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Open quantum systems integrable by partial commutativity
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This article provides a framework to solve linear differential equations based on partial commutativity, which
is introduced by means of the Fedorov theorem. The framework is applied to specific types of three-level and
four-level quantum systems. The efficiency of the method is evaluated and discussed. The Fedorov theorem ap-
pears to answer the need for methods that allow us to study dynamical maps corresponding with time-dependent
generators. By applying this method, one can investigate countless examples of dissipative systems such that the
relaxation rates depend on time.
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I. INTRODUCTION

The problem of solving a differential equation belongs
to most fundamental issues in the theory of open quantum
systems. The ability to obtain a solution in closed form means
that one can determine the trajectory of the system, which
provides a complete characterization of how the quantum state
changes in time. However, only particular types of differential
equations allow solutions in closed forms. Additionally, a
universal criterion for integrability does not exist. Therefore,
there is a need for additional methods that can be applied
to investigate different types of equations. In this article, we
propose to implement the Fedorov theorem in the theory of
open quantum systems.

The simplest dynamical map, which does not need any
further comment at this point, can be obtained when the
time-evolution is given by a master equation with the GKSL
generator L : MN (C) → MN (C), where we assume that the
space is finite-dimensional [1–3]. In such a case, the density
matrix at any time instant can be computed by the semigroup

ρ(t ) = exp (Lt ) [ρ(0)], (1)

where ρ(0) stands for the initial density matrix. A master
equation governed by the GKSL generator is the most general
type of Markovian and time-homogeneous evolution which
preserves trace and positivity.

The closed-form solution of a master equation can be
obtained straightforwardly as long as the generator is time-
independent. The problem appears when the dynamics is
governed by a master equation with a time-dependent linear
generator:

dρ(t )

dt
= L(t ) [ρ(t )], (2)

where the generator L(t ) is defined on a time interval I.
In 1949, Dyson published an article [4] in which he pre-

sented the formal solution of an explicitly time-dependent
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Schrödinger equation. The result was obtained by iteration
and a time-ordering operator, which was later named the
“Dyson series” after the author. Thus, the formal solution of
Eq. (2) can be written by means of a superoperator �(t ):

ρ(t ) = �(t ) [ρ(0)] = T exp

(∫ t

0
L(τ )dτ

)
[ρ(0)], (3)

where T denotes the chronological product. The formula for
the map �(t ) can be expanded by applying the Dyson series
[4]:

�(t ) = 1N +
∫ t

0
dt1L(t1) +

∫ t

0
dt1

∫ t1

0
dt2L(t1)L(t2) + · · · ,

(4)
provided it converges. One fundamental problem studied in
the theory of open quantum systems relates to algebraic
properties of L(t ) which guarantee that the solution �(t )
constitutes a legitimate dynamical map; see, e.g., Ref. [5].
Undoubtedly, such a question is relevant, but in this article we
focus on the methods that provide solutions to time-dependent
master equations of the form Eq. (2) without the necessity to
utilize the infinite Dyson series.

In Sec. II, we revise the definitions and theorems connected
with functionally commutative generators. Then, in Sec. III,
we present the Fedorov theorem, which can be understood as a
generalization of the Lappo-Danilevsky criterion. Along with
the theorem, we propose a feasible framework for its appli-
cation in concrete examples. Then, in Sec. IV, the framework
is tested as we apply the Fedorov theorem to three-level and
four-level open quantum systems with evolution governed by
time-local generators. We study three particular types of three-
level dynamics: V -system, cascade, and Lambda, as well as
one example on four-level cascade systems, in order to prove
that this technique can facilitate solving master equations with
time-dependent generators.
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II. FUNCTIONAL AND INTEGRAL COMMUTATIVITY

To follow the trajectory of the systems, it is desirable to be
able to write the solution of Eq. (2) in closed form:

ρ(t ) = exp

(∫ t

0
L(τ )dτ

)
[ρ(0)], (5)

which can be done only for specific generators L(t ).
First, we shall analyze the sufficient conditions that, if

satisfied by the generator L(t ), guarantee that the solution
can be written in closed form. We shall refer to the algebraic
properties of the matrix representation of the generator L(t ).

To begin with, let us recall a definition, assuming that F(t )
stands for a matrix function and I denotes an interval within
its domain.

Definition 1: Semiproper matrix function. A matrix func-
tion F : I → Cn×n is called semiproper on I if

F(t )F(τ ) = F(τ )F(t ) ∀ t, τ ∈ I. (6)

The definition of the semiproper function can be applied to
time-dependent generators of evolution, which are a specific
kind of complex-valued time-dependent function matrices. In
other words, this property is called functional commutativity.

Definition 2: Functional commutativity. A time-dependent
generator L(t ) is functionally commutative (i.e., semiproper)
iff

[L(t ),L(s)] = 0 ∀ t, s ∈ I. (7)

The notion of functional commutativity applied to gen-
erators of evolution allows one to formulate a theorem
concerning the solvability of the dynamics Eq. (2) [6,7].

Theorem 1. If the generator of evolution L(t ) satisfies the
condition of functional commutativity Eq. (7), then the so-
lution of Eq. (2) can be written in closed form according to
Eq. (5).

The idea of semiproper matrix functions has received much
attention in the second half of the 20th century. One note-
worthy article was written by Martin in 1967 [8]. In one of
the theorems, the author proved that the family of semiproper
matrix functions can be completely characterized as commu-
tative algebras generated by a basis of pairwise commutative
constant matrices. Based on this result, we can say that L(t )
is functionally commutative on I iff there exists a set of
mutually commuting time-independent matrices {L(k)} and
piecewise continuous scalar functions {αk (t )} such that

L(t ) =
∑

k

αk (t )L(k). (8)

The decomposition of the generator of evolution Eq. (8)
not only allows one to write the closed-form solution of
Eq. (2), but it also simplifies the computing of the integral
over time. However, finding such a decomposition of L(t )
remains a challenge [9]. For this reason, Zhu proposed a
different method to decompose a functionally commutative
generator (called the spatial decomposition) [10], which was
later developed by Kamizawa and applied to open quantum
systems [11].

Another approach to the problem of solving the evolution
equation of the form Eq. (2) is to apply to the notion of
commutativity with the integral. It is another condition that,

if satisfied by the generator L(t ), implies that the solution of
the evolution equation is given in closed form. Let us recall
the definition.

Definition 3: Integral commutativity. A time-dependent
generator L(t ) is said to commute with its integral iff:

L(t )
∫

L(t )dt

=
∫

L(t )dt L(t ) ⇐⇒
[
L(t ),

∫
L(t )dt

]
= 0. (9)

A thorough study of time-dependent matrices that com-
mute with their integrals was published by Bogdanov and
Cheboratev in 1959 [12]. Necessary and sufficient conditions
for integral commutativity can be given in relation to the
properties of the Jordan canonical form of L(t ) [13,14]. Based
on the notion of integral commutativity, one can formulate
a theorem concerning the solvability of evolution equations
[15].

Theorem 2. If the generator of evolution L(t ) satisfies the
condition of integral commutativity Eq. (9), then the funda-
mental solution of Eq. (2) has the closed form Eq. (5).

It is worth noting that L(t ) is said to be analytic in a
neighborhood of t = t0 when each element of L(t ) [and thus
L(t ) itself] can be represented as a Taylor series centered
at t0 which converges in some neighborhood of t0. If the
time-dependent generator L(t ) is an analytic complex-valued
matrix function, then L(t ) satisfies the condition of functional
commutativity if and only if it commutes with its integral,
which means that in such a case both criteria are compatible
[16].

Theorem 2 could be equivalently formulated in terms of
the generator that commutes with its derivative, which is a
common way to express and study this criterion; see, e.g.,
Refs. [17–19]. Nonetheless, for the sake of the content of
this article, we stay with the notion of integral commutativity,
originally introduced by Lappo-Danilevsky, which is a start-
ing point for further analysis.

III. PARTIAL COMMUTATIVITY AND A FRAMEWORK
FOR ITS APPLICATION

Either functional or integral commutativity is sufficient
to write the solution of Eq. (2) in closed form according to
Eq. (5). However, these conditions are not necessary. It may
happen that a generator of evolution satisfies neither of the
two conditions, but one is still able to write the solution of
the dynamics equation in closed form. To be more specific, in
this article we shall investigate the Fedorov theorem, which
demonstrates that a closed-form solution can be obtained un-
der the condition of partial commutativity [20] (for English,
refer to pp. 39–44 in [6]).

First, one should be reminded that every time-dependent
linear generator L(t ) can always be represented as a matrix,
which makes it possible to study the algebraic properties of
the generator. On the other hand, the evolution equation given
by Eq. (2) can always be transformed into a differential equa-
tion with the generator L(t ) in its matrix form multiplying the
vectorized density matrix vec{ρ(t )}, which is simpler from the
computational point of view. The operator vec{ρ(t )} should be
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understood as a vector constructed by stacking the columns
of ρ(t ) one underneath the other, and such an operation shall
be referred to as the “vec operator.” Thus, let us consider the
master equation in the vectorized form, i.e.,

vec{ρ̇(t )} = L(t ) vec{ρ(t )}, (10)

and for such dynamics we shall formulate the Fedorov theo-
rem [20].

Theorem 3: Fedorov theorem. If the generator of evolution
L(t ) (its matrix representation) satisfies the condition

[ L(t ), Bn(t ) ] α = 0 ∀ n = 1, 2, 3, . . . , (11)

where B(t ) = ∫ t
0 L(τ )dτ and α is a constant vector, then the

solution of Eq. (10) can be written in closed form:

vec{ρ(t )} = exp[B(t )] α. (12)

Proof. There exists an obvious decomposition of exp[B(t )],
i.e.,

exp[B(t )] =
∞∑

m=0

1

m!
Bm(t ), (13)

which allows one to write a formula for the first derivative of
exp[B(t )]:

d exp[B(t )]

dt

= L(t ) + 1

2!
{L(t )B(t ) + B(t )L(t )}

+ 1

3!

{
L(t )B2(t ) + B(t )L(t )B(t ) + B2(t )L(t )

} + · · ·

=
∞∑

m=1

1

m!

m∑
k=1

Bk−1(t )L(t )Bm−k (t ). (14)

On the other hand, one can notice that the assumption [see
Eq. (11)] can be transformed in the following way (for any
m, n ∈ N):

L(t )Bn(t ) α = Bn(t )L(t ) α ⇔
Bm(t )L(t )Bn(t ) α = Bn+m(t )L(t ) α.

(15)

Keeping in mind Eqs. (14) and (15), one can check whether
vec{ρ(t )} = exp[B(t )]α satisfies the evolution equation given
by Eq. (10):

d vec{ρ(t )}
dt

= d exp[B(t )] α

dt

=
∞∑

m=1

1

m!

m∑
k=1

Bk−1(t )L(t )Bm−k (t )

= L(t )
∞∑

m=1

1

m!

m∑
k=1

Bm−1(t ) α = L(t )
∞∑

m=1

1

m!
mBm−1(t ) α

= L(t )
∞∑

m=1

1

(m − 1)!
Bm−1(t ) α = L(t )

∞∑
m=0

1

m!
Bm(t ) α

= L(t ) exp[B(t )] α = L(t ) vec{ρ(t )}. (16)

It means that vec{ρ(t )} defined by the formula Eq. (12) sat-
isfies the dynamics given by Eq. (10), which completes the
proof.

There are three issues that one should be aware of in con-
nection with the Fedorov theorem.

First, the Fedorov theorem enables us to write the solution
of the evolution equation in closed form. However, there is
a significant limitation—as the initial vectors one can use
only the vector (or vectors) α which satisfy the condition
of partial commutativity introduced by Eq. (11). Naturally,
if one has two linearly independent vectors α1 and α2 and
both of them satisfy Eq. (11), then the linear combination
of them, c1α1 + c2α2, also satisfies the condition from the
Fedorov theorem. Therefore, all vectors α that satisfy Eq. (11)
constitute a subspace in the vector space. The subspace that
contains all vectors α shall be denoted by M(L(t )).

Second, from a physical point of view, it is important to
be able to determine the trajectory of the state on the basis
of the solution of the evolution equation. However, it may
happen that when one determines α satisfying the condition
Eq. (11) for a specific generator of evolution, it turns out
that after devectorization α is not a proper density matrix. In
such a case, the solution with α as the initial vector is not
a legitimate state trajectory. For this reason, from a physical
point of view, it is required to use as the initial vectors only
such α that belongs to the intersection M(L(t )) ∩ vec{S(H)},
where vec{S(H)} refers to the state set of all vectorized den-
sity matrices associated with the Hilbert space H.

Third, in practice, there is no need to take into account
in Eq. (11) all powers of Bn(t ) up to infinity because one
can always use the Cayley-Hamilton theorem [21–23], which
states that every matrix satisfies its characteristic polynomial.
Therefore, if B(t ) is a μ × μ matrix, the μth power of B(t )
linearly depends on the lower powers. Thus, in general, it is
sufficient to consider the powers of B(t ) up to μ − 1. The
number of necessary powers may be additionally reduced pro-
vided one can determine the degree of the minimal polynomial
of B(t ), which can be done numerically for some generators
L(t ).

In the context of the Fedorov theorem, it is important to
explain how the vectors α satisfying the condition Eq. (11) can
be obtained. One should notice that we are searching for the
subspace which can be expressed by the following formula:

M(L(t )) :=
μ−1⋂
n=1

Ker[ L(t ), Bn(t ) ]. (17)

The formula Eq. (17) cannot be easily calculated, however
one might notice a significant similarity between this issue and
the problem of finding common eigenvectors of two matrices
[24,25]. Therefore, in the context of the Fedorov theorem,
one can use the approach introduced by Shemesh in order
to transform the formula for the subspace M(L(t )) into an
expression, which will be straightforward in computing. Let
us first prove a lemma.

Lemma 1. For any set of linear operators {R1, . . . , Rκ}, the
following relation holds true:

κ⋂
i=1

Ker Ri = Ker
κ∑

i=1

R†
i Ri, (18)

where R†
i denotes the operator dual to Ri.
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Proof. Let us prove the lemma for two operators R1 and
R2 since one can easily generalize the reasoning for a higher
number of operators. Then, on the left-hand side of Eq. (18),
we have KerR1 ∩ KerR2. Next, we observe

x ∈ KerR1 ∩ KerR2 ⇔ x ∈ KerR1 ∧ x ∈ KerR2,

R1 x = 0 ∧ R2 x = 0,

R†
1R1 x = 0 ∧ R†

2R2 x = 0,

(R†
1R1 + R†

2R2) x = 0,

x ∈ Ker(R†
1R1 + R†

2R2), (19)

and the last part finishes the proof.
Based on Lemma 1, we can conclude that the closed-form

solution according to Eq. (12) can be obtained for the initial
vectors α which belong to the subspace M(L(t )) such that

M(L(t )) = Ker
μ−1∑
n=1

[ L(t ), Bn(t ) ]†[ L(t ), Bn(t ) ]. (20)

To sum up, if one wants to apply the Fedorov theorem in
order to obtain a closed-form solution of a differential equa-
tion with a time-dependent generator L(t ), one needs to prove
that the subspace M(L(t )) defined by Eq. (20) is nonempty,
which can be done effectively thanks to the Shemesh criterion.
Then, one can write a closed-form solution of the evolution
equation: vec{ρ(t )} = exp[B(t )]α. This solution generates a
legitimate trajectory from the physical point of view only if
the initial vector α can be considered as a vectorized density
matrix, i.e., α ∈ M(L(t )) ∩ vec{S(H)}. Generators L(t ) such
that the corresponding subspace M(L(t )) is nonempty can be
called partially commutative.

IV. FEDOROV THEOREM IN DYNAMICS OF OPEN
QUANTUM SYSTEMS

A. Preliminaries

In this article, we shall consider the evolution generator
L(t ) of d-level quantum systems in the form [26,27]

L(t ) [ρ] = −i[H, ρ] +
∑

k

γk (t )

(
VkρV †

k − 1

2
{V †

k Vk, ρ}
)

,

(21)
which can be regarded as a specific type of time-dependent
GKSL generator [1,2], such that the jump operators Vk are
represented by constant matrices while the relaxation rates
γk (t ) are time-dependent. The operator H is Hermitian, i.e.,
H† = H , and it can be interpreted as the effective Hamiltonian
that accounts for the unitary evolution. This generator pre-
serves the Hermiticity and trace of the density matrix, but for
negative relaxation rates in some time intervals the evolution
features non-Markovian effects [28]. For this reason, we shall
restrict our analysis only to the relaxation rates such that
γk (t ) � 0 for all t � 0 and for any k, which means that the
evolution may be called time-dependent Markovian (though
the corresponding dynamical map is not a semigroup).

One of the algebraic methods used in the analysis is the
technique to obtain a matrix representation of the generator of
evolution. Such a procedure is feasible if we apply the prop-
erty connected with the vec operator. For any three matrices

A, B,C such that their product ABC is computable, we have
the following relation [29]:

vec (ABC) = (CT ⊗ A) vecB, (22)

which shall be called the Roth’s column lemma. This property
has been excessively studied within the field of pure math-
ematics [30–32] as well as applied to physics in order to
search for matrix representations of given GKSL generators
of evolution [33–35]. Taking into account the Roth’s column
lemma Eq. (22), one transforms the generator of evolution
given originally by Eq. (21) into the matrix form

L(t )

= i
(
HT ⊗ 1d − 1d ⊗ H

)

+
∑

k

γk (t )

(
V k ⊗ Vk − 1

2
1d ⊗ V †

k Vk−1

2
V T

k V k ⊗ 1d

)
,

(23)

where V k denotes the complex conjugate of the jump operator
Vk .

In our analysis, we consider three specific generators of
evolution which govern the dynamics of three-level systems:
V -system, cascade, and �-system [36]. For years such types
of dynamics have been an important field of research since
they are connected to optimal control of quantum dissipative
systems in the context of laser cooling [37–39]. Therefore, we
assume that d = 3, and the vectors {|1〉 , |2〉 , |3〉} stand for
the standard basis in the Hilbert space H. A jump operator Vk ,
which corresponds to the transition from the jth level to the
ith level, shall be defined as Vk := |i〉 〈 j| ≡ Ei j .

As far as four-level systems are concerned (d = 4), the
standard basis is denoted by {|1〉 , |2〉 , |3〉 , |4〉}. We demon-
strate that one can define cascade-type evolution with three
jump operators accompanied by time-dependent decoherence
rates, and then apply the Fedorov theorem to search for the
dynamical map.

B. Three-level V -system

The three-level V -system relates to a physical scenario
when an atom has two excited levels denoted by |1〉 and |3〉,
but one ground state |2〉. The dynamics describes a decay
from one of the excited levels into the ground state. Thus,
we have two jump operators: E21 := |2〉 〈1| and E23 := |2〉 〈3|.
We assume that the corresponding decoherence rates are given
by the functions γ21(t ) := sin2ωt and γ23(t ) := cos2ωt . Then,
based on the Roth’s column lemma, the matrix form of the
generator can be found according to Eq. (23):

LV (t ) = i
(
HT

V ⊗ 13 − 13 ⊗ HV
)

+ sin2ωt

(
E21 ⊗ E21 − 1

2
13 ⊗ E11 − 1

2
E11 ⊗ 13

)

+ cos2ωt

(
E23 ⊗ E23 − 1

2
13 ⊗ E33 − 1

2
E33 ⊗ 13

)
,

(24)

where HV denotes the unperturbed Hamiltonian which
describes three energy levels of the V -system, i.e.,
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FIG. 1. The probability of finding the three-level V -system in
one of the possible states.

HV = diag(E1, 0, E3) (the energy of the ground level is nor-
malized to zero, i.e., E2 = 0).

One can check that the generator for the V -system satisfies
the following relations:

[LV (t ), LV (τ )] = 0 ∀ t, τ � 0,[
LV (t ),

∫
LV (t ) dt

]
= 0,

(25)

which implies that the closed-form solution of the evolution
equation can be obtained based on the Lappo-Danilevsky cri-
terion (without the Fedorov generalization):

ρ(t ) = exp

(∫ t

0
LV (τ )dτ

)
[ρ(0)]. (26)

Let us investigate, as a specific example, the trajectory of
the initial state: ρ(0) = 1/2 |1〉 〈1| + 1/2 |3〉 〈3|, which corre-
sponds to a statistical mixture of two excited states with equal
probabilities. The trajectory of this state can be described by
the following dynamical map:

ρ(t )

=
⎛
⎝

1
2 e

−2ωt+sin(2ωt )
4ω 0 0

0 1 − e− t
2 cosh

[ sin(2ωt )
4ω

]
0

0 0 1
2 e− 2ωt+sin(2ωt )

4ω

⎞
⎠.

(27)

To study in detail the dynamics governed by the generator
Eq. (24), let us consider the probability of finding the quantum
system in each of the possible states as a function of time. By
pi(t ) we denote the probability of finding the system in the ith
state at time instant t . One can find the plots in Fig. 1.

One can observe that the probability of finding the system
in the state |2〉 is an increasing function, the value of which
converges asymptotically to 1. It is not an unexpected result
since the V -model describes a three-level system that decays
into the ground state in time. Nonetheless, it is worth noting
that the probabilities p1(t ) and p3(t ) present specific shapes
due to the fact that we introduced the oscillating functions
(i.e., sin ωt and cos ωt) into the decoherence rates. One could
exchange the relaxation rates of the generator Eq. (24) into

ρ31(t)

− 0.5 − 0.4 − 0.3 − 0.2 − 0.1 0.0 0.1
− 0.05
0.00
0.05
0.10
0.15
0.20
0.25

Re ρ31(t)

Im
ρ 3
1(
t)

FIG. 2. The trajectory of ρ31(t ) on the complex plane, assuming
that the initial value of the relative phase equals π .

different time-dependent functions and then explore other
time characteristics of the probabilities.

To investigate more effects, one can add phase factors
into the off-diagonal elements of the initial density matrix,
i.e., ρ13(0) = 1/2 e−iφ and ρ31(0) = 1/2 eiφ , where φ stands
for the relative phase between the states |1〉 and |3〉. Such a
generalization does not affect the formulas for probabilities
as presented in Fig. 1, but it allows one to additionally study
how the phase factors change in time. Then, by applying the
dynamics Eq. (26), one would obtain

ρ13(t ) = 1
2 e[−1/2+i(E3−E1 )]t e−iφ and ρ31(t ) = ρ13(t ), (28)

which means that the relative phase φ between the energy
states |1〉 and |3〉 vanishes while the initial state decays into
the ground level |2〉. The phase-damping effect is caused by
the factor e−1/2t , whereas the other coefficient emerging from
the evolution, i.e., ei(E3−E1 )t , makes the phase factor rotate on
the complex plane. For arbitrary E3 and E1, the time evolution
of the phase factor ρ31(t ) is presented in Fig. 2.

C. Three-level cascade system

The three-level model called cascade describes a situation
when the system can relax from the state |3〉 into the mid-
dle level |2〉 and then into the ground state denoted by |1〉.
Since two kinds of transition are admissible, we have two
jump operators: E23 := |2〉 〈3| and E12 := |1〉 〈2|. We assume
that the corresponding relaxation rates are again given by the
functions γ23(t ) := sin2ωt and γ12(t ) := cos2ωt . This leads to
the generator of evolution in the following representation:

LC (t ) = i
(
HT

C ⊗ 13 − 13 ⊗ HC
)

+ sin2ωt

(
E23 ⊗ E23 − 1

2
13 ⊗ E33 − 1

2
E33 ⊗ 13

)

+ cos2ωt

(
E12 ⊗ E12 − 1

2
13 ⊗ E22 − 1

2
E22 ⊗ 13

)
,

(29)
where HC denotes the unperturbed Hamiltonian that describes
three symmetric energy levels, i.e., HC = diag(−E, 0, E ) (the
energy of the intermediate level is normalized to zero).
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One can check that for the generator LC (t ), we obtain

[ LC (t ), LC (τ ) ] �= 0,[
LC (t ),

∫
LC (t ) dt

]
�= 0,

(30)

which implies that the sufficient conditions for the closed-
form solution are not satisfied. Therefore, there is a need for
a more general approach. One can consider the Fedorov the-
orem as a possible technique to solve the evolution equation
with the generator Eq. (29).

To effectively apply the Fedorov theorem, we first need to
numerically determine the minimal polynomial of

∫
LC (t )dt .

The specific coefficients of the polynomial are of little interest
since we focus on its degree, which equals 6. This means
that for any t � 0, the operator [

∫
LC (t )dt]6 can be expressed

by means of the lower powers of
∫

LC (t )dt . Combining this
observation with the earlier result Eq. (20), we need to inves-
tigate the kernel of the operator

�(C)

≡
5∑

n=1

[
LC (t ),

(∫
LC (t ) dt

)n]†[
LC (t ),

(∫
LC (t ) dt

)n]
.

(31)

The matrix representation of �(C) can be found numerically.
One can obtain that �

(C)
99 = g(t ) �= 0 and all the other elements

are equal to zero. This means the intersection of vecS (H) and
M(LC (t )) = Ker �(C) can be written as

vec ρ ∈ vecS (H) ∩ M(LC (t )) ⇔ ρ ∈ S (H) ∧ ρ33 = 0,

(32)
which implies that the evolution equation with the generator
Eq. (29) has a closed-form solution only for the initial states
which assume zero probability for the level |3〉. Thus, the
dynamical map can be written as

ρ(t ) = exp

(∫ t

0
LC (τ )dτ

)
[ρ(0)], (33)

where ρ(0) = p |1〉 〈1| + (1 − p) |2〉 〈2| and 0 � p � 1 (one
may add phase factors on the off-diagonal elements). The
explicit form of ρ(t ) can be computed as

ρ(t ) =
⎛
⎝1 − ξ (t ) 0 0

0 ξ (t ) 0
0 0 0

⎞
⎠, (34)

where

ξ (t ) := (1 − p) exp

(
−2ωt + sin(2ωt )

4ω

)
. (35)

To illustrate the results of the method, let us assume that
p = 0, i.e., the initial density matrix ρ(0) = |2〉 〈2|. The plots
in Fig. 3 present the probabilities p1(t ) and p2(t ) (naturally
p3(t ) = 0 for all t � 0).

The results demonstrate the decay from the middle state
|2〉 into the ground state |1〉 in the time domain. The character
of the probability graphs could by changed by modifying
the functions that define the time-dependent relaxation rates:
γ23(t ) and γ12(t ).

The process of relaxation within the cascade model can
also be analyzed by means of the time evolution of the

p1(t)

p2(t)

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

time (arb. units)

pr
ob
ab
ili
ty

FIG. 3. The probability of finding the three-level cascade system
in one of the possible states: |1〉 or |2〉.

purity and the von Neumann entropy. For a system described
by a density matrix ρ(t ), the purity, which shall be denoted
by π (t ), is defined as π (t ) := Tr{ρ2(t )}. The von Neumann
entropy has the standard definition S(t ) := Tr{ρ(t ) ln ρ2(t )}.
Note that usually these figures are computed for a given state,
whereas we treat them as the functions of time since we
wish to follow the dynamics of entropy and purity for the
initial state ρ(0) = p |1〉 〈1| + (1 − p) |2〉 〈2|. We obtain the
formulas

π (t ) = 2ξ 2(t ) − 2ξ (t ) + 1,

S(t ) = −[1 − ξ (t )] ln{1 − ξ (t )} − ξ (t ) ln{ξ (t )}. (36)

To be more specific, let us again assume that p = 0. And
for the initial state ρ(0) = |2〉 〈2| we can plot the functions
π (t ) and S(t ) (see Fig. 4).

Since the input was a pure state, we have π (0) = 1 and
S(0) = 0. Then, the state is getting more mixed with time. At
some point, we have equal probabilities for |2〉 and |1〉, which
means that the purity drops down to its minimal value, i.e.,
π (t ′) = 1/2, whereas the von Neumann entropy reaches its
maximum value S(t ′) = ln 2 ≈ 0.693 15. In time, both func-
tions are approaching their initial values since the final state

π(t)

S(t)

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

time (arb. units)

pu
ri
ty/
en
tr
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y

FIG. 4. The purity π (t ) and the von Neumann entropy S(t ) of a
dissipative system subject to the cascade decoherence model.
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σ 21(t)

− 0.4 − 0.2 0.0 0.2
− 0.3
− 0.2
− 0.1
0.0
0.1
0.2
0.3
0.4

Re σ 21(t)

Im
σ
21
(t
)

FIG. 5. The trajectory of σ21(t ) on the complex plane, assuming
that the initial value of the relative phase equals π .

is also pure. The shape of the functions reflects the definitions
of the relaxation rates.

One can also consider the time evolution of off-diagonal
elements of the density matrix by imposing a relative phase φ

between the states |1〉 and |2〉. Then, the initial density matrix
σ (0) can be introduced in the form

σ (0) = 1

2

⎛
⎝ 1 e−iφ 0

eiφ 1 0
0 0 0

⎞
⎠. (37)

Such a change in the initial density matrix allows one to
study the dynamics of the phase factors. Based on the dynam-
ical map Eq. (33), we obtain

σ12(t ) = 1

2
exp

[(
−1

4
+ E i

)
t − sin 2ωt

8ω

]
e−iφ (38)

and σ21(t ) = σ12(t ), which gives the trajectory of the phase
factor as presented in Fig. 5 (for arbitrary ω and E).

D. Three-level �-system

The quantum �-system with three energy levels belongs
to very useful models studied in different areas of modern
physics; see, e.g., Refs. [40–42]. It is assumed that the system
decays from the excited level |2〉 into one of two lower-energy
states: |1〉 or |3〉. Thus, we have two jump operators: E12 :=
|1〉 〈2| and E32 := |3〉 〈2|. We shall consider the following
generator of evolution:

L�(t ) = i
(
HT

� ⊗ 13 − 13 ⊗ H�

)
+ f1(t )

(
E12 ⊗ E12 − 1

213 ⊗ E22 − 1
2 E22 ⊗ 13

)
+ f2(t )

(
E32 ⊗ E32 − 1

213 ⊗ E22 − 1
2 E22 ⊗ 13

)
,

(39)
where the functions fi(t ) : I → R+ are assumed to be lin-
early independent, and H� stands for the Hamiltonian that
describes the energy levels, i.e., H� = diag(−E1, 0,−E3) for
E1, E3 > 0. One can notice that this generator is not function-
ally commutative, nor does it commute with its integral. The
minimal polynomial of Eq. (39) cannot be easily determined
without any assumptions concerning the functions f1(t ), f2(t )

and the energies E1, E3, which means that in order to consider
the Fedorov theorem in the context of �-systems, we need to
search for the kernel of

�(�)

≡
8∑

n=1

[
L�(t ),

(∫
L�(t ) dt

)n]†[
L�(t ),

(∫
L�(t ) dt

)n]
.

(40)
Interestingly, regardless of the functions f1(t ), f2(t ) and the
energies E1, E3, it can be checked numerically that �

(�)
55 �= 0

and all the other elements are zeros. For this reason, we can
write

vec ρ ∈ vecS (H) ∩ M(L�(t )) ⇔ ρ ∈ S (H) ∧ ρ22 = 0,

(41)
which means that the differential equation with the genera-
tor Eq. (39) has a closed-form solution, for example when
the initial state is given by ρS (0) = p |1〉 〈1| + (1 − p) |3〉 〈3|.
However, such a state, which is a statistical mixture of two
lower-energy states, is stationary because the dynamics does
not allow any transitions between the levels |1〉 and |3〉. Thus,
for any functions f1(t ) and f2(t ), we have

ρ(t ) = exp

(∫ t

0
L�(τ )dτ

)
[ρS (0)] = ρS (0). (42)

Alternatively, one can impose a relative phase between the
states |1〉 and |3〉 and consider how the dynamics influence
the off-diagonal elements. If we introduce the initial state in
the form

ρ(0) = 1

2

⎛
⎝ 1 0 e−iφ

0 0 0
eiφ 0 1

⎞
⎠, (43)

where φ stands for the relative phase, then one can ob-
serve that such an initial state also satisfies the condition
of partial commutativity. If we impose the dynamical map
exp (

∫ t
0 L�(τ )dτ ) on the state Eq. (43), we obtain

ρ(t ) = 1

2

⎛
⎝ 1 0 e(E3−E1 )t ie−iφ

0 0 0
e(E1−E3 )t ieiφ 0 1

⎞
⎠, (44)

which means that the phase factor rotates on the com-
plex plane in time. The oscillations of the phase factor are
attributed solely to the unitary evolution. If the energy lev-
els were degenerate, i.e., E3 = E1 = 0, then the input state
Eq. (43) would be stationary.

E. Four-level cascade system

The four-level cascade model describes a physical situa-
tion when the system can relax from the highest state |4〉 into
the lower level |3〉, then into the state |2〉, and finally into the
ground state denoted by |1〉. Since three kinds of transition
are admissible, we have three jump operators: E34 := |3〉 〈4|,
E23 := |2〉 〈3|, and E12 := |1〉 〈2|. There are plenty of possi-
ble time-dependent decoherence rates that might be analyzed
in the context of such dynamics. We shall assume that the
corresponding relaxation rates are given by the functions
γ34(t ) := e−ωt and γ23(t ) = γ12(t ) = sin2(3 ωt ). This leads to

062423-7



ARTUR CZERWINSKI PHYSICAL REVIEW A 102, 062423 (2020)

the generator of evolution in the following representation:

LFC(t )

= i
(
HT

FC ⊗ 14 − 14 ⊗ HFC
)

+ e−ωt

(
E34 ⊗ E34 − 1

2
14 ⊗ E44 − 1

2
E44 ⊗ 14

)

+ sin2(3 ω t )

(
E23 ⊗ E23 − 1

2
14 ⊗ E33 − 1

2
E33 ⊗ 14

)

+ sin2(3 ω t )

(
E12 ⊗ E12 − 1

2
14 ⊗ E22 − 1

2
E22 ⊗ 14

)
,

(45)

where HFC denotes a four-level cascade Hamiltonian. The
energy levels are assumed to be symmetric, i.e., HFC =
diag(−E2,−E1, E1, E2) for E1, E2 > 0. One can verify that the
generator LFC(t ) satisfies neither the condition of functional
commutativity nor commutativity with its integral. Therefore,
it is desirable to search for other methods that can be used
to solve the evolution equation governed by the generator
Eq. (45).

We investigate the kernel of the operator �(FC) [cf.
Eq. (31)]. The matrix representation of this operator can be
determined numerically. One can then observe that �

(FC)
16 16 =

g(t ), whereas the other elements are zeros. This means the
intersection of vecS (H) and M(LFC(t )) = Ker �(FC) can be
written as

vec ρ ∈ vecS (H) ∩ M(LFC(t )) ⇔ ρ ∈ S (H) ∧ ρ44 = 0,

(46)
which implies that the evolution equation with the generator
Eq. (45) has a closed-form solution only for the initial states
that assume zero probability for the level |4〉. In other words,
we are able to follow the dynamics in closed form only if we
reduce the dimension of the system by 1. Then, the dynamical
map can be written as

ρ(t ) = exp

(∫ t

0
LFC(τ )dτ

)
[ρ(0)], (47)

where ρ(0) denotes an initial state satisfying Eq. (46), e.g.,
ρ(0) = q1 |1〉 〈1| + q2 |2〉 〈2| + q3 |3〉 〈3|, and {q1, q2, q3}
stands for a probability distribution (one may add phase fac-
tors on the off-diagonal elements).

Let us study a specific example of this kind of dynamics by
assuming that the initial state has a form ρ(0) = 1/3 |2〉 〈2| +
2/3 |3〉 〈3|. Based on the closed-form solution Eq. (47) one
can compute

p1(t ) = 1 + 1

18ω

(
e

−6ωt+sin(6 ω t )
12ω [−6(3 + t )ω + sin(6 ω t )]

)
,

p2(t ) = 1

18ω

(
e

−6ωt+sin(6 ω t )
12ω [6(1 + t )ω − sin(6 ω t )]

)
, (48)

p3(t ) = 2

3
e

−6ωt+sin(6 ω t )
12ω ,

where pk (t ), like before, stands for the probability of finding
the system in the kth state. To track the changes that occur

FIG. 6. The probability of finding the four-level cascade system
in one of the possible states: |1〉, |2〉, or |3〉.

in the system during the evolution, the functions pk (t ) are
presented in Fig. 6.

Similarly as before, one can follow other characteristics of
a quantum system, such as the purity, denoted by π (t ), and
the von Neumann entropy, denoted by S(t ). In Fig. 7 one can
observe the plots of these functions.

It is worth noting that one can choose any specific state
satisfying the condition Eq. (46) (e.g., with phase factors) and
track its characteristics in time, assuming that the evolution
is governed by the generator Eq. (45). For instance, we may
consider a state in the form

σ (0) = 1

3

⎛
⎜⎜⎝

1 e−i φ12 e−i φ13 0
ei φ12 1 ei (φ12−φ13 ) 0
ei φ13 ei (φ13−φ12 ) 1 0

0 0 0 0

⎞
⎟⎟⎠, (49)

where φ12 denotes the relative phase between the states |1〉 and
|2〉 (and analogously for φ13). By applying the dynamical map
Eq. (47) to the state Eq. (49), we can determine the dynamics

FIG. 7. The purity and the von Neumann entropy of a dissipative
four-level system subject to the cascade decoherence model.
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FIG. 8. The trajectories of σ21(t ) and σ31(t ) on the complex plane
with the initial values of the relative phases: φ12 = π and φ13 = 0.

of the off-diagonal elements:

σ21(t ) = 1

3
exp

(
−1

4
t + i(E1 − E2)t + sin(6ωt )

24ω

)
eiφ12 ,

σ31(t ) = 1

3
exp

(
−1

4
t − i(E1 + E2)t + sin(6ωt )

24ω

)
eiφ13 , (50)

σ32(t ) = 1

3
exp

(
−1

2
t − 2E1it + sin(6ωt )

12ω

)
ei(φ13−φ12 ),

and from σi j (t ) = σ ji(t ) we can get the other half. The trajec-
tories can be presented graphically on the complex plane if we
assume some arbitrary values of the parameters characterizing
the evolution, i.e., ω, E1, E2. For two exemplary phase factors,
this is done in Fig. 8.

F. Discussion and analysis

The Fedorov theorem provides a useful generalization of
the Lappo-Danilevsky criterion. This method was originally
introduced by Fedorov in a two-page article in Russian [20]
and later included in the book by Erugin [6]. For a long
time, the theorem was unnoticed in the field of linear dif-
ferential equations. However, in 2018 it was rediscovered by
Kamizawa [43], who proposed an effective analytical method
for studying partial commutativity, although with no reference
to physics.

This article contributes to the field of open quantum sys-
tem dynamics by demonstrating that the Fedorov theorem
can be applied to search for dynamical maps if the corre-
sponding generator depends on time. We considered three
particular types of three-level dynamics: V -system, cascade,
and Lambda along with one example on four-level sys-
tems. Such evolution models are commonly studied in laser
physics.

In the case of the V -system, it turns out that the generator
of evolution Eq. (24) is functionally commutative (even if the
relaxation rates are substituted with different time-dependent
functions). This allows us to follow the trajectory for any ini-
tial state by the closed-form solution. For specific examples,
we obtained plots that show how the probabilities of a system

being in basis states change in time. Interestingly, if one
imposes a relative phase factor in the off-diagonal elements
of the density matrix, we shall observe phase-damping effects
that can be presented by trajectories of the phase factor on the
complex plane.

The results for the cascade model demonstrate that the
Fedorov theorem can be useful but limited at the same time.
The closed-form solution can be obtained only if there is zero
probability for the initial state to be in the highest energy level.
This means that we can study only the dynamics of a reduced,
two-level subsystem. In spite of this limitation, one can deter-
mine the solution for a spectrum of density matrices and study
time characteristics of the corresponding probabilities. The
analysis can be further extended by analyzing the dynamics
of the purity and the von Neumann entropy. In addition, one
can analyze the dynamics of the off-diagonal elements of the
density matrix by following the trajectories of phase factors
on the complex plane.

Third, in the case of the famous Lambda-system, the
Fedorov theorem allows one to write the solution only for
such states that are stationary in terms of the probabilities.
The system, given as a statistical mixture of the two lower
states, remains unchanged subject to the generator of evolu-
tion. However, if we impose nonzero off-diagonal elements
of the initial density matrix, we can observe oscillations of
the phase factor, which is attributed to the unitary part of the
generator.

Finally, an example of four-level systems with cascade
dynamics was studied. Based on the Fedorov theorem, we
could obtain a closed-form solution for a three-level subset of
initial states. The dynamics of such states can be investigated
by following the probabilities, purity, von Neumann entropy,
as well as the trajectories of phase factors.

The examples studied in the article show that the appli-
cability of the Fedorov theorem depends on the algebraic
structure of the generator L(t ). For some types of dynamics,
the Fedorov theorem may allow one to obtain a closed-form
solution and track the time changes in quantum systems.
This problem requires further research. More kinds of time-
dependent generators should be tested in connection with the
Fedorov theorem. Multilevel quantum systems subject to re-
laxation (e.g., laser cooling) are an area of intensive research,
both theoretical and experimental, e.g., [44–46]. The Fedorov
theorem can provide an effective framework to study the dy-
namics of such systems.

V. SUMMARY AND OUTLOOK

In the article, we have proposed the Fedorov theorem as
a technique to solve differential equations that describe the
dynamics of open quantum systems. The method was applied
to specific types of three-level and four-level systems. The
generators studied in the article are in line with evolution mod-
els considered within laser physics. Thus, the results provide
valuable insight into the dynamics of relaxation systems. Var-
ious characteristics of dissipative systems, such as the purity
or the von Neumann entropy, can be investigated in the time
domain based on the Fedorov theorem.

In the future, the Fedorov theorem shall be applied to other
multilevel quantum systems, which may bring significant
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advancement in understanding the dynamics of dissipative
systems composed of atoms interacting with light. When a
high-dimensional Hilbert space is concerned, we expect that
by partial commutativity one can study closed-form solutions
of evolution equations within the admissible subset of initial
quantum states. Further research into the Fedorov theorem
seems relevant for pure mathematics as well as in the context
of physical applications.
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