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Monogamy of entanglement is an indispensable feature in multipartite quantum systems. In this paper we
investigate monogamy and polygamy relations with respect to any partition for generalized W -class states
using Rényi-α entropy. First, we present analytical formulas of Rényi-α entanglement (RαE) and Rényi-α
entanglement of assistance (RαEoA) for a reduced density matrix of an n-qudit pure state in a superposition
of generalized W -class states and vacuum. Based on the analytical formulas, we show monogamy and polygamy
relations in terms of RαE and RαEoA. Next a reciprocal relation of RαEoA in an arbitrary three-party quantum
system is found. Later, we further develop tighter monogamy relations in terms of concurrence and convex-roof
extended negativity than former ones. In order to show the usefulness of our results, two partition-dependent
residual entanglements are established to get a comprehensive analysis of entanglement dynamics for generalized
W -class states. Moreover, we apply our results to an interesting quantum game and find a bound of the difference
between the quantum game and the classical game.
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I. INTRODUCTION

Quantum entanglement is a critical resource in quantum
communication and quantum information processing. It has
gradually become the subject of many studies over the years
[1–6]. However, a very important feature of quantum entan-
glement is monogamy of entanglement (MoE) [1,7], i.e., a
quantum system entangled with one of the parties cannot
share its entanglement freely with the rest of the parties of
the system. To ensure the security of quantum key distribu-
tion protocols [8], MoE plays a crucial role. Moreover MoE
also has a significant influence when dealing with condensed-
matter physics, including the N-representability problem in
particle physics and the frustration effects of Heisenberg anti-
ferromagnetic ground states [9–12].

By using squared concurrence, Coffman, Kundu, and
Wootters first gave a mathematical expression of MoE, which
is known as the CKW inequality [1]. Given a tripartite
state ρABC , the CKW inequality reads C2

AB + C2
AC � C2

A(BC)
where CAB and CAC are the concurrence of ρAB = TrC (ρABC )
and ρAC = TrB(ρABC ). According to the CKW inequality,
one can analyze the structure of multipartite entanglement
and study the genuine multipartite entanglement in the dy-
namical evolution [13–15]. Based on a number of different
entanglement measures besides concurrence, researchers have
established variations of the CKW-type inequalities in multi-
partite quantum systems [16–27]. In these studies, however,
it was found that monogamy relations using concurrence
failed in the generalization of the CKW inequality for higher-
dimensional quantum systems (qudit subsystem instead of
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qubit subsystem) [20]. Lancien et al. discovered that in
some higher-dimensional quantum systems [21] no nontriv-
ial monogamy relations are satisfied by a class of additive
and normalized entanglement measures. Nevertheless, it was
also detected that one entanglement measure, known as
the squashed entanglement, does satisfy monogamy rela-
tions for arbitrary dimensional quantum systems [22]. This
raises the question of studying MoE in terms of more effi-
cient entanglement measures in higher-dimensional quantum
systems.

There has already been some researches of MoE in higher-
dimensional quantum systems. Kim and Sanders [23] first
proposed the n-qubit generalized W -class (GW) states and
further characterized the entanglement of these states by their
partial entanglements with squared concurrence. Later, Kim
studied these multiqubit GW states in Ref. [24] again. He
analytically showed that the strong monogamy inequality of
multiqubit entanglement was saturated by these GW states. In
Ref. [25], Choi and Kim considered MoE of some other states:
a superposition of multiqudit GW states and vacuum. They
gave an analytical proof that strong monogamy inequality
was saturated using squared convex-roof extended negativity
(CREN) for these states. Later in Ref. [26], Kim then fo-
cused on a large class of mixed quantum states that were in
a partially coherent superposition of an n-qudit GW state and
vacuum. He found that this class of states obeyed a CKW-type
monogamy inequality using squared CREN. Moreover, quite
recently by using Tsallis-q entropy, Shi and Chen [27] have
given monogamy relations for quantum states that were in a
superposition of multiqudit GW states and vacuum. Inspired
by these developments, we wish to further investigate MoE for
the GW states with arbitrary partitions in higher-dimensional
quantum systems.
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Choosing an efficient bipartite entanglement measure plays
a strong part of characterizing MoE. In this paper we will
use Rényi-α entanglement (RαE). RαE is based on Rényi-α
entropy [28]. It is a generalization of entanglement of for-
mation (EoF) [29] by using the Rényi-α entropy. For EoF,
there is no CKW-type monogamy inequality to characterize
MoE. For RαE, we do have a CKW-type monogamy in-
equality for certain α [30]. The entanglement measure RαE
is also helpful in describing quantum phases with differing
computational power [31], ground-state properties in multi-
partite quantum systems [32], and topologically ordered states
[33]. Furthermore, RαE is also monotone as an entanglement
measure, which means that it does not increase under local
operations and classical communications. By using RαE, Kim
and Sanders [30] provided monogamy inequalities for α � 2
to quantify bipartite entanglement in multipartite quantum
systems. Later, Song et al. [34] presented that a general
monogamy inequality held using squared RαE for an arbitrary
N-qubit mixed state. Also, lower and upper bounds for RαE
were introduced in 2016 [35].

In this paper, we study the entanglement relations between
the whole system and all possible partitions for an n-qudit
pure state in superposition of generalized W -class states and
vacuum using RαE. We also establish partition-dependent
residual entanglements (PREs) using our results. PREs can
help us get a full understanding of the entanglement dy-
namics for generalized W -class states with different levels
and formats of partitions. We can even develop a possible
comprehensive analysis of the entanglement dynamics in an
infinite or finite time using PREs [36]. Interestingly, we also
use a quantum game to show the application of our entangle-
ment relations. Apart from their entertainment values, games
among multiplayers can provide some intuitive means to un-
derstand complex problems. For example, a quantum game is
an interesting and important tool for quantum cryptographic
purposes. Tomamichel et al. [37] studied the probability that
two players can simultaneously succeed in guessing the out-
come exactly in a quantum game. From their results, we have
that the optimal guessing probability can be achieved without
using entanglement. The authors in Refs. [27,38] presented
bounds on the difference between multiplayer quantum games
and classical games using the monogamy of Tsallis-q entropy
and squashed entanglement, respectively. We give a bound
using our results which is independent of α and tighter than
the bound in Ref. [38]. To some extent, the methods and ap-
plications in our paper can enrich the exploration of quantum
entanglement.

This paper is organized in the following manner. In Secs. II
and III, a few definitions of entanglement measures and GW
states were briefly introduced, respectively. Section IV shows
monogamy and polygamy relations for n-qudit GW states
using RαE and Rényi-α entanglement of assistance (RαEoA).
We also consider a class of generalized polygamy relations
in terms of RαEoA in Sec.V, which reflects the reciprocal
relation of RαEoA in a three-party quantum system. Sec-
tion VI gives tighter monogamy relations using concurrence
and CREN. The applications about PREs and quantum games
are presented in Sec. VII. Finally discussion and conclusions
are given in Sec. VIII.

II. DEFINITIONS

For a bipartite pure state |ψ〉AB = ∑
i

√
λi|ii〉, the concur-

rence C(|ψ〉AB) is defined as [39]

C(|ψ〉AB) =
√

2
[
1 − Tr

(
ρ2

A

)]
, (1)

where ρA = TrB(|ψ〉AB〈ψ |) (and analogously for ρB). For any
mixed state ρAB, the concurrence is given via the so-called
convex-roof extension

C(ρAB) = min
{pi,|ψi〉}

∑
i

piC(|ψi〉), (2)

where the minimum is taken over all possible pure decompo-
sitions of ρAB = ∑

i pi|ψi〉AB〈ψi|.
As the duality of concurrence, the concurrence of assis-

tance (CoA) of any mixed state ρAB is defined as [40]

Ca(ρAB) = max
{pi,|ψi〉}

∑
i

piC(|ψi〉), (3)

where the maximum is taken over all possible pure state
decompositions {pi, |ψi〉} of ρAB.

For a bipartite state ρAB in a d ⊗ d ′(d � d ′) quantum sys-
tem, its negativity [41] is defined as

N (ρAB) = ∥∥ρ
TA
AB

∥∥ − 1, (4)

where ρ
TA
AB is the partial transpose with respect to the subsys-

tem A and ‖X‖ denotes the trace norm of X, ‖X‖ = Tr
√

XX †.

In order to overcome the lack of separability criterion,
negativity is modified as the CREN. For a bipartite mixed state
ρAB, CREN is defined as

Ñ (ρAB) = min
{pi,|ψi〉}

∑
i

piN (|ψi〉), (5)

where the minimum is taken over all possible pure state de-
compositions {pi, |ψi〉} of ρAB.

One of the well-known measures of quantum entanglement
is RαE [30]. For a bipartite pure state |ψ〉AB = ∑

i

√
λi|ii〉, the

RαE is defined as

Eα (|ψ〉AB) = Sα (ρA) = 1

1 − α
log2

(
trρα

A

)
, (6)

where Rényi-α entropy is Sα (ρA) = [log2(
∑

i λ
α
i )]/(1 − α).

Here α is a non-negative real number and λi is the eigen-
value of reduced density matrix ρA. When the order α tends
to 1, Rényi-α entropy Sα (ρ) converges to the von Neumann
entropy.

For a bipartite mixed state ρAB, the RαE is defined via the
convex-roof extension [30]

Eα (ρAB) = min
∑

i

piEα (|ψi〉AB), (7)

where the minimum is taken over all possible pure state de-
compositions of ρAB.

As a dual concept to Rényi-α entanglement, we define the
RαEoA as

Ea
α (ρAB) = max

∑
i

piEα (|ψi〉AB), (8)

where the maximum is taken over all possible pure state
decompositions of ρAB.
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III. GENERALIZED W -CLASS STATES

Generalized W -class states are introduced by Kim and
Sanders [23]. The structure of generalized W -class states is
also investigated in their paper by considering arbitrary parti-
tions of subsystems and they further proved the entanglements
of generalized W -class states can be fully characterized by
their partial entanglement.

A class of n-qubit W -class states and n-qudit GW states
[23] are, respectively, expressed as

|ψ〉A1A2...An = a1|10 · · · 0〉 + a2|01 · · · 0〉 + ...

+ an|00 · · · 1〉 (9)

and ∣∣W d
n

〉
A1···An

=
d−1∑
i=1

(a1i|i0 · · · 0〉 + a2i|0i · · · 0〉 + · · ·

+ ani|00 · · · 0i〉), (10)

with the normalization condition
∑n

i=1 |a j |2 = 1 and∑n
s=1

∑d−1
i=1 |asi|2 = 1, respectively. The state in Eq. (10)

with Hamming weight 1 is a coherent superposition of all
n-qudit product states. Equation (10) includes n-qubit W -class
states in Eq. (9) as a special case when d = 2.

For any partition P = {P1, . . . , Pm} of the set of subsystems
S = {A1, . . . , An}, m � n, the monogamy relation with respect
to any partition P can be described by concurrence in the
following lemma.

Lemma 1. [23] For any n-qudit generalized W -class states
|ψ〉A1···An and a partition P = {P1, . . . , Pm} of the set of sub-
systems S = {A1, . . . , An}, m � n

C2
Ps (P1···P̂s···Pm ) =

∑
k �=s

C2
PsPk

=
∑
k �=s

(
Ca

PsPk

)2
(11)

and

CPsPk = (
Ca

PsPk

)
, (12)

for all k �= s and (P1 · · · P̂s · · · Pm) = (P1 · · · Ps · · · Pm) − (Ps).
In this paper, we select RαE as the entanglement measure.

We note that there exists an analytical expression between the
RαE and concurrence [30]. For any two-qubit mixed state,

Eα (ρAB) = fα (C2(ρAB)), (13)

where the order α � 1 and the function fα (x) has the form

fα (x) = 1

1 − α
log2

[(
1−√

1 − x

2

)α

+
(

1+√
1 − x

2

)α]
.

(14)
Later, Wang et al. proved Eq. (13) still holds for α � (

√
7 −

1)/2 [42]. So, making use of the analytic expression in
Eq. (13) and monogamy relation in Lemma 1, we aim to show
how the global entanglement for GW states can be charac-
terized by partial entanglements using RαE with a different
range of α.

Before that, we need several lemmas about the properties
of Eq. (13) which are necessary in the proof of our main
results.

Lemma 2. [34] The squared RαE E2
α (C2) with α � (

√
7 −

1)/2 in two-qubit mixed states is monotonically increasing
and convex as a function of the squared concurrence C2.

Lemma 3. [34] The Rényi-α entanglement Eα (C2) with
α ∈ [(

√
7 − 1)/2, (

√
13 − 1)/2] is monotonically increasing

and concave as a function of the squared concurrence C2.
Set y = x2, denote gα (y) = fα (x2), and then for any two-

qubit mixed state Eqs. (13) and (14) can be rephrased as

Eα (ρAB) = gα (C(ρAB)), (15)

where the order α � 1 and the function gα (y) has the form

gα (y) = 1

1 − α
log2

[(
1−

√
1 − y2

2

)α

+
(

1+
√

1 − y2

2

)α]
.

(16)
Lemma 4. [42] The function gα (y) with α � (

√
7 − 1)/2

is a monotonically increasing and convex function for 0 �
y � 1.

IV. MONOGAMY AND POLYGAMY RELATIONS
FOR GENERALIZED W -CLASS STATES

USING RéNYI-α ENTROPY

Consider an n-qudit pure state |ψ〉A1···An which is in a su-
perposition of an n-qudit GW state in Eq. (10) and vacuum
|0 · · · 0〉A1···An :

|ψ〉A1A2···An = √
p
∣∣W d

n

〉
A1···An

+
√

1 − p|0 · · · 0〉A1···An , (17)

with 0 � p � 1. We first present two analytic formulas of
RαE and RαEoA for |ψ〉A1···An , which are helpful for us to
investigate monogamy and polygamy relations later. Let us
start with a structural property of n-qudit GW states.

Lemma 5. [25] Let ρAj1 ···Ajm
be a reduced density matrix of

|ψ〉A1···An onto m-qudit subsystems Aj1 · · · Ajm with 2 � m �
n − 1. For any pure state decomposition of ρAj1 ···Ajm

such that

ρAj1 ···Ajm
=

∑
k

qk|φk〉Aj1 ···Ajm
〈φk|, (18)

|φk〉Aj1 ···Ajm
is a superposition of a m-qudit generalized W-class

state and vacuum.
Here the index vector

−→
j = ( j1, · · · , jm) with m distinct

elements spans all the possible ordered subsets of the index
set {1, 2, · · · , n}. From the lemma above, we know that for
any pure state decomposition {qk, |φk〉Aj1 ···Ajm

} of a reduced
density matrix ρAj1 ···Ajm

, ρAj1 ···Ajm
is a rank-2 operator.

Theorem 1. Assume ρA1···An is a reduced density matrix of
|ψ〉A1···An in (17); then we have

Eα (ρA1|A2···An ) = fα (C2(ρA1|A2···An )), (19)

when α � (
√

7 − 1)/2.
Proof. For convenience, we denote ρA1|A1···An as bipartite

state ρAB. Assume {pi, |ψi〉} is the optimal decomposition for
RαE of ρAB; then we have

Eα (ρAB) =
∑

i

piEα (|ψi〉AB)

=
∑

i

pigα (C(|ψi〉AB))

� gα

(∑
i

piC(|ψi〉AB)

)
� gα (C(ρAB)), (20)
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where the second equality is by the relation between RαE and
concurrence for pure states in Eq. (15), the first inequality is
due to convexity of gα in Lemma 4, and the last inequality is
by the monotonicity of gα in Lemma 4 and the definition of
C(ρAB).

On the other hand, we can always assume ρAB =∑
h qh|φh〉AB〈φh| is an optimal decomposition for C(ρAB), then

we have

C(ρAB) =
∑

h

qhC(|φh〉AB) .

Moreover, we will see the following relation is also true for
all h:

C(|φh〉AB) = C(ρAB). (21)

Since ρAB = |ψ〉AB〈ψ | with |ψ〉AB in (17), then by the
Hughston-Jozsa-Wootters theorem [25] the optimal decompo-
sition ρAB = ∑

h qh|φh〉AB〈φh| for concurrence can be realized
by a unitary matrix uh with

|φh〉AB = uh|ψ〉AB.

So Eq. (21) is true due to uhu∗
h = I for all h.

Then

gα (C(ρAB)) = gα

(∑
h

qhC(|φh〉AB)

)

=
∑

h

qhgα (C(|φh〉AB))

=
∑

h

qhEα (|φh〉AB)

� Eα (ρAB), (22)

where the second equality is by Eq. (21) and the inequality is
by the definition of Eα (ρAB).

Therefore, combining Eqs. (20) and (22), we fi-
nally get Eα (ρAB) = gα (C(ρAB)), which is equivalent to
Eα (ρA1|A2···An ) = fα (C2(ρA1|A2···An )). �

Lemma 5 leads to the fact that for any pure state
decomposition of the reduced density matrix ρAj1 ···Ajm

=∑
k qk|φk〉Aj1 ···Ajm

〈φk|, |φk〉Aj1 ···Ajm
is also a pure state in a

superposition of a m-qudit GW state and vacuum, so we
naturally obtain Eα (ρAj1 |Aj2 ···Ajm

) = fα (C2(ρAj1 |Aj2 ···Ajm
)) from

Theorem 1. Next we wish to establish a similar analytic for-
mula for |ψ〉A1···An using RαEoA.

Theorem 2. Assume ρAj1 ···Ajm
is a reduced density matrix

of |ψ〉A1···An in (17); then we have

Ea
α (ρAj1 |Aj2 ···Ajm

) = fα (C2(ρAj1 |Aj2 ···Ajm
)), (23)

when α ∈ [(
√

7 − 1)/2, (
√

13 − 1)/2].
Proof. For convenience, we denote ρAj1 |Aj2 ···Ajm

as ρAB.
Since ρAj1 ···Ajm

is a reduced density matrix of |ψ〉A1···An in
Eq. (17), then C(ρAB) = Ca(ρAB) [23]. So it is enough for us
to show Ea

α (ρAB) = fα ([Ca(ρAB)]2). First we prove Ea
α (ρAB) �

fα ([Ca(ρAB)]2). Assume {pi, |ψi〉} is the optimal decomposi-
tion for RαEoA of ρAB; then we have

Ea
α (ρAB) =

∑
i

piEα (|ψi〉AB)

=
∑

i

piEα (C2(|ψi〉AB))

� Eα

(∑
i

piC2(|ψi〉AB)

)
� Eα ([Ca(ρAB)]2) = fα ([Ca(ρAB)]2), (24)

where the first inequality is due to the concave property of
Eα (C2) for α ∈ [(

√
7 − 1)/2, (

√
13 − 1)/2] in Lemma 3 and

the second inequality is due to the definition of (Ca(ρAB))2 and
the increasing property of Eα (C2) in Lemma 3.

Next we show Ea
α (ρAB) � fα ([Ca(ρAB)]2). Assume

{rk, |θk〉} is the optimal decomposition for Ca(ρAB). Then

fα
(
[Ca(ρAB)]2

) = gα (Ca(ρAB))

= gα

(∑
k

rkC(|θk〉AB)

)

�
∑

k

rkgα (C(|θk〉AB))

=
∑

k

rkEα (|θk〉AB)

� Ea
α (ρAB), (25)

where in the first inequality we have used the convex prop-
erty of gα (y) for α � (

√
7 − 1)/2 in Lemma 4. The second

inequality is due to the definition of Ea
α (ρAB).

Thus combining (24) and (25), we have Ea
α (ρAB) =

fα ([Ca(ρAB)]2) which completes the proof �.
Theorems 1 and 2 have shown the analytic expression

between Rényi-α entropy and concurrence for a partition of
the set {Aj1 , Aj2 , · · · , Ajm} with a different range of α. Taking
the intersection of the different range leads us to the following
theorem.

Theorem 3. Assume ρAj1 ···Ajm
is a reduced density matrix

of |ψ〉A1···An in (17); then we have

Ea
α (ρAj1 |Aj2 ···Ajm

) = Eα (ρAj1 |Aj2 ···Ajm
)

= fα (C2(ρAj1 |Aj2 ···Ajm
)), (26)

when α ∈ [(
√

7 − 1)/2, (
√

13 − 1)/2].
With the analytical expressions obtained above, we then

begin to investigate the monogamy relations with respect to a
partition P = {P1, P2, · · · , Pk} of the set {Aj1 , Aj2 , · · · , Ajm},
k � m < n using Rényi-α entropy. Before that, we need a
lemma to ensure the analytical expressions obtained above are
all available for |ψ〉P1,··· ,Pk .

Lemma 6. [26] Let |ψ〉A1,··· ,An be an n-qudit pure state in
Eq. (17), then for any partition P = {P1, . . . , Pk} of the set
of subsystems S = {A1, . . . , An}, k � n, the state |ψ〉P1,··· ,Pk is
also a superposition of a k-party generalized W -class state in
Eq. (10) and vacuum in higher-dimensional quantum systems.
Here Ps ∩ Pt = ∅ for s �= t, and

⋃
s Ps = S.

Theorem 4. Assume ρAj1 ···Ajm
is a reduced density matrix

of |ψ〉A1···An in (17); here we denote by {P1, P2, · · · , Pk} a
partition of the set {Aj1 , Aj2 , · · · , Ajm}, k � m < n; when α �
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(
√

7 − 1)/2, we have the following monogamy inequality:

E2
α (ρP1|P2···Pk ) �

k∑
i=2

E2
α (ρP1Pi ). (27)

Proof. For α � (
√

7 − 1)/2, we have

E2
α (ρP1|P2···Pk ) = f 2

α (C2(ρP1|P2···Pk ))

= f 2
α

(
k∑

i=2

C2(ρP1Pi )

)

�
k∑

i=2

f 2
α (C2(ρP1Pi ))

=
k∑

i=2

E2
α (ρP1Pi ), (28)

where in the first equality we use Theorem 1, the second
equality is due to the monogamy relation in Lemma 1, the first
inequality is due to the convex property of squared Rényi-α
entanglement in Lemma 2, and the last equality is obtained by
Theorem 1 again. �

Theorem 4 deals with the monogamy inequality of the
squared RαE in a partition of {Aj1 , Aj2 , · · · , Ajm}. However,
we can also analogously show the monogamy inequality for
the μth power of RαE for GW states when μ � 2.

Corollary 1. Assume ρAj1 ···Ajm
is a reduced density matrix

of |ψ〉A1···An in (17); here we denote by {P1, P2, · · · , Pk} a par-
tition of the set {Aj1 , Aj2 , · · · , Ajm}, k � m < n; when α � 2,
we have the following monogamy inequality:

Eμ
α (ρP1|P2···Pk ) �

k∑
i=2

Eμ
α (ρP1Pi ), (29)

for μ � 2.
Proof. In Theorem 3 of Ref. [23], the authors presented that

fα (x2 + y2) � fα (x2) + fα (y2), (30)

with α � 2 and 0 � x, y � 1, 0 � x2 + y2 � 1.
Then when μ � 2, we can get

f μ
α (x2 + y2) �

[
f 2
α (x2) + f 2

α (y2)
] μ

2

= f μ
α (x2)

(
1 + f 2

α (y2)

f 2
α (x2)

) μ

2

� f μ
α (x2) + f μ

α (y2). (31)

Here the second inequality is obtained by (1 + t )x � 1 + t x

for any real number x and t , 0 � t � 1, x ∈ [1,∞].
Denote Q = P3 · · · Pk , then

Eμ
α (ρP1|P2···Pk ) = f μ

α (C2(ρP1|P2···Pk ))

= f μ
α [C2(ρP1P2 ) + C2(ρP1Q)]

� f μ
α (C2(ρP1P2 )) + f μ

α (C2(ρP1Q))

= Eμ
α (ρP1P2 ) + Eμ

α (ρP1Q), (32)

where the first equality is due to Theorem 1, and
the second equality is obtained from Lemma 1. If

min{C(ρP1P2 ), C(ρP1Q)} = 0, obviously the inequality holds.
If min{C(ρP1P2 ), C(ρP1Q)} > 0, assuming C(ρP1P2 ) � C(ρP1Q),
then the inequality holds owing to (31).

By partitioning the qudit system Q into two subsystems, P3

and a 2|p4|+···+|pk |-dimensional quantum system, and using the
inequality (31) repeatedly, one gets (29). Here |pi| denotes the
number of qubits in party Pi for i = 1, 2, · · · , k. �

As a duality of monogamy relations, polygamy relations
using RαEoA for GW states can also be developed.

Theorem 5. Assume ρAj1 ···Ajm
is a reduced density matrix

of |ψ〉A1···An in (17); here we denote by {P1, P2, · · · , Pk} a
partition of the set {Aj1 , Aj2 , · · · , Ajm}, k � m < n; when α ∈
[(

√
7 − 1)/2, (

√
13 − 1)/2], we have the following polygamy

inequality:

Ea
α (ρP1|P2···Pk ) �

k∑
i=2

Ea
α (ρP1Pi ). (33)

Proof. When α ∈ [(
√

7 − 1)/2, (
√

13 − 1)/2], we have

Ea
α (ρP1|P2···Pk ) = fα (C2(ρP1|P2···Pk ))

= fα

(
k∑

i=2

C2(ρP1Pi )

)

�
k∑

i=2

fα (C2(ρP1Pi ))

=
k∑

i=2

Ea
α (ρP1Pi ), (34)

where the first equality is obtained by Theorem 2, the second
equality is due to the monogamy relation in Lemma 1, the
first inequality is due to the concave property of Rényi-α
entanglement in Lemma 3, and the last equality is obtained
by Theorem 2. �

Taking similar consideration in Corollary 1, we can have a
polygamy inequality of μth power of RαEoA.

Corollary 2. Assume ρAj1 ···Ajm
is a reduced density matrix

of |ψ〉A1···An in (17); here we denote by {P1, P2, · · · , Pk} a
partition of the set {Aj1 , Aj2 , · · · , Ajm}, k � m < n; when α ∈
[(

√
7 − 1)/2, (

√
13 − 1)/2], we have the following polygamy

inequality:

(Ea
α )μ(ρP1|P2···Pk ) �

k∑
i=2

(
Ea

α

)μ
(ρP1Pi ), (35)

for 0 < μ � 1.
Proof. In Lemma 2 of Ref. [43], the authors showed that

fα (x2 + y2) � fα (x2) + fα (y2), (36)

with α ∈ [(
√

7 − 1)/2, (
√

13 − 1)/2] and 0 � x, y � 1, 0 �
x2 + y2 � 1.

Then when 0 < μ � 1, we have

f μ
α (x2 + y2) � [ fα (x2) + fα (y2)]μ

� f μ
α (x2) + f μ

α (y2). (37)
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FIG. 1. Lower and upper bounds are shown for Eα (ρP1|P2P3 )
when α ∈ [(

√
7 − 1)/2, (

√
13 − 1)/2], α �= 1. The solid black line

is the function
√

E 2
α (ρP1P2 ) + E 2

α (ρP1P3 ) of variable α, which is a
lower bound for Eα (ρP1|P2P3 ). The dashed blue line is the function
Ea

α (ρP1P2 ) + Ea
α (ρP1P3 ) of variable α, which is an upper bound for

Eα (ρP1|P2P3 ). (a) (
√

7 − 1)/2 � α < 1; (b) 1 < α � (
√

13 − 1)/2.

Here the second inequality is obtained by (1 + t )x � 1 + t x

with t � 0, x ∈ (0, 1] and a similar consideration in the proof
of inequality (31).

Denote Q = P3 · · · Pk , then(
Ea

α

)μ
(ρP1|P2···Pk ) = f μ

α (C2(ρP1|P2···Pk ))

�
k∑

i=2

f μ
α (ρP1Pi )

=
k∑

i=2

(
Ea

α

)μ
(ρP1Pi ). (38)

Here the first equality is from Theorem 2, and the inequality is
obtained from the iterative use of inequality (37) and a similar
consideration in the proof of inequality (32). �

As an example to show the application of the above results,
we consider the four-qubit GW state

|ψ〉A1A2A3A4 = 0.3|0001〉 + 0.4|0010〉 + 0.5|0100〉
+

√
0.5|1000〉. (39)

Here we choose ρA1A2A3 as the reduced density matrix of
|ψ〉A1A2A3A4 and P = {P1, P2, P3} with P1 = A1, P2 = A2, P3 =
A3. First, we have

ρA1A2A3 = 0.09|000〉〈000| + |φ〉〈φ|, (40)

where |φ〉 = 0.4|001〉 + 0.5|010〉 + √
0.5|100〉. Using the

calculation method in Ref. [44], we get C(ρP1P2 ) =√
2

2 , C(ρP1P3 ) = 2
√

2
5 . Then when α ∈ [(

√
7 − 1)/2, (

√
13 −

1)/2], α �= 1, using Theorem 3, we have

Eα (ρP1P2 ) =Ea
α (ρP1P2 ) = fα

[(√
2

2

)2]
,

Eα (ρP1P3 ) =Ea
α (ρP1P3 ) = fα

[(
2
√

2

5

)2]
. (41)

Since Theorem 4 leads to
√

E2
α (ρP1P2 ) + E2

α (ρP1P3 ) �
Eα (ρP1|P2P3 ), and Theorem 5 leads to Ea

α (ρP1|P2P3 ) �
Ea

α (ρP1P2 ) + Ea
α (ρP1P3 ), and Theorem 3 ensures the

equality Eα (ρP1|P2P3 ) = Ea
α (ρP1|P2P3 ), then we have lower

and upper bounds for Eα (ρP1|P2P3 ); see Fig. 1.

V. GENERALIZED POLYGAMY RELATIONS
FOR GENERALIZED W -CLASS STATES

USING RéNYI-α ENTROPY

In this section, we develop generalized polygamy relations
of multipartite systems in terms of RαEoA. Now we first
investigate a generalized polygamy relation which shows the
reciprocal relation of RαEoA in an arbitrary three-party quan-
tum system.

Theorem 6. Assume ρAj1 ···Ajm
is a reduced density ma-

trix of |ψ〉A1···An in (17); here we denote by {P1, P2, P3} a
partition of the set {Aj1 , Aj2 , · · · , Ajm}; when α ∈ [(

√
7 −

1)/2, (
√

13 − 1)/2], we have the following polygamy in-
equality:

Ea
α (ρP1|P2P3 ) � Ea

α (ρP2|P1P3 ) + Ea
α (ρP3|P1P2 ). (42)

Proof. Assume {pi, |ψi〉} is the optimal decompo-
sition for RαEoA of ρP1|P2P3 such that Ea

α (ρP1|P2P3 ) =∑
i piEα (|ψi〉P1|P2P3 ). Let T (ρ) = 2[1 − Tr(ρ2)] be the lin-

ear entropy which is related to the concurrence [45]. For
each pure state |ψi〉P1|P2P3 in this optimal decomposition, one
has ρ i

P2P3
= TrP1 (|ψi〉P1P2P3〈ψi|), ρ i

P2
= TrP1P3 (|ψi〉P1P2P3〈ψi|),

ρ i
P3

= TrP1P2 (|ψi〉P1P2P3〈ψi|).
When [C2(|ψi〉P2|P1P3 ) + C2(|ψi〉P3|P1P2 )] � 1, we have

Eα (|ψi〉P1|P2P3 ) = fα (C2(|ψi〉P1|P2P3 ))

= fα
(
T

(
ρ i

P2P3

))
� fα

[
T

(
ρ i

P2

) + T
(
ρ i

P3

)]
= fα[C2(|ψi〉P2|P1P3 ) + C2(|ψi〉P3|P1P2 )]

� fα (C2(|ψi〉P2|P1P3 )) + fα (C2(|ψi〉P3|P1P2 ))

= Eα (|ψi〉P2|P1P3 ) + Eα (|ψi〉P3|P1P2 ), (43)

where the first equality is from Theorem 1, and the first in-
equality is due to the subadditivity of the linear entropy [45]
and the monotonically increasing property of fα (x) in Lemma
3. The second inequality is due to inequality (36).

When [C2(|ψi〉P2|P1P3 ) + C2(|ψi〉P3|P1P2 )] � 1, defining S =
[C2(|ψi〉P2|P1P3 ) + C2(|ψi〉P3|P1P2 )] − 1 > 0, we have

Eα (|ψi〉P1|P2P3 ) = fα (C2(|ψi〉P1|P2P3 ))

� fα (1)

= fα[C2(|ψi〉P2|P1P3 ) + C2(|ψi〉P3|P1P2 ) − S]

� fα (C2(|ψi〉P2|P1P3 )) + fα[C2(|ψi〉P3|P1P2 ) − S]

� fα (C2(|ψi〉P2|P1P3 )) + fα (C2(|ψi〉P3|P1P2 ))

= Eα (|ψi〉P2|P1P3 ) + Eα (|ψi〉P3|P1P2 ). (44)

Here the second inequality is by using inequality (36) with
respect to C2(|ψi〉P2|P1P3 ) and C2(|ψi〉P3|P1P2 )) − S, and the third
inequality is due to the increasing property of fα on the second
term.

Therefore, we have

Ea
α (ρP1|P2P3 ) =

∑
i

piEα (|ψi〉P1|P2P3 )

�
∑

i

piEα (|ψi〉P2|P1P3 )

062428-6



MONOGAMY AND POLYGAMY FOR GENERALIZED … PHYSICAL REVIEW A 102, 062428 (2020)

+
∑

i

piEα (|ψi〉P3|P1P2 )

� Ea
α (ρP2|P1P3 ) + Ea

α (ρP3|P1P2 ), (45)

where the first inequality is from inequality (43) and the
second inequality is due to the definition of RαEoA. �

Theorem 6 tells that the sum of two RαEoA’s with respect
to two possible bipartitions (P2 − P1P3, P3 − P1P2) always
bounds the RαEoA with respect to the remaining bipartition
(P1 − P2P3). Moreover, iterative use of Eq. (42) leads us to the
generalization of Theorem 6.

Corollary 3. Assume ρAj1 ···Ajm
is a reduced density matrix

of |ψ〉A1···An in (17); here we denote by {P1, P2, · · · , Pk} a
partition of the set {Aj1 , Aj2 , · · · , Ajm}, k � m < n; when α ∈
[(

√
7 − 1)/2, (

√
13 − 1)/2], we have the following polygamy

inequality:

Ea
α (ρP1|P2,··· ,Pk ) � Ea

α (ρP2|P1P3,··· ,Pk ) + · · ·
+ Ea

α (ρPk |P1P2,··· ,Pk−1 ). (46)

According to the relations between RαE and RαEoA in
Theorem 3, we can have another corollary of Theorem 6 for
RαE.

Corollary 4. Assume ρAj1 ···Ajm
is a reduced density ma-

trix of |ψ〉A1···An in (17); here we denote by {P1, P2, P3} a
partition of the set {Aj1 , Aj2 , · · · , Ajm}; when α ∈ [(

√
7 −

1)/2, (
√

13 − 1)/2], we have the following monogamy in-
equality:

Eα (ρP1|P2P3 ) � Eα (ρP2|P1P3 ) + Eα (ρP3|P1P2 ). (47)

Next making use of Theorem 6, we can obtain a polygamy-
type upper bound of multiqubit entanglement for RαEoA
between the two-party subsystem and the remaining k-party
subsystem.

Theorem 7. Assume ρAj1 ···Ajm
is a reduced density ma-

trix of an n-qudit pure state |ψ〉A1···An in (17); here we
denote by {P1, P2, Q1, Q2, · · · , Qk} a partition of the set
{Aj1 , Aj2 , · · · , Ajm}; when α ∈ [(

√
7 − 1)/2, (

√
13 − 1)/2],

we have

Ea
α (ρP1P2|Q1···Qk ) � 2Ea

α (ρP1P2 ) +
k∑

i=1

Ea
α (ρP1Qi )

+
k∑

i=1

Ea
α (ρP2Qi ). (48)

Proof. Consider P1P2Q1 · · · Qk as a three-party quantum
state with Q = Q1 · · · Qk . Then Theorem 6 leads us to

Ea
α (ρP1P2|Q) � Ea

α (ρP1|P2Q) + Ea
α (ρP2|P1Q). (49)

From Theorem 5, we have

Ea
α (ρP1|P2Q) � Ea

α (ρP2|P1 ) +
k∑

i=1

Ea
α (ρP1Qi ), (50)

and

Ea
α (ρP2|P1Q) � Ea

α (ρP1|P2 ) +
k∑

i=1

Ea
α (ρP2Qi ). (51)

Combining (49)–(51), we obtain (48). �

Theorem 7 implies that the entanglement (RαEoA) be-
tween the parties P1P2 and the other parties cannot be more
than the sum of the individual entanglement between P1 and
the k + 1 remaining parties and the individual entanglement
between P2 and the k + 1 remaining parties.

For the case when ξP1P2|Q1···Qk = ρP1|Q1···Qk ⊗ |0〉P2〈0|, in-
equality (48) in Theorem 7 reduced to the polygamy relation
(33) in terms of RαEoA in Theorem 5. So that is why we call
the result in Theorem 7 a generalized polygamy relation for
the GW state using RαEoA.

VI. TIGHTER MONOGAMY RELATIONS
FOR GENERALIZED W -CLASS STATES

This section gives tighter monogamy relations for GW
states in terms of concurrence and negativity. A general
monogamy relation is also developed using Rényi-α entropy.
First, we prove a pivotal lemma.

Lemma 7. For real numbers t ∈ [0, 1], x � k � 1, we have

(1 + x)t � 1 +
(

(1 + k)t − 1

kt

)
xt . (52)

Proof. Consider the function ft (x) = (1+x)t −1
xt , since

dft (x)

dx
= tx−(t+1)[1 − (1 + x)t−1] � 0

for t ∈ [0, 1] and x � 1.
In other words, the function ft (x) is an increasing function

with x � 1. Since x � k � 1, then ft (x) � ft (k). �
Now if we set the partition {P1, P2, P3} as a subset of the

set {A1, A2, ..., An}, then the monogamy relation in Lemma 1
can be rewritten as

C2
P1|P2P3

= C2
P1P2

+ C2
P1P3

, (53)

CP1P2 = Ca
P1P2

. (54)

Theorem 8. Assume |ψ〉A1A2···An is an n-qudit generalized
W -class state and set the partition {P1, P2, P3} as a subset of
the set {A1, A2, ..., An}; if Cα

P1P3
� kCα

P1P2
, we have(

Ca
P1|P2P3

)β � h
(
Ca

P1P3

)β + (
Ca

P1P2

)β
, (55)

with β ∈ [0, α], α � 2, h = (1+k)
β
α −1

k
β
α

, k � 1.

Proof. Since Cα
P1P3

� kCα
P1P2

, we have(
Ca

P1|P2P3

)β = (CP1|P2P3 )β

�
(
Cα

P1P2
+ Cα

P1P3

) β

α

= Cβ
P1P2

(
1 + Cα

P1P3

Cα
P1P2

) β

α

� Cβ
P1P2

[
1 + (1 + k)

β

α − 1

k
β

α

(Cα
P1P3

Cα
P1P2

) β

α

]

= Cβ
P1P2

+ (1 + k)
β

α − 1

k
β

α

Cβ
P1P3

= (
Ca

P1P2

)β + (1 + k)
β

α − 1

k
β

α

(
Ca

P1P3

)β
. (56)

062428-7



LIANG, ZHENG, AND ZHU PHYSICAL REVIEW A 102, 062428 (2020)

0 0.5 1 1.5 2 2.5 3

0.4

0.6

0.8

1

β

Ca

FIG. 2. Concurrence of assistance and lower bounds for three-
qubit GW states given in Eq. (57). The solid black line is the function
Ca

P1|P2P3
of variable β. The dotted blue line is the lower bound of

Ca
P1|P2P3

obtained from [27]. The dashed green line is the lower bound
of Ca

P1|P2P3
obtained from our result.

Here the first inequality is due to (53). The second inequality
is obtained from Lemma 7 and the last equality is due to (54).

�
Theorem 8 shows a general monogamy inequality for GW

states using CoA which is tighter than the result in Ref. [27].
Here we present an example to illustrate this. We consider a
three-qubit GW state:

|ψ〉A1A2A3 = 1√
6
|100〉 + 1√

6
|010〉 + 2√

6
|001〉. (57)

Set the partition P1 = A1, P2 = A2, P3 = A3. After com-
putation, we get C(ρP1|P2P3 ) = Ca(ρP1|P2P3 ) =

√
5

3 , C(ρP1P2 ) =
Ca(ρP1P2 ) = 1

3 , C(ρP1P3 ) = Ca(ρP1P3 ) = 2
3 . Choose α = 3, then

1 � k � 8. Assuming k = 5, we get the lower bound for
Ca

P1|P2P3
from the monogamy inequality in Theorem 8. One can

also get a lower bound for Ca
P1|P2P3

from Ref. [27]. We plot
these two lower bounds for Ca

P1|P2P3
in Fig. 2. From Fig. 2,

we can easily see that our bound is tighter than the one in
Ref. [27].

Next we generalize the results to the multipartite GW state
in terms of CoA under some restricted conditions.

Theorem 9. Assume ρP1···Pm is a reduced density matrix
of an n-qudit pure GW state |ψ〉A1···An ; if we have kCα

P1Pi
�

Cα
P1|Pi+1···Pm−1

for i = 2, 3, · · · , t , and Cα
P1Pj

� kCα
P1|Pj+1···Pm

for
j = t + 1, · · · , m − 1, then we have

(
Ca

P1|P2,··· ,Pm

)β �
t∑

i=2

hi−2
(
Ca

P1Pi

)β + ht
m−1∑

i=t+1

(
Ca

P1Pi

)β

+ ht−1
(
Ca

P1Pm

)β
, (58)

with β ∈ [0, α], α � 2, h = (1+k)
β
α −1

k
β
α

, k � 1.

Proof. Since kCα
P1Pi

� Cα
P1|Pi+1···Pm−1

for i = 2, 3, · · · , n, then
using Theorem 8, we have(

Ca
P1|P2...Pm

)β �
(
Ca

P1P2

)β + h
(
Ca

P1|P3...Pm

)β

� · · ·

�
t∑

i=2

hi−2
(
Ca

P1Pi

)β + ht−1
(
Ca

P1|Pt+1...Pm

)β
. (59)

Since Cα
P1Pj

� kCα
P1|Pj+1···Pm

for j = t + 1, · · · , m − 1, using
Theorem 8 again, we get(

Ca
P1|Pt+1...Pm

)β � h
(
Ca

P1Pt+1

)β + (
Ca

P1|Pt+2...Pm

)β

� · · ·

� h
m−1∑

i=t+1

(
Ca

P1Pi

)β + (
Ca

P1Pm

)β
. (60)

Combining (59) and (60), we finally obtain

(
Ca

P1|P2...Pm

)β �
t∑

i=2

hi−2
(
Ca

P1Pi

)β + ht−1
(
Ca

P1|Pt+1...Pm

)β

�
t∑

i=2

hi−2
(
Ca

P1Pi

)β + ht
m−1∑

i=t+1

(
Ca

P1Pi

)β

+ ht−1
(
Ca

P1Pm

)β
. (61)

�
When k = 1, inequality (58) reduces to the inequality (44)

in Ref. [27]. Note that Theorems 8 and 9 are presented for the
n-qudit GW state. Furthermore, we claim that Theorems 8 and
9 are also valid for the mixed state

ρA1···An = p|W d
n 〉A1···An〈W d

n |
+ (1 − p)|0 · · · 0〉A1...An〈0 · · · 0|. (62)

Since ρA1···An is an operator of rank 2, we can always have a
purification of ρA1···An such that

|ψ〉A1···AnAn+1 = √
p|W d

n 〉A1···An ⊗ |0〉An+1

+
√

1 − p|0 · · · 0〉A1···An ⊗ |x〉An+1 , (63)

with |x〉An+1 = ∑d−1
1=i an+1i|i〉An+1 a one-qudit quantum state of

An+1; then using (10), Eq. (63) can be rewritten as

|ψ〉A1···An+1 =
d−1∑
i=1

[
√

p(a1i|i · · · 00〉A1···An+1 + · · ·

+ ani|0 · · · i0〉)A1···An+1

+
√

1 − pan+1i|0 · · · 0i〉A1···An+1 ]. (64)

One can find that it is an (n + 1)-qudit GW state.
Moreover, we note that CREN is equivalent to concurrence

for any pure state with Schmidt rank 2 [12]. Choi and Kim
[25] proved that for an n-qudit pure state |ψ〉A1···An in Eq. (17),
we have

Ñ 2(|ψ〉A1···An ) =
n∑

j=2

Ñ 2(ρA1Aj ). (65)
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Later Kim [26] presented that for the reduced density matrix
of |ψ〉A1···An , we have

Ñ 2(ρA1···An ) =
n∑

j=2

Ñ 2(ρA1Aj ). (66)

The inequalities (65) and (66) are still true for the coun-
terexamples violating the CKW inequality using squared
concurrence. We can use the similar method in the proof of
Corollary 1 to generalize inequality (66) into μth power for
μ � 2:

Ñ μ(ρA1···An ) �
n∑

j=2

Ñ μ(ρA1Aj ). (67)

Therefore, playing a similar trick in Theorems 8 and 9, we can
obtain the general monogamy relations for CREN which are
tighter than the corresponding results in Ref. [27].

Theorem 10. Assume ρA1A2A3 is the reduced density matrix
of a three-qudit pure state |ψ〉A1A2A3 in a superposition of a
three-qudit generalized W -class state and vacuum; if Ñ α

A1A3
�

kÑ α
A1A2

, we have(
ÑA1|A2A3

)β � h
(
ÑA1A3

)β + (
ÑA1A2

)β
, (68)

with β ∈ [0, α], α � 2, h = (1+k)
β
α −1

k
β
α

, k � 1.

Proof.

(ÑA1|A2A3 )β �
(
Ñ α

A1A2
+ Ñ α

A1A3

) β

α

= Ñ β
A1A2

(
1 + Ñ α

A1A3

Ñ α
A1A2

) β

α

�
(
ÑA1A2

)β + h
(
ÑA1A3

)β
. (69)

Here the first inequality is due to (67). The second inequality
is obtained from Lemma 7 and Ñ α

A1A3
� kÑ α

A1A2
. �

Theorem 11. Assume ρA1···An is the reduced density ma-
trix of an n-qudit pure state |ψ〉A1···An in a superposition of
an n-qudit generalized W -class state in (10) and vacuum;
if kÑ α

A1Ai
� Ñ α

A1|Ai+1···An
for i = 2, 3, · · · , m, and Ñ α

A1Aj
�

kÑ α
A1|Aj+1···An

for j = m + 1, · · · , n − 1, then we have

(
ÑA1|A2...An

)β �
m∑

i=2

hi−2
(
ÑA1Ai

)β

+ hm
n−1∑

i=m+1

(
ÑA1Ai

)β

+ hm−1
(
Ñ a

A1An

)β
, (70)

with β ∈ [0, α], α � 2, h = (1+k)
β
α −1

k
β
α

, k � 1.

Finally, we explore the general monogamy relations for
RαE.

Theorem 12. Assume ρAj1 ···Ajm
is a reduced density matrix

of |ψ〉A1···An in a superposition of an n-qudit generalized W-
class state in (10) and vacuum, and set the partition {P1, P2, P3}
as a subset of the set {Aj1 · · · Ajm}; if (Eα (ρP1P3 ))μ �

k(Eα (ρP1P2 ))μ, when α � 2, we have
(
Eα (ρP1|P2P3 )

)β � h
(
Eα (ρP1P3 )

)β + (
Eα (ρP1P2 )

)β
, (71)

with β ∈ [0, μ], μ � 2, h = (1+k)
β
μ −1

k
β
μ

, k � 1.

Proof. From Theorem 1, we have

(Eα (ρP1|P2P3 ))β = (
fα

(
C2

P1|P2P3

))β

= [
fα

(
C2

P1P2
+ C2

P1P3

)]β

�
[

f μ
α

(
C2

P1P2

) + f μ
α

(
C2

P1P3

)] β

μ

�
(

fα
(
C2

P1P2

))β + h
(

fα
(
C2

P1P3

))β

= (
Eα (ρP1P2 )

)β + h(Eα (ρP1P3 ))β. (72)

Here the first inequality is due to inequality (30) and (a +
b)x � ax + bx for a � 0, b � 0, x � 2. The second inequality
is obtained from Lemma 7 and the condition (Eα (ρP1P3 ))μ �
k(Eα (ρP1P2 ))μ. �

The iterative use of inequality (71) naturally leads us to
the generalization of Theorem 12 into multiparty quantum
systems.

Theorem 13. Assume ρAj1 ···Ajm
is a reduced density ma-

trix of an n-qudit pure state |ψ〉A1···An in a superposition of
an n-qudit generalized W-class state in (10) and vacuum
|0 · · · 0〉A1···An , and set the partition {P1, P2, · · · , Ps} as a subset
of the set {Aj1 · · · Ajm}; if k(Eα (ρP1Pi ))

μ � (Eα (ρP1|Pi+1···Ps ))
μ

for i = 2, 3, · · · , t , and (Eα (ρP1Pj ))
μ � k(Eα (ρP1|Pj+1···Pm ))μ

for j = t + 1, · · · , s − 1, when α � 2, then we have

(Eα (ρP1|P2...Pm ))β �
t∑

i=2

hi−2(Eα (ρP1Pi ))
β

+ ht
s−1∑

i=t+1

(Eα (ρP1Pi ))
β

+ ht−1(Eα (ρP1Pm ))β, (73)

with β ∈ [0, μ], μ � 2, h = (1+k)
β
μ −1

k
β
μ

, k � 1.

VII. APPLICATION

A. Partition-dependent residual entanglement

Monogamy and polygamy relations can offer an in-
sight into multipartite entanglement. The relations we have
obtained involve the exploration of both bipartite and multi-
partite entanglements with respect to all the possible partitions
for GW states of the whole system. In this subsection,
we begin with deriving some monogamylike inequalities of
partition-dependent entanglement for GW states.

We can always design the partition in several steps; we
first divide the whole system into two parties, then divide
each of them into another two, and next keep dividing in
this way until we obtain the desired partition of the whole
system or a specific subsystem. Here, for convenience, we first
choose a partition P = {P1, P2} of the set {A1, A2, · · · , An}
for a GW state |ψ〉A1A2...An in Eq. (17) with P1 =
{A1, A2, · · · , As} and P2 = {As+1, · · · , An}; then we continue
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dividing P1 and P2 into P1 = {P11, P12} and P2 = {P21, P22}, in
which P11 = {A1, A2, · · · , Ag}, P12 = {Ag+1, · · · , As}, P21 =
{As+1, · · · , Ah}, and P22 = {Ah+1, · · · , An}. Now, under this
partition, we can have

E2
α (ρP1|P21P22 ) � E2

α (ρP1P21 ) + E2
α (ρP1P22 )

� E2
α (ρP11P21 ) + E2

α (ρP12P21 )

+ E2
α (ρP11P22 ) + E2

α (ρP12P22 )

�
s∑

i=1

n∑
j=s+1

E2
α (ρAiA j ), (74)

where the first inequality is from Theorem 4 with the partition
P1 and {P21, P22}, and the second inequality can be obtained
from Theorem 4 with the partition {P11, P12} and P21 (P22).
When reducing the partition into a single-qubit subsystem, we
get the third inequality from Theorem 4. Here 1 � g � s <

h � n.
Based on the monogamylike inequalities in (74), we then

put forward the following PREs in terms of Rényi entropy for
GW states:


P11P12|P21P22 = E2
α (ρP11P12|P21P22 )

− E2
α (ρP11P21 ) − E2

α (ρP12P21 )

− E2
α (ρP11P22 ) − E2

α (ρP12P22 ) (75)

and


′
P1|P2

= E2
α (ρP1|P2 ) −

s∑
i=1

n∑
j=s+1

E2
α (ρAiA j ). (76)

With concrete partitions of the system in term of s, g, and h,
PREs can reflect how the global entanglement for GW states
can be characterized by partial entanglement using RαE with
different formats.

We select an n-qubit W state to show the application of
PREs:

|ψ〉A1A2...An = 1√
n

(|10 · · · 0〉 + |01 · · · 0〉 + ... + |00 · · · 1〉).

(77)

Then, when α � (
√

7 − 1)/2, Theorem 1 leads us to


P11P12|P21P22 = f 2
α

(
C2

P11P12|P21P22

)
− f 2

α

(
C2

P11P21

) − f 2
α

(
C2

P12P21

)
− f 2

α

(
C2

P11P22

) − f 2
α

(
C2

P12P22

)
(78)

and


′
P1|P2

= f 2
α

(
C2

P1|P2

) −
s∑

i=1

n∑
j=s+1

f 2
α

(
C2

AiA j

)
. (79)

After calculation, we have C2
P11P12|P21P22

= 4s(n−s)
n2 ,

and C2
P11P21

= 1
n2 [

√
(n − s)2 + 4g(h − s) − (n − s)]2,

C2
P12P21

= 1
n2 [

√
(n − s)2 + 4(s − g)(h − s) − (n − s)]2,

C2
P11P22

= 1
n2 [

√
(n − s)2 + 4g(n − h) − (n − s)]2, C2

P12P22
=

1
n2 [

√
(n − s)2 + 4(s − g)(n − h) − (n − s)]2, and C2

AiA j
=

1
n2 [

√
(n − 2)2 + 4 − (n − 2)]2.

TABLE I. The values of PRE 
P11P12 |P21P22 for the different entan-
glement orders α and all the possible values for g labeled as (s, g, h)
when n = 6, s = 4, h = 5.

(4,1,5) (4,2,5) (4,3,5) (4,4,5)

α = 0.95 0.7652 0.7898 0.7652 0.6966
α = 1.05 0.7715 0.7927 0.7715 0.7128
α = 1.15 0.7720 0.7901 0.7720 0.7217
α = 1.25 0.7686 0.7841 0.7686 0.7253

As shown in Eqs. (78) and (79), 
P11P12|P21P22 and 
′
P1|P2

are related to the bipartition in terms of s, while the former
relies on the further partitions in terms of g and h. Choose
α as 0.95, 1.05, 1.15, and 1.25 randomly, and set n = 6 and
s = 4. Since 1 � g � s and s < h � n, then g can be the value
of 1, 2, 3, and 4 and h equals 5 or 6. We calculate the first
indicator for the six-qubit W state with all the possible values
of g and h which are labeled as (s, g, h) in Tables I and II.
When h = 5 in Table I, PRE 
P11P12|P21P22 has the same value
for (4,1,5) and (4,3,5), and the maximum value is at (4,2,5)
while the minimum is at (4,4,5). When h = 6 in Table II, PRE

P11P12|P21P22 has the same value for (4,1,6) and (4,3,6), and the
maximum value is at (4,2,6) while the minimum is at (4,4,6).
In other words, the value of PRE 
P11P12|P21P22 for partition
A1|A2A3A4|A5|A6 (A1|A2A3A4|A5A6) equals to the value for
partition A1A2A3|A4|A5|A6 (A1A2A3|A4|A5A6) for the six-qubit
W state in (77). Comparing Tables I and II, the values when
h = 5 in Table I are all bigger than the corresponding ones
when h = 6 in Table II, and the values at (4,4,5) and (4,2,6)
are equal. It is also interesting to find that PRE 
′

P1|P2
has

the same value when s = 1 and 5 (s = 2 and 4) in Table
III. In fact, the values of PREs in Tables I– III are not only
related to the values of s, g, h, and n, but also the product of
the difference value between s, g, h, and n, such as s(n − s),
g(h − s), (s − g)(h − s), g(n − h), and (s − g)(n − h). These
significant results are mainly due to the special structure of the
six-qubit W state in (77).

In order to explore the relationship between PREs and α,
we also plot the function PREs of variable α when s, g, and
h are fixed for α � (

√
7 − 1)/2 in Figs. 3 and 4. In Fig. 3,

the values of PRE 
P11P12|P21P22 tend to increase first and then
decrease. Figure 3(a) [Fig. 3(b)] corresponds to the case in
Table I (Table II), which gives very good agreement with
the analysis for Table I (Table II). In Fig. 4, the values of
PRE 
′

P1|P2
tend to decrease when s = 1, 2, 4, 5. When s = 3,

the function of PRE 
′
P1|P2

monotonically increases and ap-

TABLE II. The values of PRE 
P11P12 |P21P22 for the different en-
tanglement orders α and all the possible values of g labeled as
(s, g, h) when n = 6, s = 4, h = 6.

(4,1,6) (4,2,6) (4,3,6) (4,4,6)

α = 0.95 0.6543 0.6966 0.6543 0.5309
α = 1.05 0.6704 0.7128 0.6704 0.5494
α = 1.15 0.6804 0.7217 0.6804 0.5638
α = 1.25 0.6859 0.7253 0.6859 0.5745
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TABLE III. The values of PRE 
′
P1|P2

for the different entangle-
ment orders α and all the possible values for s when n = 6.

s = 1 s = 2 s = 3 s = 4 s = 5

α = 0.95 0.4380 0.8485 0.9981 0.8485 0.4380
α = 1.05 0.4051 0.8352 0.9989 0.8352 0.4051
α = 1.15 0.3753 0.8218 0.9993 0.8218 0.3753
α = 1.25 0.3486 0.8085 0.9996 0.8085 0.3486

proaches to 1. The reason is that the first term of 
′
P1|P2

equals
1 when n = 6 and s = 3, which leads to a difference. These
results in Fig. 4 fit with the ones in Table III.
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FIG. 3. The function PRE 
P11P12 |P21P22 of variable α is shown for
α � (

√
7 − 1)/2. 
P11P12 |P21P22 gets the maximum (minimum) value

when g = 2 (g = 4) for some fixed α. (a) n = 6, s = 4, h = 5 and
1 � g � s. The curves coincide at (4; 1; 5) and (4; 3; 5); (b) n = 6,
s = 4, h = 6 and 1 � g � s. The curves coincide at (4; 1; 6) and (4;
3; 6).
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FIG. 4. The function PRE 
′
P1|P2

of variable α for α � (
√

7 −
1)/2 when n = 6 and 1 � s < n. The curves coincide at s = 1(s = 2)
and s = 5(s = 4). The value of 
′

P1|P2
at s = 3 gets the maximum

value, which is close to 1.

Therefore, we have done a comprehensive analysis of the
whole system using the PREs to get a full understanding of
entanglement dynamics for the six-qubit W state in (77). By
virtue of PREs, we can develop a possible comprehensive
analysis of the entanglement dynamics in an infinite or finite
time for future study.

B. Quantum game

A referee and two isolated players, Alice and Bob, are
playing a quantum game G = (A, B, X,Y, π, v), in which two
players only communicate with the referee and not between
themselves [37]. A, B, X,Y are finite sets. π is a probability
distribution: X × Y −→ [0, 1]. v is a verification function:
X × Y × A × B −→ [0, 1]. Based on some probability dis-
tribution π , the referee chooses a question pair (x, y) on the
question alphabets X × Y . Then he sends x to Alice and y to
Bob. Later the two players give their answers a and b from
the set A and set B. If v(x, y, a, b) = 1 for the verification
function, then they win. The classical value of the game

cv(G) = sup
ax,by

∑
x,y,a,b

π (x, y)v(a, b, x, y)
∫

�

ax(ω)by(ω)dP (ω)

is the maximum winning probability when two players can
use optimal deterministic strategies

∑
a ax(ω) = ∑

b by(ω) =
1 based on some classical correlation P (ω). The quantum
value for a bipartite entangled state ρAB of the game is

qv(G) = sup
ρ,Ea

x ,F b
y

∑
x,y,a,b

π (x, y)v(a, b, x, y)tr
(
ρEa

x ⊗ F b
y

)
where the maximum takes over all the positive operator-
valued measures (POVMs) Ea

x and F b
y ,

∑
a Ea

x = 1,
∑

b F b
y =

1. It is clear that for all games cv(G) � qv(G).
In Ref. [38], the authors assume that Alice has a d-

dimensional system A. She can simultaneously share quantum
or classical correlation with an arbitrary number of players
B1, B2, ..., Bn. So the referee chooses a player Bi randomly
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and plays the game Gi = (A, Bi, Xi,Yi, πi, vi ) with Alice and
Bi. For {Gi}1�i�n, they define the average entangled value:

Aqv({Gi}) = sup
ρ,Ea

x ,F b
1,y,··· ,F b

n,y

1

n

n∑
i=1

∑
a,b,x,y

πi(x, y)

vi(a, b, x, y)tr
(
ρABi Ea

x ⊗ F b
i,y

)
, (80)

here Ea
x , F b

1,y, · · · , F b
n,y are POVMs on A, B1, · · · , Bn, respec-

tively. ρAB1···Bn is a multipartite state and the dimension of A is
at most d . Since the classical correlation used for different Gi

can be combined, then the average classical value was given
by

Acv({Gi}) = 1

n

n∑
i=1

cv(Gi ). (81)

In Ref. [27], the authors reconsider the bound of the dif-
ference between the quantum games and the classical games
restricting to GW states using Tsallis-q entropy for q ∈ (1, 2].
Here we get a new bound of the difference between the quan-
tum games and the classical games restricting to GW states
using Rényi-α entropy for α � 1. Let G = (A, B, X,Y, π, v)
be a quantum game. For fixed auxiliary systems A and B and
POVMs Ea

x and F b
y , the value function becomes a positive

linear function:

linG(ρAB) =
∑

x,y,a,b

π (x, y)v(a, b, x, y)tr
(
ρEa

x ⊗ F b
y

)
.

Note that linG is of norm at most 1; then, for a separable
σAB and an arbitrary ρAB,

linG(ρAB) � linG(ρAB − σAB) + linG(σAB)

� ‖ρAB − σAB‖1 + cv(G). (82)

For a bipartite pure state |ψ〉AB = ∑d−1
i=0

√
λi|ii〉, we show

there exists a separable state σAB such that

‖|ψ〉AB〈ψ | − σAB‖1 � 2
√

2Eα (ρAB). (83)

for α � 1. First we select σAB = |00〉〈00|; then we com-
pute the trace norm ‖|ψ〉AB〈ψ | − |00〉〈00|‖1 = 2

√
1 − λ0.

So according to (83) we need to show 2
√

1 − λ0 �
2
√

−2 log2

∑d−1
i=0 λα

i
α−1 in the following.

When α � 1, λ ∈ [0, 1], one has
∑d−1

i=0 λα
i � λα

0 + (1 −
λ0)α; then it is enough for us to prove 2

√
1 − λ0 �

2
√

−2 log2[λα
0 +(1−λ0 )α ]

α−1 .
Let hα (λ0) = −2 log2[λα

0 + (1 − λ0)α] − (1 − λ0)(α −
1); we need to show hα (λ0) � 0. Since

h′
α (λ0) = −2αλα−1

0 + 2α(1 − λ0)α−1[
λα

0 + (1 − λ0)α
]
ln2

+ (α − 1), (84)

and after analysis, we find h′
α (λ0) in (84) has only one zero ε ∈

[0, 1]. hα (λ0) is monotonically increasing for λ0 ∈ [0, ε] and
monotonically decreasing for λ0 ∈ [ε, 1]. However, λ0 � 1

d ,
so it is enough to show hα (0) � 0 and hα ( 1

d ) � 0. hα (0) � 0 is
clear. After computation, we obtain hα ( 1

d ) = − log2[1 + (d −
1)α] + α log2 d − (d−1)(α−1)

d . One can easily get hα ( 1
d ) � 0

for any pure state with Schmidt rank equal to or less than 2
when α � 1.

When ρ is a mixed state, assume {pi, |ψi〉} is the optimal
decomposition of ρ in terms of Eα (ρAB); then

‖ρAB − σAB‖1 = ‖
∑

i

pi|ψi〉AB〈ψi| −
∑

i

pi|θi〉AB〈θi|‖1

�
∑

i

pi‖|ψi〉AB〈ψi| − |θi〉AB〈θi|‖1

� 2
√

2
∑

i

√
pi

√
piEα (|ψi〉AB)

� 2
√

2
√

Eα (ρAB). (85)

Here we use the subadditivity of the one-norm. The second
inequality is due to (83) and the last inequality is due to the
definition of RαEoA and Theorem 3.

Using the monogamy inequality in Theorem 4, we have

n∑
i=1

E2
α (ρABi ) � E2

α (ρA|B1...Bn )

�
(

log2 d1−α

1 − α

)2

= (log2 d )2. (86)

Combining (82) and (85), we find that

Aqv(G) � 2
√

2

n

n∑
i=1

√
Eα (ρA|B1...Bn ) + Acv(G)

� 2
√

2

n
1
4

√
Eα (ρABi ) + Acv(G)

� 2
√

2

n
1
4

(log2 d )
1
2 + Acv(G). (87)

Here the second inequality comes from Hölder’s inequality.
The last inequality is due to (86).

Finally, we get a bound of the difference between the quan-
tum games and the classical games using Rényi-α entropy:

Aqv(G) − Acv(G) �2
√

2

n
1
4

(log2 d )
1
2 . (88)

It is interesting that this bound is independent of α. In
Ref. [27], the bound obtained by Tsallis-q entropy is
Aqv(G) − Acv(G) � 2

√
2

n
1
4

1√
q−1

. When q = 2, this bound is the

same as our bound for d = 2. Compared with the result in
Ref. [38], Aqv(G) − Acv(G) � 3.1

n
1
4

d (log2 d )
1
4 , our bound is

tighter due to d � (log2 d )
1
4 .

VIII. DISCUSSION AND CONCLUSION

By using Rényi-α entropy, we have provided a class of
monogamy and polygamy inequalities of multipartite entan-
glement for GW states with respect to different partitions.
At the beginning, we have shown analytical formulas of
RαE and RαEoA for a reduced density matrix of GW states
when α � (

√
7 − 1)/2 and α ∈ [(

√
7 − 1)/2, (

√
13 − 1)/2],

respectively. According to the two analytical formulas, we
have obtained monogamy and polygamy inequalities. We fur-
ther generalize them into μth power with a specific range of μ.
Moreover, we have shown generalized polygamy relations for
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GW states using RαEoA, which shows a reciprocal relation of
RαEoA. Last but not the least, we provide tighter monogamy
relations in terms of concurrence and CREN than existing
ones and also obtain general monogamy relations for GW
states using RαE.

To show the application of our main results, we first estab-
lish two partition-independent residual entanglements using
our main results and get a full cognition of entanglement
dynamics for GW states. Our defined PREs can have unique
usefulness when one deals with the entanglement-changing
process in arbitrary partitions of multiqubit systems. Just to
make it more interesting, we consider a quantum game to
show the application of our results. It is important to find
that the bound of the difference between the quantum games
and the classical games using Rényi-α entropy for α � 1 is
independent of α. When d = 2, our result is the same as the
result obtained by Tsallis-q entropy for q = 2 in Ref. [27].
Our bound is also tighter than the result in Ref. [38].

Our paper is similar but actually different from the re-
sults in Ref. [27] which considered the monogamy relations
for GW states using Tsallis-q entropy. Tsallis-q entropy is
a generalization of von Neumann entropy, and it is relevant
to the study of separability of compound quantum systems
[46] and global quantum discord [47] while Rényi-α entropy

is a generalization of Shannon entropy with applications in
the study of nonlinear properties of quantum states [48] and
quantum correlations in fermionic systems [49]. We can use
PREs to explore more in the applications mentioned above
of Rényi-α entropy for future study. Additionally, the two
entanglement measures also have different properties. For
example, Rényi-α entropy for α �= 1 is not in general sub-
additive [4] while Tsallis-q entropy is subadditive for q � 1
[50]. This leads to the methods of the proofs in Sec. V being
quite different from the ones in Ref. [27]. Furthermore, we
obtain tighter monogamy relations than the ones in Ref. [27]
which can imply finer characterizations of entanglement dis-
tributions. Therefore, we believe our results can be useful for
future research in higher-dimensional multipartite quantum
systems.
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