode ω
j
k ;

z j∗
t = −i

∑
k

√
n̄ j

k + 1gj
kz j∗

k eiω j
k t , (A4)

w
j∗
t = −i

∑
k

√
n̄ j

kgj∗
k w

j∗
k eiω j

k t , (A5)

are the jth independent, complex Gaussian noises satisfying

M
[
z j

t z j∗
s

] = α j
z (t − s), M

[
w

j
t w

j∗
s

] = α j
w(t − s). (A6)

Equation (A1) can have time-local forms by introducing an
O operator by using the ansatz [50,51]

δ

δz j∗
s

|�t 〉 = O j
z (t, s, z∗

1,w
∗
1, ..., z∗

N ,w∗
N )|�t 〉, (A7)

δ

δw
j∗
s

|�t 〉 = O j
w(t, s, z∗

1,w
∗
1, ..., z∗

N ,w∗
N )|�t 〉. (A8)

Then Eq. (A1) can be rewritten as

∂

∂t
|�t 〉 =

[
−iHs +

∑
j

(
Ljz

j∗
t − L†

j O
j
z + L†

j w
j∗
t − LjO

j
w

)]|�t 〉, (A9)

where we have defined O
j
z = ∫ t

0 dsα j
z (t − s)O j

z , O
j
w = ∫ t

0 dsα j
w(t − s)O j

w.

The O operators satisfies

∂O j
z

∂t
=

[
−iHs +

∑
j

(
Ljz

j∗
t − L†

j O
j
z + L†

j w
j∗
t − LjO

j
w

)
, O j

z

]
−

∑
j

(
L†

j

δO
j
z

δz j∗
s

+ Lj
δO

j
w

δz j∗
s

)
, (A10)

∂O j
w

∂t
=

[
−iHs +

∑
j

(
Ljz

j∗
t − L†

j O
j
z + L†

j w
j∗
t − LjO

j
w

)
, O j

w

]
−

∑
j

(
L†

j

δO
j
z

δw
j∗
s

+ Lj
δO

j
w

δw
j∗
s

)
. (A11)
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For a weak system-bath coupling, noise-dependent O(t, z∗
1,w

∗
1, ..., z∗

N ,w∗
N ) operators can be approximated well [61] by noise-

independent operators O
j
z (t, z∗

1,w
∗
1, ..., z∗

N ,w∗
N ) = O

j
z (t ) and O

j
w(t, z∗

1,w
∗
1, ..., z∗

N ,w∗
N ) = O

j
w(t ). Then the evolution equation

(5) is obtained.
When we introduce the spectral density J (ω j ), the correlation functions in Eqs. (A2) and (A3) are

α j
z (t − s) =

∫
dω jJ (ω j )

(
n̄ j

k + 1
)
e−iω j (t−s), (A12)

α j
w(t − s) =

∫
dω jJ (ω j )n̄

j
keiω j (t−s). (A13)

Now in the high-temperature or low-frequency limit, let kB = 1.0 = h̄, and we have the approximations 1
n̄ j

k−1
≈ Tj/ω j . For

the two correlation functions in Eqs. (6) and (7), we both have the relations

∂α
j
z(w)(t − s)

∂t
= −γ jα

j
z(w)(t − s). (A14)

Using the above relation and Eqs. (A10) and (A11), finally we obtain Eqs. (8) and (9).
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