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We present analytical and numerical simulation results for squeezing, entanglement, and quantum discord in a
dissipatively coupled coherent Ising machine (CIM). Both analytical solutions and numerical simulation results,
which are obtained with positive-P, truncated-Wigner, and truncated-Husimi representations for the density
operator, predict the presence of entanglement and quantum discord, below and above the threshold of CIM.
The entanglement criteria and quantum discord are evaluated as a function of the dissipative coupling strength
relative to the background loss. For coupled two DOPOs, while entanglement disappears as the background
loss exceeds the Ising coupling strength, the quantum discord remains finite even with a large linear loss. For
one-dimensional lattice of DOPOs, while entanglement disappears for DOPO pair with large distance, quantum
discord remains finite.
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I. INTRODUCTION

A coherent Ising machine (CIM) with delay-line coupled
degenerate optical parametric oscillators (DOPOs) has been
theoretically studied [1–4] and experimentally demonstrated
[5–7]. In contrast to a CIM with measurement-feedback-
coupled DOPOs [8–11], a CIM with optically coupled
DOPOs has been shown to satisfy an entanglement crite-
rion [2,3]. The theoretical model of optically coupled CIM
employs the linear Liouvillian coupling of squeezed states.
The entanglement generation from squeezed states and linear
Hamiltonian coupling has been considered in the transient
case [12–14] and in the steady-state case [15]. The studies
of dissipative coupling induced entanglement generation were
performed in atom systems for the conditional case [16,17]
and for the steady-state case [18]. The coherent Ising machine
realizes steady-state entanglement using dissipative coupling
in optical system [19]. The previous numerical results of CIM
showed that it satisfies the sufficient condition for entangle-
ment criterion [20], not only below the threshold but also
above it [2,3], similarly to a non-degenerate optical paramet-
ric oscillator [21,22]. The degree of entanglement above the
threshold depends on various system parameters; for some
cases the entanglement criterion is violated before the thresh-
old is reached [2]. The quantum discord [23,24] was also
calculated [2], but its relation to the entanglement has not
been clarified. To obtain the condition for entanglement and to
understand a different behavior from the quantum discord in
a CIM, a comprehensive theoretical decription which passes
the numerical test for a wide range of system parameters is
required.

*yoshitaka.inui@ntt-research.com

The previous theoretical investigation of CIM [2,3] de-
pended on numerical simulation, particularly in the phase
space method. A rigorous numerical simulation of cavity
quantum electrodynamics (C-QED) system can be performed
when the field density operator is expanded by Fock states
with discrete spectra [25–27]. The Fock state approach is
effective for various nonlinear quantum optical effects [28] if
a system is in a small-photon-number regime. In CIMs, how-
ever, the system is in a large-photon-number regime where
the Fock state approach is poorly suited. Open bosonic quan-
tum systems, such as lasers and optical parametric oscillators
(OPOs) are alternatively described by Heisenberg-Langevin
equations in the Heisenberg picture [29] or by c-number SDEs
in the Schrödinger picture [30]. For lasers with a vastly in-
creasing number of photons, the field density operator can be
expanded by using diagonal coherent state expansion [31,32],
and the Fokker-Planck equation for the Glauber’s P function
is derived. By subsequently using the Ito rule, the c-number
stochastic differential equation (SDE) can be derived. For a
DOPO, however, the Fokker-Planck equation of the P func-
tion has a negative diffusion coefficient, and this approach
fails.

A CIM with dissipatively coupled DOPOs was first studied
by using c-number Langevin equations [1], which consti-
tute a c-number counterpart to the q-number Heisenberg-
Langevin equations [29]. Later, an equivalence between
the c-number Heisenberg-Langevin equations and SDEs in
Wigner representation was established with the truncation
of Fokker-Planck equation in the Wigner representation [3].
The phase space treatments of DOPOs [33–39] were, how-
ever, performed with positive-P [40,41] or complex-P [41]
representations. The SDEs in the positive-P representation
have been introduced into the numerical simulation of a CIM
[2,3]. These phase-space methods overcome the difficulties
in Glauber’s diagonal P representation and can deal with
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a varying photon number over many orders of magnitude.
Various quantum features can be computed from such SDEs
if a sufficient number of trajectories are ensemble averaged.
Positive-P and truncated Wigner approaches produce similar
values for entanglement criterion [3], if DOPOs are operating
in a so-called weak noise limit [37].

On the analytical side, quantum statistical properties of
a single DOPO at a steady state have been rigorously ob-
tained by the integration of the Fokker-Planck equation in the
complex-P representation [35,36]. In coupled nonlinear quan-
tum optical systems, some recent theoretical studies have used
the mean-field approximation for the coupling part between
subsystems [42–44]. Such treatment, motivated by condensed
matter theory [42], is useful in searching for a macroscopic
or global order, but neglects quantum correlation, including
entanglement, between subsystems. To elucidate the quantum
correlation among constituent DOPOs in a CIM, we consider
a weak noise limit [37] of a DOPO, instead of the general
solution of a DOPO [35,36]. In such a weak noise case, we
can analytically calculate entanglement and quantum discord.
To check the validity of analytical results, we compute the
squeezing, entanglement and quantum discord numerically by
using the Positive-P, truncated-Wigner and truncated-Husimi
SDEs. The numerical simulation results agree completely
with independently derived analytical solutions.

The paper is organized as follows. In Sec. II, the quantum
master equation for a single DOPO is presented. In Sec. III,
we introduce the theoretical model of two dissipatively cou-
pled DOPOs and present the analytical and numerical results
on the degrees of squeezing/antisqueezing, entanglement, and
quantum discord. Analytical results are compared with nu-
merical results. Section IV examines a one-dimensional (1D)
lattice of DOPOs with only nearest-neighbor coupling. Sec-
tion V summarizes the main results. Appendix A summarizes
the numerical simulation methods based on the positive-P,
truncated-Wigner, and truncated-Husimi SDEs for a single
DOPO. Appendix B summarizes the analytical method for
a single DOPO. Appendix C summarizes the mean-field ap-
proximation. Appendix D shows the traveling wave model for
1D nearest-neighbor-coupled DOPOs.

II. MASTER EQUATION OF A DOPO

In this section, we present the theoretical model for a
single DOPO. The system of a single DOPO consists of the
pump-mode operator âp and the signal-mode operator âs. The
quantum master equation of the system is represented as fol-
lows:

∂ρ̂

∂t
= Lρ̂ = ε[â†

p − âp, ρ̂] + κ

2

[
â†2

s âp − â†
pâ2

s , ρ̂
]

+ (γp[âp, ρ̂â†
p] + γs[âs, ρ̂â†

s ] + H.c.). (1)

Here, [Â, B̂] = ÂB̂ − B̂Â. This equation has Hamiltonian and
Liouvillian parts. The Hamiltonian part has two terms Ĥ1 +
Ĥ2, where Ĥ1 = ih̄ε(â†

p − âp) is the coherent excitation of
the pump mode by an external injection field ε and Ĥ2 =
ih̄ κ

2 (â†2
s âp − â†

pâ2
s ) is the nonlinear parametric coupling be-

tween the signal and pump modes via the second-order
nonlinear coupling constant κ . The Liouvillian parts consist

of the dissipation of the pump mode, represented by the
half width at half maximum (HWHM) γp, and that of the
signal mode, represented by γs. In the Heisenberg picture,
the corresponding Heisenberg-Langevin equations [29] are as
follows [1]:

dâp

dt
= −γpâp + ε − κ

2
â2

s + √
γpξ̂1, (2)

dâs

dt
= −γsâs + κ â†

s âp + √
γsξ̂2, (3)

where 〈ξ̂ †
i (t )ξ̂ j (t ′)〉 = 0, and 〈ξ̂i(t )ξ̂ †

j (t ′)〉 = 2δi jδ(t − t ′). The
injected pump field at the oscillation threshold is εthr =
γpγs/κ . Assuming that γp is sufficiently large compared to γs,
the pump mode can be eliminated via

âp = ε

γp
− κ

2γp
â2

s +
√

1

γp
ξ̂1. (4)

After eliminating the pump mode adiabatically by substituting
Eq. (4) into Ĥ2 in the quantum master equation [Eq. (1)] and
averaging over the pump mode and the noise operator ξ̂1, we
can obtain the quantum master equation for only the signal
mode (below, we omit the signal mode subscript s) [35]:

LDOPOρ̂ = S

2
[â†2 − â2, ρ̂]

+
(

γs[â, ρ̂â†] + B

2
[â2, ρ̂â†2] + H.c.

)
. (5)

Here, the parameter S = γsε/εthr represents the
squeezing/antisqueezing rate due to the parametric
interaction between the pump mode and the signal mode,
and B = κ2/(2γp) represents the degenerate two photon
absorption that describes the saturation of the parametric
gain. This master equation is equivalent to the following
Heisenberg-Langevin equation [1]:

dâ

dt
= −γsâ + Sâ† − Bâ†â2 +

√
2Bâ†ξ̂1 + √

γsξ̂2. (6)

The c-number counterpart of this equation is equivalent to
the SDE in the truncated Wigner representation [3]. The three
phase space methods (positive-P, truncated Wigner, and trun-
cated Husimi) for dealing with the quantum master equation
[Eq. (5)] are presented in Appendix A.

III. TWO COUPLED DOPOS

A. Model

We now consider a simplest CIM consisting of two DOPOs
with ferromagnetic dissipative coupling, as shown in Fig. 1.
For the two signal modes represented by â1 and â2, the Liou-
villian of an entire system is the sum of a single DOPO part
and coupling part: ∂ρ̂

∂t = ∑
r L

(r)
DOPOρ̂ + LC ρ̂. Here, L(r)

DOPO
operates on only rth DOPO and LC ρ̂ operates on both. We
consider the following Liouvillian which represents the dissi-
pative ferromagnetic coupling [2,45]:

LC ρ̂ = J[â1 − â2, ρ̂(â†
1 − â†

2)] + H.c. (7)

This Liouvillian is derived when the two signal modes â1 and
â2 with eigenfunctions Es1 and Es2, respectively, are coupled
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FIG. 1. Standing-wave model for ferromagnetically coupled
DOPOs. The two cavities support pump and signal modes, and the
two signal modes âr (r = 1, 2) are coupled via the coupling mode
âC . The eigenfunction of âC has a node at the center of the cavity.
When the two pump modes are excited with the same phase, the two
signal modes â1 and â2 can have the same or opposite phases. When
â2 has the same phase as â1, the coupling mode âC is not excited, so
that the dissipation by a decay rate γC disappears.

via the standing-wave cavity mode âC with eigenfunction EC ,
which has a node at the center of the cavity and has the
oppositely displaced antinodes at the interface of â1 and â2:

ĤC = h̄χ (â†
1âC + â†

Câ1) − h̄χ (â†
2âC + â†

Câ2). (8)

Here, the coupling mode âC has a dissipation rate (HWHM)
γC . When the two signal modes â1 and â2 are excited with
the same phase (ferromagnetic order), the dissipation induced
by γC does not occur. When γC is large, mode âC can be
adiabatically eliminated via the Lindblad procedure, and then
Eq. (7) is obtained with J ∼ χ2/γC .

For two coupled DOPOs, the positive-P distribution func-
tion P(α1, α

+
1 , α2, α

+
2 ) is defined as

ρ̂ =
∫

P(α1, α
+
1 , α2, α

+
2 )

|α1〉〈α+∗
1 |

〈α+∗
1 |α1〉 ⊗ |α2〉〈α+∗

2 |
〈α+∗

2 |α2〉 dV. (9)

Here dV = d2α1d2α+
1 d2α2d2α+

2 . αr and α+
r (r = 1, 2) are in-

dependent c-numbers. The mean value of operator product
〈â†i

1 â j
1â†k

2 âl
2〉 = Trρ̂â†i

1 â j
1â†k

2 âl
2 is calculated by the integration

in the phase space:

〈
â†i

1 â j
1â†k

2 âl
2

〉 =
∫

α+i
1 α

j
1α

+k
2 αl

2P(α1, α
+
1 , α2, α

+
2 )dV. (10)

We define this c-number integration as 〈α+i
1 α

j
1α

+k
2 αl

2〉. Since
〈âr〉 = 〈αr〉 and 〈â†

r 〉 = 〈α+
r 〉, the c-number mean amplitudes

satisfy 〈αr〉∗ = 〈α+
r 〉. The positive-P SDE for two coupled

DOPOs is obtained, as the extension of that for a single DOPO
(shown in Appendix A):

d

dt

[
α1

α+
1

]
= −

[
γs + J + Bα+

1 α1 −S

−S γs + J + Bα+
1 α1

][
α1

α+
1

]

+ J

[
α2

α+
2

]
+

⎡
⎣

√
S − Bα2

1ξR1√
S − Bα+2

1 ξ+
R1

⎤
⎦, (11)

d

dt

[
α2

α+
2

]
= −

[
γs + J + Bα+

2 α2 −S

−S γs + J + Bα+
2 α2

][
α2

α+
2

]

+ J

[
α1

α+
1

]
+

⎡
⎣

√
S − Bα2

2ξR2√
S − Bα+2

2 ξ+
R2

⎤
⎦. (12)

Here, ξRr and ξ+
Rr are independent real number ran-

dom variables satisfying 〈ξRr (t )ξRr′ (t ′)〉 = δrr′δ(t − t ′) and
〈ξ+

Rr (t )ξ+
Rr′ (t ′)〉 = δrr′δ(t − t ′). The characteristics of mean

amplitude products 〈α+i
1 α

j
1α

+k
2 αl

2〉 are numerically obtained
by these SDEs. When the system has the ferromagnetic order
α1 ∼ α2, each cavity has no additional loss due to coupling.
Therefore, the oscillation occurs with the same excitation
as for a single DOPO, i.e., at normalized pump rate p =
S/γs = 1. The dissipative coupling Liouvillian Eq. (7) does
not introduce new noise terms into the positive-P SDE [2]. In
the Wigner and Husimi SDEs (The definitions of distribution
functions and SDEs for single DOPO are shown in Appendix
A), however, the dissipative coupling introduces new noise
terms. When the coupling parts of the SDE are written as dα1

dt |C
and dα2

dt |C , they are represented as

dα1

dt

∣∣∣∣
C

= −Jα1 + Jα2 +
√

AJξC, (13)

dα2

dt

∣∣∣∣
C

= −Jα2 + Jα1 −
√

AJξC . (14)

Here, A = 1 for the Husimi representation and A = 1
2 for the

Wigner representation. The complex noise source ξC , satisfy-
ing 〈ξ ∗

C (t )ξC (t ′)〉 = 2δ(t − t ′), is common for α1 and α2, since
it comes from the vacuum noise of the coupling mode âC .

B. Covariance matrix

We consider the steady-state covariance matrix for two
coupled DOPOs by applying the fluctuation analysis in the
positive-P representation, that for a single DOPO is presented
in Appendix B. If two modes have the same excitations,
then they have symmetry under the exchange of modes. We
assume that the fluctuation products of the positive-P ampli-
tudes satisfy 〈�α2

1〉 = 〈�α2
2〉 and 〈�α+

1 �α1〉 = 〈�α+
2 �α2〉.

The covariance matrix σ is defined for the vectors
−→̂
R =√

2[X̂1, P̂1, X̂2, P̂2],

σi j = 1
2 〈[R̂i, R̂ j]+〉 − 〈R̂i〉〈R̂ j〉. (15)

Here, [Â, B̂]+ = ÂB̂ + B̂Â. For two DOPOs with dissipative
coupling, this matrix can be written as follows:

σ =
[
α γ

γ α

]
. (16)

Here, α = diag(a1, a2) and γ = diag(c1, c2). a1 = 2〈�X̂ 2
1 〉 =

2〈�X̂ 2
2 〉, and a2 = 2〈�P̂2

1 〉 = 2〈�P̂2
2 〉 represent the single-

mode variances of X̂ and P̂, respectively. On the other hand,
c1 = 2〈�X̂1�X̂2〉 and c2 = 2〈�P̂1�P̂2〉 represent the inter-
mode correlation of X̂ and P̂, respectively.
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Below the oscillation threshold (p < 1), where 〈α1〉 =
〈α2〉 = 0, the steady-state amplitude fluctuations satisfy the
following:

⎡
⎢⎢⎢⎣

1 + j −p − j 0

−p 1 + j 0 − j

− j 0 1 + j −p

0 − j −p 1 + j

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

〈�α2
1〉

〈�α+
1 �α1〉

〈�α1�α2〉
〈�α+

1 �α2〉

⎤
⎥⎥⎥⎦ = p

2

⎡
⎢⎢⎢⎣

1

0

0

0

⎤
⎥⎥⎥⎦.

(17)

Here, j := J/γs is the normalized coupling coefficient. 〈�α2
1〉

and 〈�α+
1 �α1〉 represent the averaged fluctuation products

for the same DOPO, while 〈�α1�α2〉 and 〈�α+
1 �α2〉 rep-

resent the averaged fluctuation products for different DOPOs.
For the system of two DOPOs below the threshold, all the
nonzero components of the covariance matrix are obtained as

follows:

α = diag

[
1 + p(1 − p + j)

(1 − p)(1 − p + 2 j)
,

1 − p(1 + p + j)

(1 + p)(1 + p + 2 j)

]
, (18)

γ = diag

[
p j

(1 − p)(1 − p + 2 j)
,− p j

(1 + p)(1 + p + 2 j)

]
.

(19)

Above the threshold, the mean amplitudes are given

by 〈α1〉 = 〈α2〉 =
√

γs

B (p − 1). We consider the fluctuation

around this mean value using the linearization technique
[46]. This procedure in a single DOPO is shown in
Appendix B. Under a steady-state condition, the fluctuation
amplitude products are represented as follows:

⎡
⎢⎣

2p − 1 + j −1 − j 0
−1 2p − 1 + j 0 − j
− j 0 2p − 1 + j −1
0 − j −1 2p − 1 + j

⎤
⎥⎦

⎡
⎢⎢⎣

〈
�α2

1

〉
〈�α+

1 �α1〉
〈�α1�α2〉
〈�α+

1 �α2〉

⎤
⎥⎥⎦ = 1

2

⎡
⎢⎣

1
0
0
0

⎤
⎥⎦. (20)

These amplitude fluctuation products produce the following
nonzero components of covariance matrix:

α = diag

[
1 + 2p − 2 + j

4(p − 1)(p − 1 + j)
, 1 − 2p + j

4p(p + j)

]
, (21)

γ = diag

[
j

4(p − 1)(p − 1 + j)
,− j

4p(p + j)

]
. (22)

C. Sufficient condition for entanglement

The sufficient criterion for entanglement is given in
Ref. [20], using

D = 〈�û2〉 + 〈�v̂2〉, (23)

where û = X̂1 − X̂2, v̂ = P̂1 + P̂2, X̂r = âr+â†
r√

2
(r = 1, 2), and

P̂r = âr−â†
r√

2i
(r = 1, 2). If D/2 < 1, then the system’s density

matrix is not separated into the product states of the individual
DOPOs: ρ̂ 
= ρ̂1 ⊗ ρ̂2. This criterion can be calculated using
the components of covariance matrix as

D

2
= (a1 − c1) + (a2 + c2)

2
. (24)

From Eqs. (18) and (19), below threshold D/2 is represented
as follows:

D

2
= 1 − p( j − p)

(1 + p)(1 − p + 2 j)
. (25)

Then the sufficient condition for entanglement is satisfied if
j > p is satisfied. This means that when j < 1, the entan-
glement criterion is violated before the threshold is reached
as seen in Ref. [2]. Above the threshold, the entanglement
criterion is represented as

D

2
= 1 − j − 1

4p(p − 1 + j)
. (26)

We can thus see that the entanglement criterion is satisfied
even above the threshold, when the dissipative coupling rate
is larger than a linear loss rate j = J/γs > 1.

D. Necessary and sufficient entanglement criterion

We now consider the necessary and sufficient entanglement
criterion following Simon’s theory [47–50]. For symmet-
ric two boson gaussian system, this is easily shown to be
equivalent to “Theorem 2” in Ref. [20]. In the descrip-
tion in Ref. [50], the necessary and sufficient entanglement
criterion is described by the symplectic eigenvalues of
covariance matrix σi j . The covariance matrix can be diag-
onalized with a symplectic transformation  as σT =
diag(ν+, ν+, ν−, ν−), where ν+ > ν−. The symplectic eigen-
values are related to the uncertainty relation, and a physical
state must satisfy ν− � 1 [50]. These eigenvalues ν+ and ν−
are obtained as the eigenvalues of i�σ where � = [ 0 1

−1 0] ⊕
[ 0 1
−1 0]. Simon’s entanglement criterion is defined on the par-

tially transposed covariance matrix σ̄ = �σ�T , where � =
diag(1, 1, 1,−1). The symplectic eigenvalues of σ̄ are eigen-
values of i�σ̄ and satisfy ′σ̄′T = diag(ν̃+, ν̃+, ν̃−, ν̃−)
(ν̃+ > ν̃−), for a symplectic transformation ′. The separable
state must satisfy ν̃− � 1[50].

The above procedures produce the symplectic eigenvalues
of σ . The two independent symplectic eigenvalues of σ are
calculated as eigenvalues λ of i�σ , and are reduced to λ2 =
(a1 + c1)(a2 + c2), (a1 − c1)(a2 − c2). Substituting Eqs. (18)
and (19) into λ2, we obtain ν2

+ = 1 + p2

1−p2 and ν2
− = 1 +

p2

(1+p+2 j)(1−p+2 j) . To obtain necessary and sufficient entangle-
ment criterion, two independent symplectic eigenvalues of σ̄

are calculated as eigenvalues λ′ of i�σ̄ , which are reduced
to λ′2 = (a1 + c1)(a2 − c2), (a1 − c1)(a2 + c2). The smallest
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symplectic eigenvalue of σ̄ is

ν̃2
− = 1 − p(2 j − p)

(1 + p)(1 − p + 2 j)
. (27)

When ν̃− < 1, the two coupled DOPOs are inseparable. This
entanglement condition for below the threshold is satisfied
when j > p/2.

We next consider the above-threshold characteristics de-
scribed by the covariance matrix σ . The symplectic eigen-
values of σ are ν2

+ = 1 + 1
4p(p−1) and ν2

− = 1 + 1
4(p+ j)(p−1+ j) .

The smallest symplectic eigenvalue of σ̄ is represented as

ν̃2
− = 1 − 2 j − 1

4p(p − 1 + j)
. (28)

Therefore, the necessary and sufficient entanglement criterion
for above the threshold is satisfied for j > 1/2. The required
j to satisfy the entanglement criterion is thus smaller than
that for sufficient criterion obtained in the previous section
( j > 1). The symplectic eigenvalue of partially transposed
covariance matrix σ̄ represents the degree of entanglement
and the minimum value of ν̃− is ν̃− → 1√

2
when p = 1 and

j → ∞. This is equivalent to that obtained by discrete time
theory for directed one-dimensional lattice in Ref. [51].

E. Quantum discord

Next, we consider the quantum discord of two dissipatively
coupled DOPOs. When the total system density operator ρ̂ is
composed of the first DOPO with ρ̂1 and the second DOPO
with ρ̂2, the von Neumann entropy of the total system is
defined by S(ρ̂) = −Trρ̂ ln ρ̂. The total entropy also seems
to be written as the summation S(ρ̂1) + S(ρ̂2|1), where S(ρ̂1)
is the reduced entropy of the first DOPO, while S(ρ̂2|1) is the
conditional (or residual) entropy of the second DOPO which
is given by the subtraction of mutual information from S(ρ̂2).
In classical information theory, these two formula for the total
entropy are identical, but when the systems have quantumness
they generally differ [23,24]. The quantum discord is defined
as the difference between these two expressions for entropies.
Nonzero quantum discord is identified as a metric for quanti-
fying the quantum correlation of mixed states and as a useful
quantum resource in a specific quantum computational model
[52,53].

For a system of two DOPOs, using the theory of two-mode
Gaussian states [54,55], quantum discord for the covariance
matrix σ is written as follows:

D(σ ) = f (
√

a1a2) + inf
σ0

f (
√

det ε) − f (ν+) − f (ν−). (29)

Here f (x) = x+1
2 ln x+1

2 − x−1
2 ln x−1

2 , and ε = α − γ (σ0 +
α)−1γ T where σ0 relates to the measurement which re-
moves the mutual information [56,57]. The first two terms
on the right hand side of Eq. (29) represent the entropies
S(ρ̂1) and S(ρ̂2|1). The last two terms represent the en-
tropy S(ρ̂ ) consisting of two DOPOs [58]. In the calculation
of S(ρ̂2|1), we consider θ = 0 case of Ref. [55] where
σ0 = diag(λ, λ−1)(λ > 0). When D1 := (a2c2

1 − a1c2
2(a2

1 −
c2

1 ))(a2c2
1(a2

2 − c2
2 ) − a1c2

2 ) < 0, d det ε(λ)
dλ

= 0 can be obtained

for positive λ. When D1 � 0, d det ε(λ)
dλ

= 0 is satisfied for only

negative λ, and the minimum value of the determinant of the
matrix ε is obtained at λ → 0 [55] as

inf
σ0

det ε = a2

a1

(
a2

1 − c2
1

)
. (30)

In our two-DOPO system, the residual entropy is min-
imized for λ → 0. This is shown from the analytical
result of D2 := a2c2

1(a2
2 − c2

2 ) − a1c2
2(a2

1 − c2
1 ), which is

smaller than both a2c2
1 − a1c2

2(a2
1 − c2

1 ), and a2c2
1(a2

2 − c2
2 ) −

a1c2
2, because of a2

1 − c2
1 > 1 and a2

2 − c2
2 < 1. Both D2 =

2p3 j2(1+ j)(1+2 j)
(1+p)2(1−p)2(1−p+2 j)2 (1+p+2 j)2 below the threshold and D2 =
j2(2p−1)(2p−1+ j)(2p−1+2 j)
128p2(p−1)2(p+ j−1)2(p+ j)2 above the threshold have positive val-

ues. Therefore D1 � 0 is always satisfied in two-DOPO CIM.
Eq. (30) is also obtained from Eq. (4) in Ref. [55] when
D3 := a2

2c2
1 − a2

1c2
2 � 0. In two-DOPO CIM, D3 = 2D2 was

obtained and D3 � 0 is always satisfied.
The quantum discord is always nonzero in an optically cou-

pled CIM, no matter how large the dissipation γs is compared
to the mutual coupling J , because of the nonzero c1 and c2

values. However, in the simulation of mean-field approxima-
tion shown in Appendix C, c1 and c2 converge into zero. The
quantum discord at the threshold of two DOPOs is calculated
with the approximation f (x) → 1 + ln(x/2)(x → ∞). In the
limit p → 1 and j → ∞, we have the maximum quantum

discord D ∼ 1
2 ln 3

4 + f (
√

3
2 ) ∼ 0.22.

F. Numerical simulation

To test the validity of analytical results for a ferromagnet-
ically coupled two-DOPO system, we performed a numerical
simulation based on the positive-P, truncated Wigner, and
truncated Husimi SDEs. The simulation was performed with a
small two-photon absorption loss B/γs = 10−4 and coupling
coefficient j = 7/3. The fluctuations were calculated with the
time average for a single trajectory, assuming ergodicity. The
total simulation time was a period of 106/γs. In the first time
period of t f = 104/γs, the time average was not taken, and the
pump excitation varies on time via p(t ) = p

√
t/t f . After the

first period of t f , the excitation was held constant to p, and
the time average was taken. The time step was �t = 10−3/γs,
�t = 5 × 10−5/γs, and �t = 2.5 × 10−5/γs, respectively for
positive-P, truncated Wigner and truncated Husimi SDEs.

We first present the results for 〈�X̂ 2〉 = a1/2 and 〈�P̂2〉 =
a2/2 for the two-DOPO system in Fig. 2(a). The cir-
cles with different colors represent the numerical results
from positive-P, truncated-Wigner (T-Wigner), and truncated-
Husimi (T-Husimi) calculations. The filled circles represent
〈�X̂ 2〉, while the open circles represent 〈�P̂2〉. The analyt-
ical results are shown by black solid lines. The fluctuation
of vacuum is shown by a gray dashed line. Far below the
threshold (p  1) and far above the threshold (p � 1), the
DOPO field should be in a vacuum state and a coherent state,
respectively, so that the variance 〈�X̂ 2〉 and 〈�P̂2〉 are ex-
pected to approach an asymptotic value 〈�X̂ 2〉 = 〈�P̂2〉 = 1

2 .
However, the degree of squeezing and antisqueezing should be
maximum at the threshold (p = 1). The numerical simulations
reproduce these theoretical predictions well and thus verified
the analytical results presented in the previous sections. The
correlations of canonical coordinates are shown in Fig. 2(b).
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FIG. 2. Entanglement and quantum discord of two dissipatively coupled DOPOs. (a) Variances in canonical components 〈�X̂ 2〉 (filled
circles) and 〈�P̂2〉 (open circles) as a function of the normalized excitation p. (b) Correlation of canonical components as a function of the
normalized excitation p. (c) Duan-Giedke-Cirac-Zoller sufficient criterion for inseparability as a function of p. (d) Duan/Simon’s necessary
and sufficient criterion for inseparability as a function of p. (e) Quantum discord in coupled DOPOs as a function of p. (f) Analytical quantum
discord as a function of normalized coupling coefficient j = J/γs.

Mean fluctuation product of canonical coordinates 〈�X̂1�X̂2〉
has a positive correlation and has a singular increase at the
threshold, similarly to the 〈�X̂ 2〉. The fluctuation product of
canonical momenta 〈�P̂1�P̂2〉 has a negative correlation and
remains finite at the threshold.

Duan-Giedke-Cirac-Zoller sufficient criterion for entangle-
ment (D/2) is shown in Fig. 2(c). When this value is smaller
than one, the system is inseparable and entangled. We see
that the entanglement is maximum at the threshold, but exists
even above the threshold. Note that the entanglement condi-
tion above the threshold ( j > 1) is satisfied in this numerical
simulation. The theoretical values shown by black line were
calculated from Eqs. (25) and (26), and these analytical results
match the numerical simulation results. The Duan-Simon’s
necessary and sufficient entanglement criterion is shown in
Fig. 2(d), which also shows a maximum entanglement at the
threshold. Next, Fig. 2(e) shows the quantum discord as a
function of p, calculated from the covariance matrix σi j [2].
The analytical results were obtained from Eqs. (29) and (30)
and are shown by a black line. As shown by filled circles,
the quantum discord takes a maximum value at the threshold
and remains finite even at the pump rate far below and far
above it. Figure 2(f) shows the analytical quantum discord
of dissipatively coupled DOPOs at three different pump rates
as a function of normalized dissipative coupling j = J/γs. A
dashed vertical line represents the necessary and sufficient
entanglement criterion for above threshold ( j = 1/2). For a
large loss limit ( j  1), the entanglement disappears, but the
quantum discord survives particularly around the threshold:
p ∼ 1.

IV. 1D LATTICE OF N DOPOS

A. Model

We consider a CIM consisting of N-DOPOs [âr (r =
1, · · · , N )], which is the ferromagnetic 1D lattice with
nearest-neighbor coupling. The dissipative coupling Liouvil-
lian is obtained from the extension of Eq. (7) as follows:

LC ρ̂ =
N∑

r=1

J

2
[âr − âr+1, ρ̂(â†

r − â†
r+1)] + H.c. (31)

Here, we consider a periodic system such that âN+1 is identical
to â1. Such a 1D lattice can be constructed with N dissipative
standing-wave modes âC,r (r = 1, · · · , N ) with half-width γC :

ĤC = h̄χ

N∑
r=1

(â†
r − â†

r+1)âC,r + H.c. (32)

Here, the rth DOPO is coupled to the (r − 1)th DOPO via the
dissipative mode âC,r−1, and is also coupled to the (r + 1)th
DOPO via the dissipative mode âC,r . When all dissipative
modes âC,r have the same loss rate γC with γC � γs, the
coupling coefficient of the Liouvillian follows J/2 ∼ χ2/γC .
In the Wigner and Husimi SDE, from Eq. (31), the coupling
part in the SDE for the rth DOPO is represented as follows:

dαr

dt

∣∣∣∣
C

= −Jαr + J

2
(αr−1 + αr+1) +

√
AJ

2
ξC,r −

√
AJ

2
ξC,r+1.

(33)
Here, A = 1 for the Husimi SDE and A = 1

2 for the Wigner
SDE. The noise sources satisfy 〈ξ ∗

C,r (t )ξC,r′ (t ′)〉 = 2δr,r′δ(t −
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t ′). This model was obtained as the extension of the stand-
ing wave model in Fig. 1. The theory of the traveling pulse
model of a CIM [5] in the Wigner representation is shown in
Appendix D.

B. Extended Duan-Giedke-Cirac-Zoller criterion

First, we take the analytical approach using the positive-P
SDE. For the rth signal mode âr (r = 1, · · · , N ), the positive-
P SDE is written as

dαr

dt
= −(γs + J )αr + J

2
(αr−1 + αr+1)

+ Sα+
r − Bα+

r α2
r +

√
S − Bα2

r ξR,r . (34)

We introduce the Fourier-transformed fluctuation
amplitude �α̃k:

�α1+r = 1√
N

N−1∑
k=0

�α̃keiθk r . (35)

Here, θk = 2π
N k. Below the threshold, we obtain the following

SDE for the Fourier components:

d�α̃k

dt
= −[γs + J (1 − cos θk )]�α̃k + S�α̃+

−k +
√

Sξ̃R,k .

(36)

The Fourier-transformed random noise sources are defined as

ξ̃R,k = 1√
N

N−1∑
r=0

ξR,r+1e−iθk r (37)

and satisfy 〈ξ̃R,k (t )ξ̃R,−k′ (t ′)〉 = δk,k′δ(t − t ′). We obtain the
steady-state fluctuation of Fourier components as follows:

〈�α̃k�α̃−k〉 = p

2

1 + j(1 − cos θk )

[1 + j(1 − cos θk )]2 − p2
, (38)

〈�α̃+
k �α̃k〉 = p2

2

1

[1 + j(1 − cos θk )]2 − p2
. (39)

We now calculate the extended Duan-Giedke-Cirac-Zoller
criterion for even number N-DOPOs [3], denoted as
D′ = 〈�û2〉 + 〈�v̂2〉, where û = ∑N

r=1(−1)r+1X̂r and v̂ =∑N
r=1 P̂r . When D′/N < 1, the entire system is not separated

into the product state, i.e., ρ̂ 
= ⊗N
r=1ρ̂r . The extended criterion

can be written with Fourier components as

D′

N
= 1 + 〈�α̃+

k=0�α̃k=0〉 − 〈
�α̃2

k=0

〉
+ 〈

�α̃+
k= N

2
�α̃k= N

2

〉 + 〈
�α̃2

k= N
2

〉
. (40)

We can see that this expression is reduced to D′
N = 1 −

p( j−p)
(1+p)(1−p+2 j) . Note that this D′

N contains the case of N = 2 as
a special case [see Eq. (25)].

Above the threshold, we obtain the following SDE for the
Fourier components:

d�α̃k

dt
= −(γs + J (1 − cos θk ))�α̃k + S�α̃+

−k

− 2B〈α〉2�α̃k − B〈α〉2�α̃+
−k +

√
S − B〈α〉2ξ̃R,k .

(41)

Here, S − B〈α〉2 ∼ γs is satisfied above the threshold. A sim-
ilar equation was obtained in the dissipative Bose Hubbard
model with the nonlinear Kerr effect [59]. From Eq. (41), we
obtain the steady-state fluctuation correlations as follows:

〈�α̃k�α̃−k〉 = 1

2

2p − 1 + j(1 − cos θk )

[2p − 1 + j(1 − cos θk )]2 − 1
, (42)

〈�α̃+
k �α̃k〉 = 1

2

1

[2p − 1 + j(1 − cos θk )]2 − 1
. (43)

The extended Duan-Giedke-Cirac-Zoller criterion D′/N is
given by Eq. (40), and the result is reduced to D′

N = 1 −
j−1

4p(p−1+ j) , which is identical to D/2 [Eq. (26)] for two DO-
POs. Therefore, j = 1 is required to satisfy the extended
entanglement criterion above the threshold.

To understand these results, we introduce an intuitive pic-
ture based on the loss spectrum model. After linearizaton, we
consider the loss matrix Mk for fluctuation defined as

d〈−→Ak 〉
d (γst )

= −Mk〈−→Ak 〉, (44)

where
−→
Ak := [ �α̃k

�α̃+
−k

]. The matrix Mk in a 1D DOPO system
with nearest-neighbor coupling is described by

Mk =
[

1 + j(1 − cos θk ) −p

−p 1 + j(1 − cos θk )

]
(45)

below the threshold, and by

Mk =
[

2p − 1 + j(1 − cos θk ) −1

−1 2p − 1 + j(1 − cos θk )

]
(46)

above the threshold. When the loss matrix is diagonalized,
the X̂ -like (�α̃k + �α̃+

−k) mode has a normalized loss repre-
sented by �X (k)/γs = 1 − p + j(1 − cos θk ) below threshold
and �X (k)/γs = 2(p − 1) + j(1 − cos θk ) above threshold.
Likewise, the P̂-like (�α̃k − �α̃+

−k) mode has a normalized
loss spectrum of �P(k)/γs = 1 + p + j(1 − cos θk ) below
threshold and �P(k)/γs = 2p + j(1 − cos θk ) above thresh-
old. Figure 3(a) shows these spectra with j = 7/3 for three
excitation strengths p = 0.3, p = 1, and p = 3. Here, the
filled circles represent X̂ -like modes, while the open circles
represent P̂-like modes. As the fluctuation term does not de-
pend on θk and the mode type (i.e., X̂ -like or P̂-like), the
fluctuation magnitude is represented by the loss function.
When the loss is smaller, the fluctuation is larger in pro-
portion to �(k)−1. We can see that when p = 1, the X̂ -like
mode becomes lossless at k = 0 and lasing occurs at k = 0.
The extended entanglement criterion for the entire lattice is
represented by fluctuations at two symmetric points in wave-
number space [Eq. (40)]. The extended entanglement criterion
(D′/N) is satisfied when the loss of the X̂ -like band at k = N

2
is larger than that of the P̂-like band at k = 0. This is always
the case far below the threshold. Above the threshold, how-
ever, the criterion is satisfied only when j > 1. In Fig. 3(b),
we present the wave-number-dependent loss for j = 2/3. In
this case, the extended entanglement criterion is satisfied for
p = 0.3, but not satisfied for p = 1 and p = 3.
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FIG. 3. Wave-number-dependent loss of X̂ -like mode (filled circles) and P̂-like mode (open circles) in N = 32 1D ring of DOPOs with
(a) j = 7/3 and (b) j = 2/3. When the loss of P̂-like mode at k = 0 is smaller than X̂ -like mode at k = N/2, the extended entanglement
criterion is satisfied (D′ < N).

We performed a numerical simulation to confirm the an-
alytical results for the 1D DOPO ring with nearest-neighbor
coupling. The simulation was performed in the same way
as Figs. 2(a)–2(e), with a small two-photon absorption loss
B/γs = 10−4. We considered N = 32 DOPOs with j = 7/3
or j = 2/3. Figures 4(a) and 4(b) show the extended entan-
glement criterion for an entire lattice. As seen in the loss
spectrum of Fig. 3, the extended entanglement criterion is

always satisfied for j = 7/3. However, for j = 2/3 it is satis-
fied only for p < 2/3.

C. Entanglement criterion between nearest-neighbor DOPOs

Instead of the entire lattice, we can consider the entangle-
ment for two DOPOs, after tracing out the remaining (N − 2)
DOPOs. Duan-Giedke-Cirac-Zoller sufficient entanglement
criterion for a pair with site distance r is calculated as

FIG. 4. Entanglement and quantum discord characteristics of N-DOPOs with 1D nearest-neighbor ferromagnetic coupling. Numerical
result of extended entanglement criterion for N = 32 lattice as a function of p with (a) j = 7/3 or (b) j = 2/3. (c) Numerical result of
Duan-Giedke-Cirac-Zoller sufficient inseparability criterion for a nearest-neighbor pair as a function of p (N = 32, j = 7/3). Gray dashed lines
represent the value of vacuum state, below which the nearest-neighbor DOPOs are inseparable. In (a–c), black lines represent the theoretical
result with only gaussian approximation. (d) Duan-Giedke-Cirac-Zoller sufficient inseparability criterion as a function of site distance r ( j =
7/3). (e) Duan/Simon necessary and sufficient inseparability criterion as a function of site distance r ( j = 7/3). (f) Quantum discord as a
function of site distance r ( j = 7/3). In panels (d), (e), and (f), filled circles represent results from positive-P calculation and lines represent
results from parabolic approximation with N → ∞.
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follows: D(r)
2 = 1 + 2

N

∑
k (〈�α̃+

k �α̃k〉 −
〈�α̃−k�α̃k〉 cos(rθk )). We first consider the r = 1 case
(nearest-neighbor pair). In the limit N → ∞, we compute
the above summation by replacing it with the integration
1
N

∑N−1
k=0 f (θk ) → ∫ +π

−π
f (θ ) dθ

2π
. After the integration, we

obtain

D(1)

2
= 1 − p

j

[
−1 + 1

2

√
1 − p

1 − p + 2 j
+ 1

2

√
1 + p + 2 j

1 + p

]
(47)

below the threshold, and

D(1)

2
= 1 − 1

j

[
−1 + 1

2

√
p − 1

j + p − 1
+ 1

2

√
j + p

p

]
(48)

above it. We can see that D(1)/2 < 1 is always satisfied
far below the threshold (p  1), when j > 3 satisfied at
the threshold (p → 1), and when j > 2 satisfied far above
the threshold (p � 1). When 2 < j < 3, Duan-Giedke-Cirac-
Zoller sufficient entanglement criterion is not satisfied at
p ∼ 1, even though it is satisfied well below and well above
the threshold. Figure 4(c) shows the Duan-Giedke-Cirac-
Zoller sufficient entanglement criterion for a nearest-neighbor
pair in N = 32 DOPOs with j = 7/3. The analytical results
[Eqs. (47) and (48)] agree very well with the numerical re-
sults. It is seen that the entanglement criterion (D(r)

2 < 1)
is not satisfied at the threshold but is satisfied below and
above it.

D. Correlation as a function of distance r

Here, we consider the covariance matrix [Eq. (16)]
between â1 and â1+r , calculated with

−→
R (r) =√

2[X̂1, P̂1, X̂1+r, P̂1+r]. In the large N limit, the small-k
part of the loss spectrum is important in calculating the
spatial correlation function of the canonical components,
c1 = 2〈�X̂1�X̂1+r〉 and c2 = 2〈�P̂1�P̂1+r〉. These are
calculated from

c1 = 2

N

∑
k

(〈�α̃k�α̃−k〉 + 〈�α̃+
k �α̃k〉) cos(θkr), (49)

c2 = 2

N

∑
k

(−〈�α̃k�α̃−k〉 + 〈�α̃+
k �α̃k〉) cos(θkr). (50)

In the limit N → ∞, these expressions are reduced to the
integration forms

c1 = ψ (p)

π j
Re

∫ π

−π

dθ
eiθr

θ2 + m2−
, (51)

c2 = −ψ (p)

π j
Re

∫ π

−π

dθ
eiθr

θ2 + m2+
, (52)

after the approximation cos θ ∼ 1 − θ2

2 . Here, ψ (p) =
pH (1 − p) + H (p − 1) and H (p) is the Heaviside’s step func-
tion. m2

± = 2(1±p)
j below the threshold and m2

± = 2(2p−1±1)
j

above the threshold. Assuming small m±, the covariance ma-
trix can be calculated with complex integral as

α = diag

[
1 + ψ (p)

jm−
, 1 − ψ (p)

jm+

]
, (53)

γ = diag

[
ψ (p)e−m−r

jm−
,−ψ (p)e−m+r

jm+

]
. (54)

We see that the correlation length rc of the X̂ compo-
nent satisfies rc ∝ |1 − p|− 1

2 . The correlation of X̂ becomes
long range at the threshold. This result resembles the corre-
lation length rc ∝ |1 − T

Tc
|− 1

2 in Landau’s equilibrium phase
transition theory [60], where T/Tc is a system temperature
normalized by the critical temperature. The correspondence
between an equilibrium phase transition and a nonequilibrium
phase transition has been noted in Ref. [61]. For P̂, how-
ever, the maximum correlation length is obtained at p → 0:
rc = √

j/2. Even for p → 0, however, this correlation is short
ranged. Duan-Giedke-Cirac-Zoller sufficient condition for en-
tanglement for a pair with distance r [D(r)] can be calculated
from correlations shown above as

D(r)

2
= 1 + ψ (p)

2 j

[
1 − e−m−r

m−
− 1 + e−m+r

m+

]
. (55)

Particularly, at the threshold (p = 1), D(r) is proportional to
r due to small m−. With such dependence on r, the entan-
glement disappears for DOPO pair with large distance at the
threshold.

Considering both nearest-neighbor value and the long-
range characteristics, we obtain the equation,

a1 − c1 = 1 + ψ (p)

j

[
1 − m−√

m2− + 4
− e−m−r − e−m−

m−

]
,

(56)

a2 + c2 = 1 + ψ (p)

j

[
1 −

√
m2+ + 4

m+
− e−m+r − e−m+

m+

]
.

(57)

The theoretical Duan-Giedke-Cirac-Zoller sufficient condi-
tion for entanglement between DOPOs with site distance r
is shown in Fig. 4(d), where j = 7/3. Lines represent the val-
ues with complex integral and exact nearest-neighbor values
[Eqs. (56) and (57)], and filled circles are calculated from
positive-P SDEs with N = 32. Duan-Giedke-Cirac-Zoller en-
tanglement criterion is satisfied only for r = 1 even with p 
=
1. In Fig. 4(e), necessary and sufficient condition for entangle-
ment is presented. Entanglement criterion is satisfied even for
nearest-neighbor pair for p = 1. However, for pairs with large
r, entanglement criterion is not satisfied. In Figs. 4(d) and
4(e), numerical results obtained by positive-P calculation are
shown with filled circles, which match the analytical results.
At the threshold p → 1, difference between the theory and
numerical results emerges for large r presumably because an-
alytical results do not assume periodicity of one-dimensional
lattice.

We next consider the quantum discord between two DO-
POs with site distance r. The theoretical quantum discord
between DOPOs with site distance r is shown with lines in
Fig. 4(f), where j = 7/3. Lines represent the values calculated
with Eqs. (53) and (54). Filled circles represent the numeri-
cal results obtained by positive-P simulation. Even for large
distance r, nonzero quantum discord can be formed at the

062419-9



YOSHITAKA INUI AND YOSHIHISA YAMAMOTO PHYSICAL REVIEW A 102, 062419 (2020)

threshold. This is because c1 has a long-range correlation at
the threshold. Even when c2 is negligibly small for large r, the
nonzero quantum discord can be obtained via finite c1 value.

V. SUMMARY

We have presented analytical results on the degrees of
squeezing/antisqueezing, entanglement and quantum discord
for a network of DOPOs both below and above the threshold.
We confirmed the validity of the analytical results through nu-
merical simulations based on the positive-P SDE. The degree
of antisqueezing, the sufficient criterion for entanglement, the
simplectic eigenvalue of partially transposed covariance ma-
trix, and Gaussian quantum discord converge into finite values
at the threshold. Although positive-P values for squeezed
X̂ -fluctuations may have non-Gaussianity near the threshold,
these finite values derived from Gaussian analytical results
can explain the first principle results from positive-P SDE.
The comparison establishes well the validity of the trun-
cated phase-space methods based on Wigner and Husimi
distribution. The c-number Heisenberg-Langevin equations
are essentially identical to the truncated Wigner SDE and valid
for DOPOs below and above threshold.

In a high-loss CIM based on optical delay-line coupling,
entanglement between DOPO pulses disappears before reach-
ing the threshold [2]. It does, however, have quantum discord,
indicating the existence of quantum correlations among the
quantum fluctuations of DOPO pulses below and above
threshold. In the one-dimensional lattice of DOPOs, the en-
tanglement criterion is satisfied only for short ranged pair of
DOPOs. The quantum discord of far distant pair, however, has
finite values particularly around the threshold, due to the long
range correlation of canonical coordinates.

The analytical methods and insights obtained here for a 1D
lattice of DOPOs with nearest-neighbor coupling seem to be
applicable to other systems: DOPOs with measurement feed-
back coupling [10], more complicated DOPO lattices with
frustration [4,62], or topological nontriviality of the loss spec-
trum, and optical networks with other nonlinear components.
For example, in the coherent XY machine [63] with dissi-
pative coupling, the entanglement has not been considered.
Some lasers, for example, Raman lasers, are known to have
photon number squeezed state (sub-Poissonian state) only
far above the threshold [64,65]. As the dissipatively coupled
squeezed states can satisfy entanglement criterion [2,3], the
coherent XY machines could also satisfy entanglement crite-
rion above the threshold, due to the dissipative coupling of the
photon number squeezed states.

The linearization treatment developed in this paper is ef-
fective only for weak noise limit. They will not be applied
with sufficient accuracy for large quantum noise case, where
non-Gaussianity [11,38,66] becomes important.

Note added. We noticed the discrete time theory [51]
derived the same minimum value of ν̃− in directed one-
dimensional lattice, after we studied the entanglement in
two-DOPO CIM and the extended entanglement criterion in
undirected one-dimensional lattice. Our study about relation
between noise characteristics and success probability in CIM
is available in Ref. [67].
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APPENDIX A: PHASE-SPACE METHOD

We expand the density operator in the quantum mas-
ter Eq. (5) by using the positive-P, Wigner, and Husimi
quasidistribution functions. First, we discuss Glauber’s di-
agonal P distribution function, which is represented as ρ̂ =∫

P(α)|α〉〈α|d2α [31]. For a DOPO, the Fokker-Planck equa-
tion of the P function is derived as

∂P

∂t
= ∂

∂α
[(γsα − Sα∗ + B|α|2α)P]

+ 1

2

∂2

∂α2
[(S − Bα2)P] + c.c. (A1)

From the partial integration, the time development of mean
amplitude product 〈α∗mαn〉 = ∫

α∗mαnP(α)d2α is calculated
as
d〈α∗mαn〉

dt
= −γs(n + m)〈α∗mαn〉

+ Sn〈α∗m+1αn−1〉 + Sm〈α∗m−1αn+1〉
− B(n + m)〈α∗m+1αn+1〉
+ S

2
n(n − 1)〈α∗mαn−2〉+ S

2
m(m − 1)〈α∗m−2αn〉

− B

2
(n(n − 1) + m(m − 1))〈α∗mαn〉. (A2)

Here, we neglect the terms with negative indices in the right
hand side. The terms with n(n − 1) or m(m − 1) appear
from the second derivatives in the Fokker-Planck equation.
d〈α2〉/dt has such a term +S, but d〈|α2|〉/dt does not.
Because of the difficulty in representing such a noise, the
Fokker-Planck equation does not have a corresponding c-
number SDE.

The positive-P representation [40] is a modification to
Glauber’s P representation and is known to have a similar
Fokker-Planck equation. We can write the distribution func-
tion in positive-P representation as [40]

ρ̂ =
∫

P(α, α+)
|α〉〈α+∗|
〈α+∗|α〉 d2αd2α+. (A3)

Here, α and α+ are two independent complex numbers satis-
fying 〈α〉∗ = 〈α+〉. Using Eq. (A3) for Eq. (5), we obtain the
quantum-mechanical Fokker-Planck equation for P(α, α+).
This Fokker-Planck equation for the positive-P representation
is the same as that for Glauber’s diagonal P distribution,
except for the replacement α∗ → α+. Applying the Ito rule
to the resulting Fokker-Planck equation, we can obtain the
following c-number SDE for the signal mode [10]:

dα

dt
= −γsα + Sα+ − Bα+α2 +

√
S − Bα2ξR, (A4)

dα+

dt
= −γsα

+ + Sα − Bα+2α +
√

S − Bα+2ξ+
R . (A5)
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Here, ξR and ξ+
R are independent real-number random

noise sources satisfying 〈ξR(t )ξR(t ′)〉 = δ(t − t ′) and
〈ξ+

R (t )ξ+
R (t ′)〉 = δ(t − t ′). This SDE under positive-P

representation is defined with no truncation and is equivalent
to the quantum master equation [Eq. (5)]. In numerical
simulation, however, these equations have some difficulty
for large B/γs. It is known that when B is large, positive-P
calculation becomes unstable [68,69]. This is because a
negative photon number is allowed in positive-P calculation,
which causes the photon number to diverge to negative
infinity because of two-photon absorption. In this paper,
we thus consider the case of small B and a sufficiently
slow adiabatic excitation schedule. In our simulations, the
divergence problem was not observed.

As noted above, the SDEs with positive-P representation
are equivalent to the Liouville Eq. (5). However, the Wigner
and the Husimi functions for Eq. (5) have third and higher
order derivatives in their Fokker-Planck equations. As these
higher order derivatives are proportional to B/γs, we can
neglect higher-order derivatives when B/γs is small, and we
obtain truncated SDEs. In return for the possible incorrectness
due to truncation, the truncated Wigner and Husimi SDEs
represent the signal boson operator â by only one c-number
amplitude. The Wigner distribution function is written with a
density matrix as the following [70,71]:

W (α) = 1

π2

∫
trρ̂eη(â†−α∗ )−η∗(â−α)d2η. (A6)

The Fokker-Planck equation can be obtained from the time
derivative of this equation. The truncated Wigner SDE is then
obtained from the Fokker-Planck equation after neglecting
third-order derivatives and terms resulting from the Weyl or-
dering in the drift and diffusion terms with the assumption of
B  γs:

dα

dt
= −γsα + Sα∗ − B|α|2α +

√
γs

2
+ B|α|2ξC . (A7)

We can see that this Wigner SDE resembles the c-number
counterpart of the Heisenberg-Langevin equation after elim-
inating the pump mode [1], but Eq. (A7) is the c-number SDE
in the Schrödinger picture rather than the q-number equation
in the Heisenberg picture.

The Husimi distribution function is then written as Q(α) =
1
π
〈α|ρ̂|α〉. The Fokker-Planck equation of the Husimi dis-

tribution function for degenerate two-photon absorption is
presented in Ref. [41], and it has third- and fourth-order
derivatives. Here, we consider the truncated Husimi Fokker-
Planck equation of Eq. (5) only up to second-order derivatives.
As this approximation assumes small B/γs, we also neglect
small B/γs dependent terms resulting from the antinormal
ordering of drift and diffusion terms. The truncated Husimi
SDE is obtained through the Fokker-Planck equation as the
following:

dα

dt
= −γsα + Sα∗ − B|α|2α +

√
γs − S

2
+ 3

2
B|α|2ξC

+ i
√

SξR1 +
√

BαξR2. (A8)

Here, ξC is a complex-number noise source with
〈ξ ∗

C (t )ξC (t ′)〉 = 2δ(t − t ′), and ξRi is a real-number noise

source with 〈ξRi(t )ξR j (t ′)〉 = δi jδ(t − t ′). We can use
Eqs. (A4) and (A5) for the first principle numerical simulation
of a CIM, and Eqs. (A7) and (A8) for the approximated
simulation of a CIM with B  γs.

APPENDIX B: ANALYTICAL METHOD FOR
SINGLE DOPO

Here, we derive the analytical solutions for the quantum
noise of a CIM. We use the positive-P representation, while
noting that the truncated Wigner and truncated Husimi repre-
sentations can produce identical results in the weak noise limit
(B/γs  1). Below the threshold, we neglect the two-photon
absorption terms with B in Eqs. (A4) and (A5). We can then
obtain the following positive-P SDEs:

dα

dt
= −γsα + Sα+ +

√
SξR, (B1)

dα+

dt
= −γsα

+ + Sα +
√

Sξ+
R . (B2)

The term with B in the square root of Eqs. (A4) and (A5)
can contribute even below the threshold when B/γs is large,
as d〈α2〉/dt = −(2γs + B)〈α2〉 + · · · . When B is large, the
saturation term −Bα+α2 in Eq. (A4) is also not negligible
even below the threshold, because the rate of two-photon
absorption is enhanced by the intensity correlation function
g(2)(0) = 〈â†2 â2〉

〈â†â〉2 [72], and a squeezed vacuum state in a DOPO

has large g(2)(0) proportional to 1
2〈â†â〉 . We can neglect the

saturation term, however, if B  γs. Below the threshold, the
mean amplitude of the system is 〈α〉 = 0. Using the normal-
ized excitation p = S/γs, which is equal to ε/εthr, we can
obtain the following steady-state equation:[

1 −p
−p 1

][ 〈�α2〉
〈�α+�α〉

]
= p

2

[
1
0

]
. (B3)

We assume that 〈�α2〉 is real, because from Eqs.(B1) and
(B2), α and α+ are real: the time development starts from
the vacuum state α = α+ = 0, and both the coefficients and
random noises are real. We define the canonical coordi-
nate and momentum as X̂ = â+â†√

2
and P̂ = â−â†√

2i
, respectively.

In the positive-P representation, the fluctuations are cal-
culated as 〈�X̂ 2〉 = 〈�α+�α〉 + 〈�α2〉 + 1

2 and 〈�P̂2〉 =
〈�α+�α〉 − 〈�α2〉 + 1

2 . In a DOPO below the threshold
under the steady-state condition, these canonical compo-
nents have the following fluctuations: 〈�X̂ 2〉 = 1

2 + p
2(1−p)

and 〈�P̂2〉 = 1
2 − p

2(1+p) . We can see that 〈�X̂ 2〉 has a singu-

larity at the threshold. However, 〈�P̂2〉 has a minimized value
〈�P̂2〉 = 1

4 , which is one half the vacuum fluctuation, at the
threshold [36].

The results can be obtained from other representations.
In the truncated Wigner (Husimi) representation, we obtain
the below-threshold steady-state characteristics by setting
B → 0 in Eq. (A7) [in Eq. (A8)]. In this representation, we
define the mean c-number amplitude products as 〈α∗mαn〉 =∫

α∗mαnW (α)d2α (〈α∗mαn〉 = ∫
α∗mαnQ(α)d2α). The

steady-state fluctuations of �α = α − 〈α〉 are obtained

from [ 1 −p
−p 1 ][ 〈�α2〉

〈|�α|2〉] = 1
2 [0

1] ([ 1 −p
−p 1 ][ 〈�α2〉

〈|�α|2〉] = 1
2 [−p

2 ]).

From these representations, 〈�α2〉 is same as that of
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positive-P representation. However, 〈|�α|2〉 is by 1
2 (by

1) larger than 〈�α+�α〉 of positive-P representation. We
obtain the same 〈�X̂ 2〉 and 〈�P̂2〉, from 〈|�α|2〉 ± 〈�α2〉
(〈|�α|2〉 ± 〈�α2〉 − 1

2 ), as those of positive-P representation.
Next, we consider the fluctuations of a DOPO above the

threshold. We separate the signal amplitudes into the mean

amplitudes 〈α〉 = 〈α+〉 =
√

γs

B (p − 1) and small fluctuations

(�α = α − 〈α〉 and �α+ = α+ − 〈α+〉). Such linearization
treatment was previously applied in quantum nonlinear optics
for degenerate two-photon absorption [46] and an above-
threshold DOPO [33,34]. We obtain the positive-P SDE for
the fluctuation part as follows:

d�α

dt
= −γs�α + S�α+ − 2B|〈α〉|2�α

− B〈α〉2�α+ +
√

S − B〈α〉2ξR, (B4)

d�α+

dt
= −γs�α+ + S�α − 2B|〈α〉|2�α+

− B〈α+〉2�α +
√

S − B〈α+〉2ξ+
R . (B5)

Using the normalized excitation p = ε/εthr, we then obtain the
following equation under the steady-state condition:[

2p − 1 −1
−1 2p − 1

][ 〈�α2〉
〈�α+�α〉

]
= 1

2

[
1
0

]
. (B6)

The squared fluctuations of the canonical coordinate and mo-
mentum are obtained as 〈�X̂ 2〉 = 1

2 + 1
4(p−1) and 〈�P̂2〉 =

1
2 − 1

4p , respectively. The same results are obtained by trun-
cated Wigner and truncated Husimi representations around

〈α〉 =
√

γs

B (p − 1). Above the threshold, the canonical co-

ordinate and momentum monotonically reach the vacuum
fluctuation. Although squeezing exists above the threshold,
the squeezing becomes weaker for large p [36]. We can see
that Eqs. (B3) and (B6) are reduced to an identical equation
at the threshold (in the limit p → 1). For the canonical mo-
mentum P̂, the same mean-squared fluctuations are obtained
at p = 1 from both analytical theories below and above the
threshold. For the canonical coordinate X̂ , the mean-squared
fluctuation above the threshold is obtained from that below
the threshold with substitution p → 1 in the numerator and
1 − p → 2(p − 1) in the denominator. For the canonical mo-
mentum P̂, the mean-squared fluctuation above the threshold
is obtained from that below the threshold with substitution
p → 1 in the numerator and 1 + p → 2p in the denominator.

APPENDIX C: MEAN-FIELD APPROXIMATION

For comparison, we present here a theoretical model for
mean-field coupled CIMs. A mean-field coupling theory in
nonlinear quantum optical system has been developed in
Bose-Hubbard–like models [43,44]. In such an approach,
the Hamiltonian coupling between different sites, ĤC =
h̄t

∑
〈i j〉(â

†
i â j + â†

j âi ), is approximated by the mean-field

via â†
i â j → â†

i 〈α j〉 + 〈αi〉∗â j . Here, t is a hopping ele-
ment. Similarly, we can consider the mean-field coupling
in two dissipatively coupled DOPOs, where the Liouvillian
coupling [Eq. (7)] is replaced by [â1 − â2, ρ̂(â†

1 − â†
2)] →

[â1 − 〈α2〉, ρ̂(â†
1 − 〈α2〉∗)] + [â2 − 〈α1〉, ρ̂(â†

2 − 〈α1〉∗)]. As-
suming that 〈αr〉(r = 1, 2) are real, LC ρ̂ in Eq. (7) is replaced
as

LC ρ̂ = J
∑

r=1,2

([âr, ρ̂â†
r ] + H.c.)

+ J〈α2〉[â†
1 − â1, ρ̂] + J〈α1〉[â†

2 − â2, ρ̂]. (C1)

Such a model leads to a covariance matrix Eq. (16)
replaced by

α =
[

1 + p

1 − p + j
, 1 − p

1 + p + j

]
, (C2)

below the threshold and by

α =
[

1 + 1

2(p − 1) + j
, 1 − 1

2p + j

]
, (C3)

above the threshold. c1 = c2 = 0 is satisfied both below and
above the threshold in the mean-field approximation. Far be-
low the threshold (p  1) and far above the threshold (p �
1), these covariance matrices are identical to those without
mean field approximation [Eqs. (18), (19), (21), and (22)],
in the small coupling limit ( j  1). However, the difference
emerges near the threshold (p = 1). In the mean-field ap-
proximation, 〈�X̂ 2

1 〉 is finite and 〈�X̂1�X̂2〉 is zero at the
threshold, although they diverge without mean-field approx-
imation. The mean-field-coupled model has zero quantum
discord, for infσ0 det ε = ν2

+ = ν2
− = a1a2.

Mean-field characteristics is calculated by the analytical
results of the single DOPO [35,36] and self-consistent loop
[43]. The mean amplitude is

〈â〉 =
∑∞

k=0
−2kc2k+1

2F1(−k,x+e;2x;2) 2F1(−k−1,x+e;2x;2)
k!∑∞

k=0
2kc2k

2F1(−k,x+e;2x;2) 2F1(−k,x+e;2x;2)
k!

, (C4)

where c =
√

S
B , x = γs+J

B , and e = J〈â〉√
SB

. The generalized mo-
ment is obtained by

〈â†mân〉 =
∑∞

k=0
2k (−c)k′+k′′

2F1(−k′,x+e;2x;2) 2F1(−k′′,x+e;2x;2)
k!∑∞

k=0
2kc2k

2F1(−k,x+e;2x;2) 2F1(−k,x+e;2x;2)
k!

,

(C5)
where k′ = k + m and k′′ = k + n. We present the charac-
teristics of mean-field-coupled coherent Ising machines via
self-consistent equation. In Fig. 5(a), the bifurcation diagram
is presented. When we consider the initial mean amplitude
〈â〉 > 0 [shown with filled circles in Fig. 5(a)], from the
self-consistent loop [Eq. (C4)], the mean amplitude is ex-
pected to converge onto 〈â〉 = 0 below the threshold, and

〈â〉 ∼
√

γs

B (p − 1) above the threshold, shown with open cir-

cles in Fig. 5(a). With the self-consistent loop, non-Gaussian
correction is precisely considered. We considered the results
with B/γs = 0.019 and j = 7/3, starting from 〈â〉 = 1. In
Fig. 5(b), we present the mean amplitude depending on the
count of iteration in the self-consistent loop. For p � 1, the
mean amplitude converges into zero, while for p > 1 the mean
amplitude converges into finite values. In Fig. 5(c), the mean
amplitudes after 2000 iterations were presented as a function
of p. The mean amplitudes above the threshold are described
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FIG. 5. Characteristics of mean-field-coupled two DOPOs. (a) Diagram of bifurcation. (b) Calculation of self-consistent loop. (c) Mean
amplitude by self-consistent loop as a function of p. (d) Fluctuations by self-consistent loop as a function of p. (e) Fluctuations of mean-field-
coupled positive-P calculation with Np = 5 particles. Lines are obtained from Eqs. (C6) and (C7) and those with substitutions for p > 1. (f)
The same simulation with Np = 9 × 104 particles. Lines are obtained from Eqs. (C2) and (C3) and 〈�X̂1�X̂2〉 = 0.

by
√

γs

B (p − 1) shown by black line. The fluctuations are

shown as circles in Fig. 5(d). These fluctuations follow the
black lines given by Eqs. (C2) and (C3).

Finally, we present the fluctuations by finite-particle simu-
lation using positive-P SDE. When mean field is constructed
from Np positive-P amplitudes, below the threshold steady-
state fluctuations are〈

�X̂ 2
1

〉 = 1

2
+ p

2(1 − p + j)

+ p j2

2Np(1 − p)(1 − p + 2 j)(1 − p + j)
, (C6)

〈�X̂1�X̂2〉 = p j

2Np(1 − p)(1 − p + 2 j)
, (C7)

〈
�P̂2

1

〉 = 1

2
− p

2(1 + p + j)

− p j2

2Np(1 + p)(1 + p + 2 j)(1 + p + j)
, (C8)

〈�P̂1�P̂2〉 = − p j

2Np(1 + p)(1 + p + 2 j)
. (C9)

Above the threshold, steady-state fluctuations of X̂ are rep-
resented by Eqs. (C6) and (C7) with substitution p → 1 in
the numerator and 1 − p → 2(p − 1) in the denominator,
and those of P̂ are represented by Eqs. (C8) and (C9) with
substitution p → 1 in the numerator and 1 + p → 2p in the
denominator. Apparently, 〈�P̂2

1 〉 and 〈�P̂1�P̂2〉 converge into
the values of Eqs. (C2) and (C3) and 〈�P̂1�P̂2〉 = 0, respec-
tively, in the Np → ∞ limit. The same behavior is obtained

for X̂ components. Figures 5(e) and 5(f) show the positive-P
numerical results for B/γs = 10−4 and j = 7/3, using Np =
5 and 9 × 104 particles, respectively. Numerical simulation
was performed in the similar way as Fig. 2, where we con-
sidered t f = 103/γs and total time development with period
2 × 103/γs. For Np = 5, numerical results are well fitted by
Eqs. (C6) and (C7), considering the correction of finiteness
of particle number Np. For Np = 9 × 104, numerical results
are fitted well by Eqs. (C2) and (C3) and 〈�X̂1�X̂2〉 = 0. At
p = 1, the divergence of fluctuations remaining in Eqs. (C6)
and (C7) cannot be observed in Fig. 5(f) due to large Np

and finite γs/B = 104. Since c1 and c2 converges into zero,
quantum discord converges into zero when Np is sufficiently
large.

APPENDIX D: TRAVELING-PULSE MODEL OF
1D LATTICE

We also consider the traveling-pulse model [5] of the
nearest-neighbor-coupled 1D lattice of DOPOs, shown in
Fig. 6. This model uses traveling optical pulses in a single
ring cavity with a nonlinear crystal, in which the pulses are
coupled with an optical delay-line. We assume that the two
beam splitters (BSs) have reflectance RB, the two half-beam
splitters (HBSs) have 50% reflectance, and the mirrors (Ms)
have 100% reflectance. The setting shown in Fig. 6 has HBSs
in the delay-line and is, as we show below, equivalent to the
Liouvillian coupling of Eq. (31). We note that directed 1D
lattice [4,7] are not equivalent to Eq. (31); directed 1D lattice
has no HBSs in the delay-line. The traveling-pulse model is
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FIG. 6. Traveling pulse model of a 1D lattice of CIMs with
nearest-neighbor coupling.

easily implemented with the Heisenberg Langevin model or
SDE for the Wigner representation.

In the Wigner representation, the rth signal pulse αr

is mixed with the vacuum noise f1r at a beam splitter
(BS) and transformed into the transmitted αT,r and re-
flected αR,r modes: αT,r = √

1 − RBαr + √
RB f1r and αR,r =√

RBαr − √
1 − RB f1r . The reflected light is then separated

by an HBS into αD,r = 1√
2

f2r + 1√
2
αR,r and αA,r = 1√

2
f2r −

1√
2
αR,r , where f2r is the independent vacuum noise. Here, αD

has a 1-bit delay and αA has a −1-bit delay. The optical delay-

line injects αA,r+1 and αD,r−1 into the rth pulse αT,r . αF,r =
1√
2
αD,r−1 − 1√

2
αA,r+1 is the mixed injection field from the

delayline. The combined field at the injection beam splitter is
represented by α′

r = √
1 − RBαT,r + √

RBαF,r . Here, f1r and
f2r are vacuum fields in the Wigner representation, satisfying
〈 f ∗

ar fbr′ 〉 = 1
2δabδr,r′ . Next, we assume that the DOPO cavity

round-trip time is �t , and that the delay-line’s reflectance
is effectively simulated by a distributed coupling constant
J , via RB = J�t . The traveling pulse with optical delay-line
coupling model of Fig. 6 is then represented as

dαr

dt

∣∣∣∣
C

= −Jαr + J

2
(αr−1 + αr+1) +

√
J

2
ξC1,r −

√
J

4
ξC1,r−1

−
√

J

4
ξC1,r+1 −

√
J

4
ξC2,r+1 +

√
J

4
ξC2,r−1. (D1)

Here, ξC1,r and ξC2,r come from the input noise of the
BS and HBS, respectively, and satisfy 〈ξCa,r (t )ξ ∗

Cb,r′ (t ′)〉 =
2δabδr,r′δ(t − t ′). We can see that this traveling-pulse model
produces the same diffusion terms in the Fokker-Planck equa-
tion, as Eq. (33) does. We assume here that RB = J�t  1.
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