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We show that in a linear quantum machine, a driven quantum system that evolves while coupled with thermal
reservoirs, entanglement between the reservoir modes is unavoidably generated. This phenomenon, which occurs
at sufficiently low temperatures and is at the heart of the third law of thermodynamics, is a consequence of a
simple process: the transformation of the energy of the driving field into pairs of excitations in the reservoirs.
For a driving with frequency ωd we show entanglement exists between environmental modes whose frequencies
satisfy the condition ωi + ω j = ωd . We show that this entanglement can persist for temperatures that can be
significantly higher than the lowest achievable ones with sideband resolved cooling methods.
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I. INTRODUCTION

Quantum thermodynamics [1–3] is an emerging field
whose goal is to study the exchange of heat and work in
the quantum domain. In recent years novel thermal machines
operating at the atomic scale have been built using various
technologies. These include, most notably, ion traps [4–6]
and superconducting qubits [7]. Although a first-principle
description of such devices needs to be based on quantum
laws, a study of their performance revealed that they satisfy
the same constraints imposed by classical thermodynamics
(e.g., their efficiency is bounded by the Carnot limit) [8–14].
Although it is reassuring that classical results are reobtained
from a quantum treatment, this naturally raises a troubling
question: What is quantum in quantum thermodynamics [15]?
More precisely, are there thermodynamical tasks that are pos-
sible (or impossible) because of quantum effects—or are there
quantum effects that are unavoidably associated with thermo-
dynamical cycles? Even though, in this context, the role of
quantum coherences [16], correlations [17], and entanglement
[18–20] as thermodynamical resources have been recently
studied, in our opinion, the answers to the above questions are
still inconclusive. Here we show that quantum entanglement
plays a central role in thermodynamics: we prove that when
work is performed on a system S , which is in contact with
reservoirs ER and EL, time-extensive entanglement between
environmental degrees of freedom is unavoidable at suffi-
ciently low temperatures.

Hints about the existence of this entanglement, induced
by the driving, were found in [21,22] while studying the
nature of the heat flow between the environments. It was
shown that in the stationary regime the energy stored in each
environment varies due to two processes. First, the resonant
absorption (or emission) from (or into) the driving field can
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transport an excitation in a mode with frequency ωi to a mode
with frequency ωi + kωd , where ωd is the driving frequency
and k is an integer number. Naturally, this process is not
present at zero temperature, where there are no excitations
to be transported around. Thus, at very low temperature, the
environmental energy varies because of a different process:
the energy of the driving is dumped into two modes whose
frequencies satisfy the condition ωi + ω j = kωd . In [21,22]
this was interpreted as the nonresonant creation of a pair of
excitations, one in each mode, a process similar to the one
underlying the dynamical Casimir effect [23,24]. However,
the arguments in [21,22] are a conjecture and not a proof of
the existence of entangled pairs. Here we present a rigorous
proof of this fact by showing that the environmental modes
become entangled below a certain temperature. Moreover, we
show that entanglement can persist for temperatures which
are higher than the lowest achievable ones by physically rel-
evant cooling methods (analyzing both the resolved sideband
and Doppler limits). Although our proof is restricted to lin-
ear quantum open systems [25] (see below), as the process
responsible for the generation of entanglement is the same
enforcing the validity of the third law of thermodynamics
[21,22], it is natural to conjecture that our result is not a mere
consequence of linearity but a general one.

The paper is organized as follows: In Sec. II we present
our model, which is a generalization of the standard quantum
Brownian motion (QBM) model including a time-dependent
driving field, and present its formal solution. In Sec. III we
show how to explicitly solve this model for the case of a
periodic driving using Floquet theory. In Sec. IV we use
the previous results to compute correlation functions between
different environmental modes and we discuss their properties
in the long-time regime. In Sec. V we study the entan-
glement between environmental modes at zero and nonzero
environmental temperature. We provide a simple analytical
expression to compute an entanglement measure (the log-
arithmic negativity) that shows entanglement is created at
a constant speed (time extensivity) in a physically relevant
range of parameters. We also provide a simple formula to

2469-9926/2020/102(6)/062422(8) 062422-1 ©2020 American Physical Society

https://orcid.org/0000-0002-9459-8677
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.102.062422&domain=pdf&date_stamp=2020-12-23
https://doi.org/10.1103/PhysRevA.102.062422


AGUILAR, FREITAS, AND PAZ PHYSICAL REVIEW A 102, 062422 (2020)

FIG. 1. A parametric oscillator S driven by V (t ) is coupled with
two environments EL and ER at temperatures TL and TR, respectively.

predict the temperature at which entanglement vanishes due
to thermal excitations. We summarize our results in Sec. VI.

II. THE MODEL

We consider the following generalization of the quantum
Brownian motion model [26,27]: a system S (a parametric
oscillator with coordinate x) is coupled with an environment
E formed by independent oscillators (whose coordinates are
denoted as qi, with i = 1, . . . , N). The environment is divided
into two pieces Eα , where α = R, L, each of which consists of
the oscillators qi with i ∈ Eα . Each Eα is initially prepared in a
thermal state with temperature Tα . This model represents the
physical situation shown in Fig. 1.

Thus, our model describes the closed universe formed by
the system S and the environment E , whose dynamics is
governed by the total Hamiltonian HT = HS + HE + HS,E .
Here, the system’s Hamiltonian is HS = p2/2m + mV (t )x2/2
while the environmental and interaction terms are, respec-
tively, HE = ∑

i (p2
i /2mi + miω

2
i q2

i /2) and HS,E = x
∑

i λiqi.
An important feature of the environment is its spectral density
I (ω) = ∑

i λ
2
i δ(ω − ωi )/miωi [the spectral density of each Eα

is denoted as Iα (ω) and is defined in the same way, restricting
the summation to i ∈ α]. As we are interested in studying
correlations between the environmental modes, we will solve
this model in a way which is different from the one used in
standard treatments of QBM [26]. Thus, we solve the full
Heisenberg equations of motion of the coupled system, which
read

q̈i + ω2
i qi = −λix/mi, i = 1, . . . , N

ẍ + V (t )x = −
N∑

i=1

λiqi/m. (1)

Interestingly, the above equations can be formally solved and
the solutions expressed in terms of two decoupled sets of
operators. One of them, which we denote qh

i (t ), acts on the
environmental state space, and the other one, which we denote
xh(t ), acts on the system state space. The operators qh

i (t ) are
the free Heisenberg operators of the environmental modes

qh
i (t ) = qi,0 cos (ωit ) + pi,0 sin (ωit )/miωi, (2)

where qi,0 and pi,0 are Schrödinger operators. In turn, xh(t ) is
a dressed operator for S that satisfies the linear equation

ẍh + VR(t )xh + γ ∗ ẋh = 0, (3)

where the notation F ∗ f = ∫ t
0 dt ′F (t, t ′) f (t ′) is used.

Above, γ is the dissipation kernel defined as γ (t, t ′) =

∫
dω I (ω) cos [ω(t − t ′)]/mω, and VR(t ) = V (t ) − γ (0) is the

renormalized potential. The solution of the full Heisenberg
equations (1) is

qi = qh
i + K (1)

i j ∗ qh
j + K (2)

i ∗ xh,

x = xh + K (3)
j ∗ qh

j , (4)

where a summation over repeated indices is implicit. The
kernel K (1), which plays a central role in our calculations, is

K (1)
i j (t, t ′) = λiλ j

∫ t

t ′
dτ sin [ωi(t − τ )]G(τ, t ′)/mmiωi, (5)

where G is the Green’s function of Eq. (3) above. The other
two kernels are

K (2)
i (t, t ′) = −λisin[ωi(t − t ′)]/mi ωi,

K (3)
j (t, t ′) = −λ jG(t, t ′)/m. (6)

So far the expressions we obtained for q(t ) and x(t ) are
exact. To compute them explicitly we need to solve the equa-
tion for G, a task that is feasible for certain spectral densities
and for simple forms of V (t ). [In fact, once we do this we
can express xh(t ) as a linear combination of the Schrödinger
operators x0 and p0]. In the case of constant V (t ), the expres-
sions presented in Eq. (4) can be used to obtain all the known
results for the standard QBM model, and also to compute en-
vironmental correlations. Below we will discuss the solution
for a time-periodic driving field.

III. SOLUTION FOR PERIODIC DRIVING USING
FLOQUET THEORY

In order to deal with the explicit time dependence induced
by V (t ), we use Floquet theory. For a periodic driving with
V (t ) = ∑

k Vkeikωd t , G(t, t ′) can always be written as

G(t, t ′) =
∑

k

Ak (t − t ′)eikωd t , (7)

where Ak vanishes for negative arguments. For G to be a
Green’s function of Eq. (3), Ak must satisfy a linear set of cou-
pled differential equations. Instead of explicitly writing this
system, we will simply present an equivalent one involving
their Laplace transform Ãk (s) = ∫ ∞

0 dt Ak (t )e−st :

g̃−1(s + ikωd )Ãk (s) +
∑
n �=0

VnÃk−n(s) = δk0. (8)

Here, g̃ is the Laplace transform of the static Green’s func-
tion [obtained when V (t ) = V0], which is g̃−1(s) = s2 + ω2

r +
sγ̃ (s) [where ω2

r = V0 − γ (0) is the renormalized frequency
and γ̃ is the Laplace transform of γ ]. The above system of
equations can be simply solved by using a perturbative series
expansion which is valid when the Fourier coefficients of the
potential |Vk| are small. The validity of this approximation
also requires the frequency of the driving ωd to be detuned
from the parametric resonance. Thus, the solution of (8) satis-
fies the following recurrence relation:

A(m)
k (s) = g̃(s + ikωd )

[
δk0 −

∑
n �=0

VnÃ(m−1)
k−n (s)

]
, (9)
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for m � 1, with A(0)
k (s) = g̃(s + ikωd )δk0. It is interesting to

note that the coefficients Ãk satisfy certain properties which
can be interpreted as a generalization of the static fluctuation-
dissipation relation to the driven case. After some algebraic
manipulations one can show that

Im[Ã0(iω)] = −π
∑

k

I (ω − kωd )|Ãk[i(ω − kωd )]|2/2m.

(10)
In the static case, when Vk = 0 ∀|k| � 1, it reduces to

Im[g̃(iω)] = −π I (ω)|g̃(iω)|2/2m, (11)

which is the well-known expression for the fluctuation-
dissipation relation in the absence of a driving field [26].
Below we will use the above equations to compute correla-
tions between environmental modes. It is worth noticing that
the generalized fluctuation-dissipation relation considerably
simplifies the expressions for the correlators and determines
some of their most interesting properties.

IV. CORRELATION FUNCTIONS BETWEEN
ENVIRONMENTAL BANDS

We use Eqs. (4) to compute all correlation functions be-
tween two environmental bands: one of them consists of
oscillators whose frequencies are distributed around ωi (with
a bandwidth 	ω) and the other (disjoint) one is centered
around ω j . Expressions below will depend on the product
I (ω)	ω which, for sufficiently small values of 	ω, plays the
role of an effective coupling strength between the reservoir
band and S [since I (ω)	ω ≈ λ2/mω]. We can show that
the environmental correlators can be expressed as the sum
of a term that depends on the initial state of S and another
one that depends on the initial correlations within E . In fact,
when a stable stationary regime exists, the dependence on the
initial conditions for x becomes irrelevant and the dynamics is
dominated by the term involving the initial correlations within
E . The existence of such regime requires the energy pumped
into S to be dissipated by E , which can be achieved for
small driving amplitudes, provided that ωd is detuned from the
parametric resonance. In Appendix A we include the general
form of the equal time correlators 〈{qi(t ), q j (t )}〉, both at zero
and nonzero environmental temperatures which, together with
the expression for the momentum and the cross correlators,
will be used below to compute a measure of entanglement
between environmental bands. Here, for the sake of simplicity,
we show just an expression that enables us to discuss a feature
that is common to all correlators which in a physically relevant
regime become time extensive. Thus, we compute the energy
Ei stored in the band ωi, with i ∈ α, which is the sum of
the two diagonal correlators. It has the following form in the
long-time limit:

Ei(t ) → [1/2 + nα (ωi )]ωi + Q̇i × t, (12)

with

Q̇i

	ω
=

∑
k

∑
α′

ωi
{

(ωi,k )p(k)

α,α′ (ωi )[nα′ (ωi,k ) − nα (ωi )]

+
(−ωi,k )p(k)
α,α′ (ωi )[nα′ (|ωi,k|) + nα (ωi ) + 1]

}
,

(13)

FIG. 2. Energy of the mode ωi as a function of time at zero
temperature, for ωi = ωd − δ. Here, ωd = ωr − δ with δ = 10γ0,
ωr = 800γ0, V = ω2

r /32, m = 10mi, t = 20γ0, and γ0 = 0.005.

where ωi,k = ωi − kωd , 
 is the step function, nα (ω) is
the Planck distribution with temperature Tα , and p(k)

α,α′ (ωi ) =
π Iα (ωi )Iα′ (|ωi,k|)|Ãk (iωi,k )|2/2m2 is the probability that mode
ωi in Eα interacts with mode ωi,k in Eα′ through S . Remark-
ably, Ei is a linear function of time, a feature that is common to
all correlators. This is really a consequence of the continuum
hypothesis for E since any discrete environment has recur-
rence times trec ≈ 1/δω, where δω is the smallest frequency
splitting in E . Therefore, although the above expression is
valid for long times, it is not valid for arbitrarily long times.
(The continuum hypothesis for arbitrarily long times, which
is equivalent to assuming an infinite heat capacity for each
band, yields nonphysical covariance matrices.) Technically,
time extensivity is obtained in two steps: (i) we write all
second order correlators as frequency integrals [using Eq. (4)
and transforming the summations over discrete modes into
integrals over ω, weighted by I (ω)]; and (ii) we collapse the
frequency integrals using the fact that terms involving the
kernels K (1)

i j become highly peaked functions of ω in the long-
time limit (that can be treated as Dirac δ functions until the
time for which the discreteness of the environmental spectrum
becomes relevant).

In Eq. (13) we can see the hints pointing towards the
existence of entanglement that motivated our current study.
The first term in its right-hand side involves the interaction
of a mode ωi and another one with frequency ωi − kωd , and
describes resonant transport (which can induce either heating
or cooling of the modes, depending on the relation between
their populations). To the contrary, the second term, which
being positive is always associated with heating, involves the
interaction between modes whose frequencies add up to a
multiple of ωd . This splitting of the driving energy between
two modes motivated us to ask if entanglement is generated
between them. We will show below that this is indeed the
case. Before that, let us mention that our exact formula (which
takes into account the initial transient and does not involve
any time averaging) can be used to obtain Fig. 2, where
we show the behavior of Ei(t ) for an Ohmic spectral den-
sity I (ω) = 2mγ0ω�2/π (ω2 + �2) and a harmonic driving
VR(t ) = ω2

r + V cos(ωdt ). The plot (that corresponds to the
case where TR = TL = 0) shows a linear behavior for long
times, with a modulation with frequency ωd .

In the next section we will discuss entanglement between
environmental modes focusing on the long- (but not infinitely
long) time limit, where time extensivity dominates.
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V. ENTANGLEMENT BETWEEN
ENVIRONMENTAL BANDS

Here we will study entanglement between two envi-
ronmental bands which are respectively centered around
frequencies ωi and ω j , with i ∈ ER and j ∈ EL. For this we
will compute a standard measure of entanglement, which is
obtained from the reduced density matrix of the two modes i
and j. We will use the logarithmic negativity EN (t ) which is
a good measure of entanglement since the two-mode state in
the stationary regime is Gaussian [28]. EN (t ) is obtained, as
it is well known [28,29], from the smallest symplectic eigen-
value of the covariance matrix corresponding to the partially
transposed reduced density matrix of i and j. We will obtain
our results using two complementary methods. On the one
hand, we will derive analytic expressions for EN (t ), which are
valid in the limit of small driving and weak coupling. On the
other hand, we will numerically evaluate our exact analytic
expressions and compare them with the above approxima-
tion. In the following sections we will first discuss the case
where the environmental temperatures vanish and show that
entanglement exists only for modes satisfying the condition
ωi + ω j = ωd . Then we will present the generalization of this
result for the nonzero temperature case. In both cases we will
analyze in detail the nature of the results for physically rele-
vant ranges of parameters (ωd , ωr , and γ0) describing the most
interesting cases that correspond to the resolved sideband and
Doppler limits (see below). In the last section we present a
formula that allows us to compute the maximum temperature
at which entanglement between the environmental bands is
still present.

A. Entanglement at zero temperature

We compute the long-time limit of the average value of
EN (t ) between two bands whose frequencies add up to a
multiple of the driving frequency ωd (where the average is
taken over a driving cycle). Using the above expressions we
show that

EN (t ) = �0 × t, (14)

where

�0 = 1

m
	ω|V |√IR(ωi )IL(ω j )|Re[g̃ig̃

∗
j]|, (15)

with g̃l = g̃(iωl ). This formula, which is valid to leading
order in V in the weak damping regime, shows that the driv-
ing creates entanglement at a constant speed. This is one
of the central results of this paper. Instead, if ωi + ω j =
ωd + ε with ε � ωd , we find that EN (t ) ∝ |sinc(εt )| t , which
is a rapidly decaying function of ε whose amplitude does
not grow with time. It is interesting to compare the time
dependence of the entanglement with that of the energy.
Although they are both linear in time they display signifi-
cant differences. Thus, in the same regime described above,
Eq. (12) can be rewritten as Ei(t ) = ωi/2 + Q̇i × t where
Q̇i = πωi	ω|V |2IR(ωi )I (ω j )|g̃ig̃∗

j |2/2m2. Notably, the speed
with which the energy grows is of second order in V . Instead,
as the entanglement grows when cross correlations develop,
�0 turns out to be of first order in the driving amplitude.
It is worth mentioning that EN (t ) is proportional to the

FIG. 3. Dependence of the logarithmic negativity EN /E0 on the
frequency ωi in the resolved sideband limit when ωi + ω j = ωd .
(a) When both environments are at zero temperature, two peaks and
a broadband plateau are clearly visible. (b) When TL is raised to
TL = 10γ0, the peak at the right of the figure (that couples with low
frequency oscillators in EL) disappears. (c) When TR = TL = 10γ0,
only the central plateau is left. In all cases the exact result (blue
line) coincides with the analytical estimate given in (15) and (17).
We used the parameters ωd = ωr − δ with δ = 10γ0, ωr = 800γ0,
V = ω2

r /32, m = 10mi, t = 20/γ , and γ0 = 0.005.

environmental bandwidth 	ω. This is a natural result since
entanglement is established between modes satisfying the
matching condition ωi + ω j = ωd . Therefore, EN (t ) should
be proportional to the number of entangled pairs, which is
linear in 	ω.

The amount of entanglement produced at a certain time
depends on the frequencies of both modes. By analyzing the
dependence of the entanglement (as measured by the logarith-
mic negativity) as a function of (ωi, ω j) we can understand the
relevance of our result in the various regimes defined by the
relation between ωd , ωr , and γ0. For example, if ωd = ωr − δ

with δ � γ0, a maximum of entanglement is expected for
ωi close to ωr − ωd = δ. This is because oscillators in such
band are in the “resolved sideband” limit as the decay rate
is γ0 � ωi (ωr � γ0 is implicit). In this regime the dominant
process is the creation of a pair of phonons, one in the mode ωi

and another one in the mode ω j = ωd − ωi = ωr − 2δ. This is
the pair production mechanism that, as discussed in [22], sets
the limit for the lowest achievable temperature in sideband
resolved cooling methods. This intuitive picture is confirmed
by an exact numerical evaluation of the entanglement, shown
in Fig. 3(a) where these spectral peaks can be clearly seen.
Dimensional analysis of Eq. (15) provides us with a natural
unit of entanglement E0 = γ0	ωV/ω3

r , which we use to nor-
malize our plots. The agreement between the exact numerical
evaluation and the above analytic estimate is remarkable.

In turn, when the value of δ is reduced so that δ � γ0, EN
has peaks at a band centered around ωi ≈ γ0, which is not in
the resolved sideband regime (but, as discussed in [22], can
be associated with the Doppler limit of laser cooling). We
will present further details of the behavior of entanglement
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in other regimes elsewhere [30] and focus here on studying
the robustness of the entanglement in the nonzero temperature
regime.

B. Entanglement at nonzero temperature

When the initial environmental temperatures are arbitrary,
we can use our expressions to show that the logarithmic neg-
ativity is the maximum between zero and

EN (t ) = −Si, j + �N × t, (16)

where

�N = �0e−2Si, j
νR,i + νL, j

2

∣∣∣∣νR,ig̃ig̃∗
j + νL, j g̃∗

i g̃ j

g̃ig̃∗
j + g̃∗

i g̃ j

∣∣∣∣ (17)

and 2Si, j = ln[(ν2
R,i + ν2

L, j )/2], with να,i = 1 + 2nα (ωi ) and
�0 defined in (15). Therefore, at nonzero temperature the
entanglement is also created at a constant speed, which is
smaller than that corresponding to the zero temperature case.
Moreover, for any finite temperature there is a latency time
tent until entanglement is generated. This is fixed by Si, j and
is simply defined as tent = Si, j/�N . Also, Si, j , which is inde-
pendent of the driving field, establishes a lower bound to the
amount of entanglement that is unavoidably lost due to ther-
mal fluctuations. Interestingly, it is fixed by the entropy of the
environmental bands: For example, in the high temperature
limit a lower bound for Si, j is simply given by the average
Von Neumann entropy as Si, j � {ln(nR[ωi )] + ln(nL[ω j )]}/2.
Figures 3(b) and 3(c) show the dependence of EN on fre-
quency at nonzero temperature in the resolved sideband
regime. Again, the agreement between the analytical estimate
and the exact numerical result is quite remarkable.

C. Entanglement-breaking temperature

Entanglement can persist for a relevant range of tem-
peratures. For example, when TR = TL [the case shown in
Fig. 3(c)], the entanglement persists up to temperatures which
are 15 times higher than the lowest temperature that can be
achieved using sideband resolved cooling methods. In fact,
such methods can cool the band ωi up to an occupation
number nmin ≈ (γ0/2ωi )2 which, in our case corresponds to a
temperature Tmin ≈ 1.7γ0 but we can show that entanglement
persists up to T � 30γ0. On the other hand, when only the
temperature TR is zero, the entanglement can persist even for
higher values of TL. Thus, in this case [studied in Fig. 3(b),
with TL = 10γ0] we found that the entanglement can persist
for temperatures up to T ≈ 70γ0, which are 40 times higher
than the lowest achievable one (notice that, in this case, the
entanglement is lost first for high frequencies in ER, which

correspond to low frequencies in EL, as expected). It is pos-
sible to derive an analytic estimate for the temperature above
which entanglement vanishes (the proof is shown in Appendix
B). Thus, it turns out that entanglement persists only if

nα (ωi ) <
2

π

γ0

2ωi

	ω

ωi

m

mi
. (18)

This simple formula, notably, accurately predicts the bounds
mentioned above (and clearly implies that the temperatures
above which entanglement is lost can be significantly higher
than the minimum cooling temperatures achievable by side-
band resolved methods).

VI. CONCLUSIONS

In this paper we studied the creation of quantum corre-
lations between environmental modes in a generalization of
the usual QBM model that includes a time-dependent driving
enforced on the system S . The method we used enabled us to
solve the model focusing on the behavior of the environment
E rather than on that of the driven system S . Using our
analytical expressions we computed a measure of the entan-
glement between environmental bands, centering our attention
in the long-time regime. We showed that with a periodically
driven system S with a frequency ωd , entanglement between
environmental modes satisfying the matching condition ωi +
ω j = ωd is always created at low temperatures. This implies
that entanglement is in fact unavoidable for driven thermal
machines operating at sufficiently low temperatures. We also
showed that the entanglement can persist for temperatures
which are significantly higher than the lowest achievable ones
for realistic cooling methods. Interestingly, these quantum
correlations are created by the same process enforcing the
dynamical third law of thermodynamics in linear quantum
refrigerators, namely, the pair creation induced by the driving.
Our results are consistent with recent findings [31,32] that
showed that the entropy production in the stationary regime
of nonequilibrium systems is dominated by the creation of
intraenvironment correlations. Notably, we showed that in a
quantum thermodynamical system, such correlations have an
intrinsic quantum nature in a relevant regime.

APPENDIX A: POSITION CORRELATION FUNCTIONS

Here we will present the general expression for the posi-
tion correlation function for two modes i ∈ ER and j ∈ EL.
In order to obtain the correlation function for just one mode
(e.g., 〈{qi(t ), qi(t )}〉 instead of 〈{qi(t ), q j (t )}〉), we just need to
make the replacement {i, R} → { j, L}, and use the generalized
fluctuation-dissipation relation when possible. The correlator
at zero temperature is

〈{qi(t ), q j (t )}〉 = 1

miωi
δi j + 1

2m

1√
miωi

1√
mjω j

	ω
√

IR(ωi )IL(ω j ) Im
[
J (ωi, ω j, t )e−i(ωi−ω j )t − J (ωi,−ω j, t )e−i(ωi+ω j )t

]

+ 1

2m

1√
miωi

1√
mjω j

	ω
√

IR(ωi )IL(ω j ) Im
[
J (ω j, ωi, t )ei(ωi−ω j )t − J (ω j,−ωi, t )e−i(ωi+ω j )t

]

+ 1√
miωi

1√
mjω j

	ω
√

IR(ωi )IL(ω j )
∫ t

0
dt1

∫ t

0
dt2 sin[ωi(t − t1)] sin[ω j (t − t2)]〈{xh(t1), xh(t2)}〉
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+ 1

4m2

1√
miωi

1√
mjω j

	ω
√

IR(ωi )IL(ω j )
∑

α

∫ ∞

0
dω Iα (ω)Re

[
J (ω,ωi, t )J ∗(ω,ω j, t )ei(ωi−ω j )t

+ J (ω,−ωi, t )J ∗(ω,−ω j, t )e−i(ωi−ω j )t − J (ω,ωi, t )J ∗(ω,−ω j, t )ei(ωi+ω j )t

− J (ω,−ωi, t )J ∗(ω,ω j, t )e−i(ωi+ω j )t
]
, (A1)

and at nonzero environmental temperature,

〈{q̂i(t ), q̂ j (t )}〉 = 1

miωi
[2nR(ωi ) + 1]δi j + 1

2m

1√
miωi

1√
mjω j

	ω
√

IR(ωi )IL(ω j ) [2nR(ωi ) + 1]

× Im
[
J (ωi, ω j, t )e−i(ωi−ω j )t − J (ωi,−ω j, t )e−i(ωi+ω j )t

]
+ 1

2m

1√
miωi

1√
mjω j

	ω
√

IR(ωi )IL(ω j ) [2nL(ω j ) + 1]

× Im
[
J (ω j, ωi, t )ei(ωi−ω j )t − J (ω j,−ωi, t )e−i(ωi+ω j )t

]
+ 1√

miωi

1√
mjω j

	ω
√

IR(ωi )IL(ω j )
∫ t

0
dt1

∫ t

0
dt2 sin[ωi(t − t1)] sin[ω j (t − t2)]〈{xh(t1), xh(t2)}〉

+ 1

4m2

1√
miωi

1√
mjω j

	ω
√

IR(ωi )IL(ω j )
∑

α

∫ ∞

0
dω Iα (ω)[2nα (ω) + 1]

× Re
[
J (ω,ωi, t )J ∗(ω,ω j, t )ei(ωi−ω j )t + J (ω,−ωi, t )J ∗(ω,−ω j, t )e−i(ωi−ω j )t

− J (ω,ωi, t )J ∗(ω,−ω j, t )ei(ωi+ω j )t − J (ω,−ωi, t )J ∗(ω,ω j, t )e−i(ωi+ω j )t
]
, (A2)

where the J function is defined as

J (ω,ωi, t ) =
∑

k

∫ t

0
dt ′ei(ω−ωi+kωd )t ′

∫ t ′

0
dt ′′Ak (t ′′)e−iωt ′′

,

(A3)
which can be formally solved as

J (ω,ωi, t ) =
∑

k

{
t sinc[(ω − ωi + kωd )t/2]ak (iω)

× ei(ω−ωi+kωd )t/2 + Fk (ω,ωi )
}
, (A4)

where we used

ak (iω) =
∫ t

0
dt ′Ak (t ′)e−iωt ′

,

Fk (ω,ωi ) = ak (iω) − ak[i(ωi − kωd )]

i(ω − ωi + kωd )
. (A5)

Note that Fk is always finite, and ak (iω) → Ãk (iω) in the long-
time limit.

APPENDIX B: PROOF OF THE
ENTANGLEMENT-BREAKING TEMPERATURE

FORMULA

From now on we will consider two environmental bands
i ∈ ER and j ∈ EL centered around frequencies ωi and ω j ,
respectively, such that ωi + ω j = ωd . We begin our proof by
defining the dimensionless quantity

εi = 	ω

miω
3
i

IR(ωi ) (B1)

for mode i, and the analog ε j for mode j. We will work in
the weak-coupling regime where εi, j � 1. Using this, and

remembering the canonical form of the two-mode covariance
matrix

σ =
(

α γ

γ T β

)
, (B2)

the matrices α and β can be written as

α = νR,i1/2 + εiα̃, β = νL, j1/2 + ε j β̃. (B3)

Now we will make our first approximation, which is εi � ε j .
Although this is, in fact, an approximation, it is not too far
off from reality: εi, j is a measure of the coupling of the
modes (i, j) with the system S , which is roughly the same for
entangled i and j modes. From now on we will simply write
ε without a subindex. Under this approximation, we have for
all matrices involved,

α � νR,i1/2 + εα̃, β � νL, j1/2 + εβ̃, γ � εγ̃ (B4)

and

σ � 1

2

(
νR,i 0

0 νL, j

)
+ ε

(
α̃ γ̃

γ̃ T β̃

)
. (B5)

Using the Caley-Hamilton theorem one can write the determi-
nant of a matrix in terms of traces of powers of such matrix.
For example, for α and β we have

det(α) � ν2
R,i

/
4 + ενR,itr(α̃)/2 + ε2 [tr(α̃)2 − tr(α̃2)]/2,

det(β ) � ν2
L, j

/
4 + ενL, j tr(β̃ )/2 + ε2 [tr(β̃ )2 − Tr(β̃2)]/2.

(B6)

In order for this expansion to be exact for σ , it should be
up to order O(ε4). Here is where we will make our second
approximation: we will expand det(σ ) up to O(ε2), and as-
sume the next two orders do not significantly contribute to our
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computations. Thus, we write

det (σ ) � 1
16ν2

R,iν
2
L, j + 1

8ενR,iνL, j[νR,itr(α̃) + νL, j tr(β̃ )]

+ 1
8ε2ν2

L, j[tr(α̃)2 − tr(α̃2)]

+ 1
8ε2ν2

R,i[tr(β̃ )2 − tr(β̃2)]

+ 1
4ε2νR,iνL, j[tr(α̃)tr(β̃ ) − tr(γ̃ γ̃ T )]. (B7)

For γ we make no approximations: det(γ ) � ε2det(γ̃ ). If we
analyze the smallest symplectic eigenvalue of the covariance
matrix associated with the partially transposed reduced den-
sity matrix, we conclude modes i and j are entangled if, and
only if, the following inequality holds true:

0 > 1
2

(
ν2

R,i − 1
)(

ν2
L, j − 1

) + ε(νR,iνL, j − 1)

× [νR,itr(α̃) + νL, j tr(β̃ )]

+ ε2
(
ν2

L, j − 1
)
[tr(α̃)2 − tr(α̃2)]

+ ε2
(
ν2

R,i − 1
)
[tr(β̃ )2 − tr(β̃2)]

+ ε2νR,iνL, j[tr(α̃)tr(β̃ ) + 2det(γ̃ ) − tr(γ̃ γ̃ T )]

− 2ε2(νR,iνL, j − 1)det(γ̃ ). (B8)

Now let us suppose that ν2
R,i − 1 = 2nR(ωi ) and ν2

L, j − 1 =
2nL(ω j ) are of order εr with r ∈ R > 1 to be fixed later. If this
is the case, then we have nR,L (ωi, j ) � εr/2 < ε/2. Rewriting
the last equation, we obtain

0 > ε2r/2 + ε1+r (1 + εr/2)[tr(α̃) + tr(β̃ )]

+ ε2+r[tr(α̃)2 − tr(α̃2)] + ε2+r[tr(β̃ )2 − tr(β̃2)]

+ ε2(1 + εr )[tr(α̃)tr(β̃ ) + 2 det(γ̃ ) − tr(γ̃ γ̃ T )]

− 2ε2+rdet(γ̃ ). (B9)

Since r > 1, we can throw away terms of order ε2r+1 and ε2+r

that are smaller than ε3. Writing r = 1 + δ we get

0 > ε2δ + 2εδ[tr(α̃) + tr(β̃ )]

+ 2[tr(α̃)tr(β̃ ) + 2 det(γ̃ ) − tr(γ̃ γ̃ T )]. (B10)

We want to prove that there is at least one pair of bands (i, j)
that fulfill this inequality for any δ > 0. Since bands i and
j are entangled at zero environmental temperature (because
ωi + ω j = ωd ), we know that 0 > tr(α̃)tr(β̃ ) + 2 det(γ̃ ) −
tr(γ̃ γ̃ T ) holds (that is the condition for bands to be entangled
at zero temperature). To prove (B10) still holds with the two
extra terms, we will consider the case ωi = ω j = ωd/2. We
choose this particular case because, when the environmental
temperature is higher than zero, entanglement vanishes from
the highest frequencies to the lowest ones. Therefore, the
entanglement between these modes (ωi = ω j = ωd/2) is the
last one to disappear, and this will give us an upper bound
for the temperature at which entanglement vanishes for all
bands. Thus, in this case, we have α̃ = β̃ = γ̃ , and (B10)
becomes

0 > ε2δ + 4εδtr(α̃) + 8 det(α̃). (B11)

For long enough times, tr(α̃) ∼ εt/	ω, and det(α̃) ∼ −t2,
and therefore the inequality is valid. In short, we proved that
if the temperature TR is such that

nR(ωi ) <
1

2
ε = 1

2

	ω

miω
3
i

IR(ωi ) (B12)

and the analog for nL(ω j ) and TL, then those modes are entan-
gled for long enough times.
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