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Generation and distribution of atomic entanglement in coupled-cavity arrays
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We study the dynamics of entanglement in a one-dimensional coupled-cavity array, with each cavity con-
taining a two-level atom, via the Jaynes-Cummings-Hubbard (JCH) Hamiltonian in the single-excitation sector.
The model features a rich variety of dynamical regimes that can be harnessed for entanglement control. The
protocol is based on setting an excited atom above the ground state and further letting it evolve following the
natural dynamics of the Hamiltonian. Here we focus on the concurrence between pairs of atoms and its relation
to atom-field correlations and the involved free-field modes. We show that the extension and distribution pattern
of pairwise entanglement can be manipulated through a judicious tuning of the atom-cavity coupling strength.
By also including static noise in the cavity frequencies, we explore the onset of Anderson localization and its
interplay with the atomic trapping known to take place in the strong-hopping regime. Remarkably, we find that
the stronger the disorder is, the higher are the atom-field correlations, whereas the atomic concurrence responds
nonmonotonically. Overall, our work offers a comprehensive account of the machinery of the single-excitation
JCH Hamiltonian and contributes to the design of hybrid light-matter quantum networks.
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I. INTRODUCTION

Quantum entanglement is one of the most intriguing prop-
erties of nature with no classical analog [1]. It is a key
manifestation in many-body physics for it plays a significant
role in quantum phase transitions [2–4]. In addition, entan-
glement is a fundamental resource in quantum information
processing tasks such as teleportation [5], quantum cryptog-
raphy [6,7], and quantum dense coding [8], to name a few.
In this respect, in order to properly design such a class of
protocols, one must be able to faithfully transmit quantum
states and establish entanglement over arbitrarily distant par-
ties (qubits) [9,10]. Setting reliable quantum communication
channels is thus a primary step towards building large-scale
quantum networks [11,12].

Along those lines, photonic channels stand out as current
technology allows for light propagation over large distances
with negligible decoherence. In addition, local quantum infor-
mation processing units (nodes) may consist of single atoms
placed in optical resonators. This allows for light-matter inter-
facing with a high degree of control, thanks to experimental
advances in cavity-QED-based architectures [13–16].

A paradigmatic framework to deal with coupled-cavity sys-
tems is the Jaynes-Cummings-Hubbard (JCH) model, where
cavities containing single two-level atoms are brought to-
gether enough to allow for photon tunneling. Atom-cavity
coupling is given by the acclaimed Jaynes-Cummings interac-
tion in the rotating-wave approximation. Early developments
of the model began with the discovery that it displays a su-
perfluid to Mott insulator quantum phase transition [17–19].
This established coupled-cavity systems also as potential
many-body quantum simulators [20]. Furthermore, the hybrid
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light-matter nature of the excitations unveils novel phases
of matter [21] and can be useful for quantum information
processing tasks [22,23] (for reviews of the model and related
content, see Refs. [20,24]).

In this work, we further explore the versatility of a one-
dimensional (1D) coupled-cavity array in order to generate
and distribute entanglement, which is a key element in the
design of quantum networks [11]. The protocol is based on
preparing an impurity—here, an excited atom—over a well-
defined ground state and letting it evolve following the natural,
Hamiltonian dynamics of the system. Along the process, it is
possible to generate entanglement, as shown for spin chains
in Refs. [25,26] (cf. [27] for an experimental realization).
Here the initial atomic excitation is released from the middle
of a coupled-cavity array prepared in the vacuum state (no
photons) with all the remaining atoms in their ground state.
As the JCH model commutes with the total number operator,
the dynamics ends up being restricted to the single-excitation
subspace which allows for easy analytical treatment [28] in
addition to displaying very rich properties [23,26,28,29].

We carry out a detailed analysis over limiting interaction
regimes of the JCH Hamiltonian and track entanglement evo-
lution over time in two forms: the von Neumann entropy for
the whole atomic component in regard to the photonic degrees
of freedom and the concurrence between atomic pairs. We
discuss the role of atom-field entropy in establishing atomic
entanglement and how its spatial distribution profile is related
to the atom-cavity interaction strength and the field normal
modes. The response of those quantities to disorder taking
place in the cavity frequencies across the array is also ad-
dressed and we find that it can actually assist entanglement
generation as Anderson localization [30] allows for maximum
atom-field entropy in the strong-hopping regime, in contrast to
the ordered array, where an atomic trapping [23,28,29] occurs
due to the spatial profile of modes involved in the dynamics.
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In Sec. II, we introduce the JCH Hamiltonian. In Sec. III,
the weak- and strong-hopping regimes of the model are ad-
dressed in detail. In Sec. IV, we outline the entanglement
signatures of interest and discuss their dynamics, focusing on
those limiting regimes. Conclusions are drawn in Sec. V.

II. JAYNES-CUMMINGS-HUBBARD MODEL

We consider a one-dimensional array of N high-quality
coupled cavities, each containing a single two-level atom,
with |g〉 and |e〉 denoting the ground and excited states, re-
spectively. Each atom interacts with the field through the local
Jaynes-Cummings (JC) Hamiltonian (in the rotating-wave ap-
proximation) [31],

H JC
x = ωca†

xax + ωaσ
+
x σ−

x + g(σ+
x ax + σ−

x a†
x ), (1)

where a†
x (ax) and σ+

x (σ−
x ) are, respectively, the bosonic

and atomic raising (lowering) operators acting on the xth
cavity, g is the atom-field coupling strength, ωc is the cav-
ity frequency, and ωa is the atomic transition frequency. We
set h̄ = 1 for convenience. The eigenstates of Hamiltonian
(1) are dressed (hybrid) states featuring photonic and atomic
excitations known as polaritons, which in resonance (� =
ωc − ωa = 0) read |n±〉x = (|g, n〉x ± |e, n − 1〉x )/

√
2 with

energies E±
n = nωc ± g

√
n, where |n〉x denotes a n-photon

Fock state at the xth cavity. Note that the vacuum state |g, 0〉x

is also an eigenstate, with zero energy.
We now assume that the local cavity modes overlap in such

a way to allow photonic tunneling in a uniform array. This
coupled-cavity system is described by the JCH Hamiltonian

H =
N∑

x=1

H JC
x − J

N−1∑
x=1

(a†
x+1ax + H.c.), (2)

with J being the photon tunneling. The above Hamilto-
nian acts on basis states of the form

⊗N
x=1 |s, n〉x, with s ∈

{g, e}. Sorting out these states according to the total excita-
tion number, the Hamiltonian (2) can be expressed by H =
diag[H (0), H (1), H (2), . . .], where H ( j) denotes the Hamilto-
nian matrix spanned on basis states featuring a fixed number
j of excitations.

Here we focus on the generation of entanglement out of
localized atomic state |e〉i with all the remaining atoms in
their ground state and no photons. In both cases, the system
dynamics is restricted to the single-excitation subspace, H (1),
which is spanned by |1x〉 ≡ â†

x |∅〉 and |ex〉 ≡ σ̂+
x |∅〉, with

|∅〉 ≡ |vac〉|g〉1 · · · |g〉N , where the former denotes a single
photon at the xth cavity and the latter represents the xth atom
excited. The Hilbert-space dimension is thus twice the number
of cavities.

In general, the Hamiltonian (2) yields rich dynamics even
in the single-excitation sector [22,23,28]. In the following, we
address two limiting regimes of interest that will help us to
visualize the entanglement dynamics afterwards.

III. INTERACTION REGIMES IN THE
SINGLE-EXCITATION SECTOR

First, we recall that when the atom-field interaction
strength g and the atomic transition frequency ωa are uniform

across the array, the Hamiltonian (2) can be rearranged as
a sum of N decoupled JC-like interactions, H = ∑

k Hk , in
terms of normal modes, where [23,28,29,32]

Hk = ωkα
†
k αk + ωaβ

†
k βk + g(α†

k βk + β
†
k αk ), (3)

and α
†
k ≡ |αk〉〈∅| (β†

k ≡ |βk〉〈∅|) is the field (atomic) normal-
mode operator. In other words, {|αk〉} is the set of N
eigenstates of the hopping (free-field) Hamiltonian, with
eigenvalues {ωk}, each having the form |αk〉 = ∑

x vk,x|1x〉.
The atomic states |βk〉 are set with the very same spatial pro-
file (amplitudes) as their photonic counterpart, that is, |βk〉 =∑

x vk,x|ex〉, but all lying at the same frequency ωa. Although
we are dealing with a uniform pattern of hopping rates, the
above situation is valid regardless of the embedded adjacency
matrix. Therefore, the model can be solved analytically once
one knows the whole free-field spectral decomposition. In-
deed, since the above Hamiltonian is a 2×2 block-diagonal
matrix indexed by k, its eigenstates are found to be [23,29]

|ψ±
k 〉 = A±

k |αk〉 + B±
k |βk〉, (4)

where

A±
k = 2g√

(�k ± �k )2 + 4g2
, B±

k = �k ± �k√
(�k ± �k )2 + 4g2

,

(5)
�k = ωa − ωk is the detuning between the atomic and the
field normal-mode frequency, and �k =

√
�2

k + 4g2 is the
corresponding vacuum Rabi frequency. The energy levels are
given by

ε
(±)
k = 1

2 (ωa + ωk ± �k ). (6)

The JCH Hamiltonian written in the form of effective JC
interactions [see Eq. (3)] allows for a convenient visualization
of the system’s behavior, as shown in Fig. 1(c). One of the
most interesting features is the possibility of setting up a
particular mode to trigger a pair of dressed JC-like states
[cf. Eq. (4)]. This can be done in the strong-hopping regime,
g � J , upon a judicious tuning of the atomic frequency ωa. In
order to see this, let us move on to the interaction picture,

HI (t ) = g

(∑
k

α
†
k βke−i�kt + H.c.

)
. (7)

Setting ωa in resonance with a given mode, say k′, one of the
terms becomes time independent (�k′ = 0) and, considering
g � {�k 
=k′ }, all the remaining terms become fast rotating and
thus can be ignored. Going back to the Schrödinger picture,
we are left with the effective Hamiltonian,

Heff = Hk′ +
∑
k 
=k′

(ωkα
†
k αk + ωaβ

†
k βk ), (8)

where the first term is given by Eq. (3). The above equation
describes a single JC-like interaction taking place at mode k′,
spanning a pair of fully dressed states |ψ±

k′ 〉 [cf. Eq. (4)], with
all the other atomic and field modes uncoupled. A schematic
representation of this regime is shown in Fig. 1(c).

Within the strong-hopping regime, if an atomic excitation
is prepared somewhere along the array, say |ψ (0)〉 = |ex0〉,
it may get trapped depending on the nature of the free-field
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FIG. 1. State-graph structure of the JCH Hamiltonian describing
a coupled-cavity system. (a) Sketch of an array featuring a uniform
pattern of hopping rates J . Each cavity has frequency ωc and is
coupled to a two-level atom (or qubit) with frequency ωa through
a local atom-field interaction given by g. (b) In the single-excitation
sector, the model is reduced to a tight-binding chain (with extra, ver-
tically attached sites) where single-photon states ({|1x〉}) spread over
the array and are eventually converted into atomic degrees of free-
dom ({|ex〉}). (c) The JCH Hamiltonian may be expressed in terms
of decoupled JC-like interactions between free-field normal modes
{|αk〉} and its atomic analog {|βk〉}. In the strong-hopping regime
(g � J), proper tuning leads to a single resonant effective interaction
(for k = 2 in the example). (d) Another form of expressing the JCH
Hamiltonian is in terms of local polaritonic states [see Eq. (12)].
Note that here we set ωa = ωc = 0 for visualization purposes. The
resulting double interconnected array can be decoupled in the weak-
hopping regime (g � J) by dropping out fast rotating terms. In this
particular case, we have a standard tight-binding structure for each
polaritonic branch having exactly the same dispersion law of the
embedded coupled-cavity array with the hopping rate rescaled to J/2.

spectrum and resonance conditions [22,23,28,29]. In the off-
resonant case, that is ωa 
= ωk for all k, it is immediate to note
that |ψ (t )〉 = e−iHt |ψ (0)〉 = e−iωat |ex0〉 and so the atomic ex-
citation indeed freezes at the initial cavity x0. Now, if ωa is put
in narrow resonance with a given (nondegenerate) mode k′,
thereby setting up a JC-like interaction between this mode and
its atomic counterpart, the evolved atomic coefficients read

ca,x(t ) = e−iωat

[∑
k 
=k′

vk,xv
∗
k,x0

+ cos (gt )vk′,xv
∗
k′,x0

]
, (9)

and as
∑

k vk,xv
∗
k,x0

= 1 (= 0) for x = x0 (x 
= x0) due to or-
thonormality, the return probability

pa,x0 (t ) ≡ |ca,x0 (t )|2 = [1 + |vk′,x0 |2(cos gt − 1)]2. (10)

In other words, the amount of information released by the
initial excitation ultimately depends on the overlap between
|βk′ 〉 and |ex0〉. For a uniform array, which is our case, the
free-field spectrum consists of plane waves of the form vk,x ∝
sin (kx), with k = πm/(N + 1) and m = 1, . . ., N , and so the

overlap should be small enough to retain most of the ampli-
tude. Still, for finite N , some amount of atomic probability
periodically flows out of the initial state, reaching the other
atomic states in phase as

pa,x(t ) = ∣∣vk′,xv
∗
k′,x0

∣∣2
(cos gt − 1)2, (11)

for x 
= x0.
Taking the other limit, that is when we increase g/J un-

til reaching the weak-hopping regime [22,28], every normal
mode becomes fully dressed and the corresponding eigen-
states effectively take the form |ψ±

k 〉 = (|αk〉 ± |βk〉)/
√

2.
These are extended polaritons that form two single-particle
dispersion branches having the very same structure as of an
embedded array with the hopping scale redefined by J/2 [see
Eq. (6)]. A much better way to visualize this is by rewriting
the JCH Hamiltonian, given by Eq. (2), in terms of local
polaritonic operators P(n,±)

x ≡ |∅〉x〈n±| [19]. Dropping out
terms with n 
= 1, the Hamiltonian becomes

H =
N∑

x=1

(g+P(+)†
x P(+)

x + g−P(−)†
x P(−)

x )

+
N∑

x=1

�

2
(P(+)†

x P(−)
x + P(−)†

x P(+)
x )

− J

2

N−1∑
x=1

(P(+)†
x P(+)

x+1 + P(−)†
x P(−)

x+1

+ P(+)†
x P(−)

x+1 + P(−)†
x P(+)

x+1 + H.c.), (12)

where P(±)
x = P(1,±)

x for brevity and g± = (ωc + ωa)/2 ± g.
The above Hamiltonian is equivalent to a double tight-binding
array connected to each other through the hopping terms
that exchange between even (|+〉x) and odd (|−〉x) polari-
tons [see Fig. 1(d)]. This can be further simplified when
g � J,�, where both chains become effectively decoupled
[19,28], i.e., those interconverting terms are fast rotating and
can be dropped out. (Note that � = 0 yields that |±〉x are
the states that diagonalize each JC cell, thereby breaking their
connection locally despite g.) It is worth mentioning that the
even and odd polaritonic operators each obey the same algebra
as the spin-1/2 ladder operators. Therefore, in this regime,
the JCH Hamiltonian effectively describes an XY spin chain
with spin up (down) corresponding to the presence (absence)
of polaritons [19,33]. It is worth pointing out that for the large
detuning limit � � g, J can also be mapped onto a spin chain,
except in this case the photonic mode propagates much faster
than the atomic one, with the profile of each mode being
maintained. More details about this regime can be found in
Ref. [28].

In such weak-hopping scenario, the dynamics of the atomic
excitation mimics that of a single particle propagating along
either of the uncoupled effective chains (it spreads out ballisti-
cally in a uniform chain) with hopping constant J/2, the only
difference being that it is continuously converted back and
forth to a photonic state at rate g [28]. Time-evolved atomic
coefficients in this case read

ca,x(t ) = cos gt
∑

k

e−i
ωk
2 tvk,xv

∗
k,x0

. (13)
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Also note in Fig. 1(d) that if the system is initialized in an
even (odd) polariton state, the odd (even) counterpart will not
take part in the dynamics.

IV. ENTANGLEMENT PROPERTIES

Now that we have made an overall analysis of the two
main limiting regimes of the JCH model, we are to track the
entanglement over time between atomic and photonic degrees
of freedom via the von Neumann entropy, as well as between
pairs of atoms via the concurrence. Those measures are intro-
duced next.

A. Entanglement measures

The single-excitation subspace is spanned by {|1i〉, |ei〉} so
that a general state can be written as

|ψ〉 =
N∑

i=1

(c f ,i|1i〉 + ca,i|ei〉), (14)

where c f ,x and ca,x are the field and atomic coefficients, re-
spectively. In the density-operator formalism, we have

ρ = |ψ〉〈ψ | =
N∑

i=1

N∑
j=1

(c f ,ic
∗
f , j |1i〉〈1 j | + c f ,ic

∗
a, j |1i〉〈e j |

+ ca,ic
∗
f , j |ei〉〈1 j | + ca,ic

∗
a, j |ei〉〈e j |). (15)

Now, tracing out the cavity (field) modes, ρa = Tr f [ρ], we
obtain

ρa =
N∑

i=1

|c f ,i|2|⇓〉〈⇓| +
N∑

i=1

N∑
j=1

ca,ic
∗
a, jσ

+
i |⇓〉〈⇓|σ−

j , (16)

where |⇓〉 ≡ |g〉1 . . . |g〉N .
Note that in general, ρa is a mixed state and thus the

atomic component, as a whole, is said to be entangled with
the photonic subsystem. The diagonal form of ρa has only two
entries, � f ≡ ∑

i |c f ,i|2 and �a ≡ ∑
i |ca,i|2, namely the total

photonic and atomic probabilities, respectively. Since |ψ〉 is
a pure state, we can evaluate the amount of entanglement
between two partitions through the von Neumann entropy. For
the, say, atomic component,

S[ρa] = −Trρalog2ρa

= −�alog2�a − (1 − �a)log2(1 − �a), (17)

which gives 0 (1) for a fully separable (entangled) state. Note
that the entropy reaches its maximum for � f = �a = 1/2,
that is, Smax = −log2(1/2) = 1.

To evaluate bipartite entanglement between the atoms, we
choose a pair of sites, say, i and j, and further trace out the
rest of them from ρa [Eq. (16)] to obtain a four-dimensional
reduced matrix spanned in the basis {|gg〉, |ge〉, |eg〉, |ee〉},

ρi, j =

⎡
⎢⎢⎢⎣

1 − |ca,i|2 − |ca, j |2 0 0 0
0 |ca,i|2 ca,ic∗

a, j 0

0 ca, jc∗
a,i |ca, j |2 0

0 0 0 0

⎤
⎥⎥⎥⎦. (18)

Despite the fact that it is not straightforward to evaluate the
entanglement of a mixed state, a simple expression does exist

FIG. 2. Exact time evolution of the atom-field von Neumann en-
tropy S and atomic concurrences Cx0,33, C31,33, for |ψ (t = 0)〉 = |ex0 〉
with x0 = 21 on a uniform coupled-cavity array featuring N = 41
sites operating in the strong-hopping regime with g = 10−3J and
ωa = ωc. The entropy oscillates with period T = π/g.

for an arbitrary state of two qubits. The so-called concurrence
is defined by [34]

C(ρi, j ) = max{0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4}, (19)

where {λi} are decreasing eigenvalues, of the matrix ρi, j ρ̃i, j ,
with

ρ̃AB = (σy ⊗ σy)ρ∗
AB(σy ⊗ σy), (20)

and ρ∗
i, j being the complex conjugate of ρi, j , and σy the Pauli

operator. For a separable (fully entangled) state, C =0 (C =1).
Evaluating for Eq. (18), we get

Ci, j ≡ C(ρi, j ) = 2|ca,ic
∗
a, j | = 2|〈ei|ψ〉〈ψ |e j〉|. (21)

B. Time evolution

The protocol starts with a single atomic excitation prepared
in the middle of the coupled-cavity system and we let it evolve
naturally as |ψ (t )〉 = e−iHt |ex0〉, with x0 = N+1

2 and N being
odd so as to have a mode at the center of the band. We set
ωa = ωc (� = 0) for now. Note that this triggers a JC-like
interaction between the atomic and field modes at that level
when in the strong-hopping regime, as discussed in the previ-
ous section. Also note that [cf. Eq. (9)] vk, N+1

2
∝ sin πm/2 =

0 for even m. As the resonance is set at the center of the band,
m = (N + 1)/2 must be an odd number; otherwise there is no
propagation when g � J .

Given the fact that the atomic wave function can only
spread out if mediated by the field, the generation of entan-
glement between pairs of atoms must be preceded by the
development of atom-field correlations. We are now to see
how this goes for both limiting interaction regimes. The ex-
act entropy dynamics for the strong-hopping regime (g � J)
is depicted in Fig. 2 alongside concurrence for two distinct
pairs of atoms. The total atomic probability �a(t ) = 1 −
|vk′,x0 |2 sin2(gt ) and thus the entropy evolves with period T =
π/g, half that of the return probability in Eq. (10). So, two
entropy cycles cover (from the beginning) the release of en-
ergy from |ex0〉 to the photonic degrees of freedom, followed
by excitation of the remaining atomic states [see Eq. (11)]
at t = T (when S = 0), ending up with full recovery of the
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initial state at t = 2T via a second transition through the pho-
tonic mode. Atomic concurrences set along within the same
timescale, reaching its maximum at times t = T, 3T, 5T, . . .

in phase, as already implied in Eq. (11). In general, it is crucial
to highlight that the degree of entropy generation, as well as
the precise timing of the maximum concurrence, are governed
by the overlap vk′,x0 since communication between atomic and
photonic degrees of freedom in the strong-hopping regime
involves exchange between |αk′ 〉 and |βk′ 〉 at a single level k′,
rather than over the full spectrum. Another feature to note in
Fig. 2—also by a careful inspection of Eq. (9)—is that the
concurrence involving the atom located at the initial site x0

overcomes entanglement between any other pair (Fig. 2 shows
that for two representative pairs). This is due to the spectral
profile of the uniform coupled-cavity array for it restricts the
flow out of |ex0〉, thereby leaving the remaining cavities with
limited resources to establish atomic entanglement, especially
for larger N .

Moving on to the the weak-hopping regime (g � J), we
get a whole different picture. Now, there is no special mode
triggering the dynamics. All the modes are involved and
atomic degrees of freedom are completely mixed with their
photonic analogs. Assisted by photonic scattering, the initial
atomic excitation spreads out ballistically at rate J/2, as |ex0〉
is a superposition of even and odd polaritons, both spanning
the uncoupled effective chains seen in Fig. 1(d). As it propa-
gates, the atomic wave function is constantly mirrored back
and forth to its photonic form in a much faster timescale.
In this limit, the entropy is fed with total atomic probability
�a(t ) = cos2(gt ), implying that S(t ) reaches its maximum at
times t = mπ/(4g) for odd m [that is, when �a(t ) = 1/2].
Note that the above property is general in that it holds for any
size N and hopping pattern, with the resulting atomic dynam-
ics always obeying the underlying spectral properties of the
coupled-cavity array, as long as g is greater than the free-field
bandwidth as well as �. Therefore, given that entropy gener-
ation is local, generation of atomic entanglement is ultimately
driven by wave dispersion. Figure 3 shows some snapshots of
the concurrence distribution at times when �a(t ) = 1 to get
the most of Ci, j . As one should expect, entanglement is well
distributed throughout the array as it evolves, with stronger
correlations taking place within each front pulse as well as
between them.

Finally, to get a better glance over the spatial distribution
of atomic entanglement, in Fig. 4 we display the maximum
concurrence recorded within a fixed time interval for all Ci, j

(i 
= j) and covering three different regimes. In the strong-
hopping scenario, as a single atomic excitation prepared above
the ground state of a uniform coupled-cavity array undergoes
a trapping mechanism [23,28,29], it pairs up with each of
the remaining atoms to produce the entanglement pattern we
see in Fig. 4(a). In this situation, we shall remember that
entanglement does not spread out from the center of the ar-
ray (as in Fig. 3); it is generated all at once as the entropy
dynamics involves resonant interaction between atomic and
photonic delocalized modes (cf. Fig. 2). We observe that such
spatial pattern is similar to that of disordered chains reported
in Ref. [26], which is very interesting as our array is fully
uniform. It means that the atomic trapping mechanism can be
thought of as a sort of interaction-induced localization.

FIG. 3. Snapshots of the atomic concurrence distribution Ci, j (t )
in the weak-hopping regime for (a) t = 2000π/g, (b) t = 5000π/g,
and (c) t = 10 000π/g, with g=103J , such that �a(t )=cos2(gt ) = 1
[thus S(t ) = 0]. The system consists of N = 101 coupled cavities
with the initial state being |ψ (t = 0)〉 = |e51〉 and ωa = ωc, and
results are exact as obtained directly from Hamiltonian (2). Note that
the atomic wave function propagates at rate J/2 and thus the front
pulse roughly advances a site per J−1 elapsed time.

Setting up a moderate interaction strength (g ∼ J), the en-
tanglement distribution in Fig. 4(b) does not seem to display
a very definite pattern, but it marks a crossover to the weak-
hopping regime shown in Fig. 4(c). This one is highlighted
by the onset of stronger correlations between neighboring
atoms as well as between atoms equidistant from the center
of the array, as already suggested by Fig. 3. As a full band
of extended states begins to take over the dynamics as g is
increased, the initial atomic excitation rapidly communicates
with the photonic degrees of freedom locally and spreads out,
simulating the dynamics of a single photon in an atom-free
coupled-cavity array with J replaced by J/2 in the limit g �
J . Those maxima in Fig. 4(c) are thus recorded when the front
pulse of the atomic wave function passes by [26].
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FIG. 4. Maximum concurrence Ci, j (t ) between all pairs of atoms
recorded within time interval tJ ∈ [0, 90] for three distinct regimes
represented by (a) g = 0.1J , (b) g = 1.5J , and (c) g = 10J , consider-
ing N = 201 cavities and |ψ (t = 0)〉 = |e101〉. The time window was
chosen so that the wave function did not reach the boundaries in (c).
The color map goes from dark to bright as Ci, j (t ) ∈ [0, 0.25].

C. Atomic trapping versus Anderson localization

Let us now investigate the behavior of entanglement in the
presence of static noise in the cavity frequencies. Consider

ωc → ωc(x) = ωc + δx (22)

in Eq. (1), with δx being a random number falling within
the boxlike distribution [−W,W ], where W is the disorder
strength. In particular, we want to address the competition
between actual Anderson localization and the atomic trapping
that takes place in the strong-hopping regime. Surprisingly,
we are about to see that disorder can actually drive the atom-
field energy exchange to generate higher levels of atomic-field
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1
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FIG. 5. Exact time evolution of the (a) atom-field von Neumann
entropy S and (b) concurrence between the atoms residing at x0 = 21
and x0 + 1 averaged over 102 independent realizations of disorder for
N = 41, g = 10−3J , W/J = 0.1, 0.5, 1, 2, 5, and with ωa being set in
resonance with the field frequency ωk′ yielding the highest overlap
vk′,x0 for each sample.

entropy as well as atomic concurrence at short distances when
compared to the ordered case.

To see that, first recall that Anderson localization theory
establishes that single-particle eigenstates of tight-binding
1D arrays in the presence of on-site uncorrelated disorder
are all exponentially localized regardless of the disorder
strength [30,35]. This means that the free-field modes
are now of the form vk,x ∝ exp −|x − x0|/λk , where λk

is the localization length. The outflow of atomic proba-
bility from x0 [see Eq. (10)] should thus be maximized
(that is, pa,x0 = 0) whenever |vk′,x0 | � 1/

√
2 at times gt =

cos−1[(|vk′,x0 |2 − 1)/|vk′,x0 |2] in a full period of 2T . Mean-
while, we also get �a(t ) = 1/2 (yielding Smax = 1) at times
gt = sin−1[(

√
2|vk′,x0 |)−1], rendering two maxima over a en-

tropy cycle with period T when |vk′,x0 | > 1/
√

2. Figure 5(a)
shows the time evolution of entropy in the strong-hopping
regime (compare to that of the ordered array in Fig. 2) for
increasing disorder strengths W averaged over many indepen-
dent samples. For each one, ωa was tuned to field frequency
ωk′ , leading to the highest overlap vk′,x0 . Therein, it is re-
markable to see that the more intense the disorder is, so is
the atom-field entanglement. Also notice that there are indeed
two entropy maxima over one full period, meaning that most
of the samples are yielding |vk′,x0 | > 1/

√
2, as discussed just

above, and we are not seeing Smax = 1 due to the averaging
procedure.
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FIG. 6. Analytical concurrence Cx0,x = 2|ca,x0 , c∗
a,x| vs time gt

and overlap ζ based on the amplitudes in Eqs. (10) and (11) obtained
for the strong-hopping (g � J) regime considering |vk′,x0 | = ζ and
|vk′,x| =

√
1 − ζ 2.

We have just confirmed that Anderson localization breaks
down the atomic trapping, allowing up to full release of the
atomic excitation at x0. This provides more resources for
generating atom-atom entanglement with its nearest neighbors
due to the profile of the involved normal mode. As matter of
fact, the concurrence Cx0,x ∝ exp −|x − x0|/λk′ [cf. Eqs. (10)
and (11)], and thus we shall focus on the entanglement be-
tween the atoms located at x0 and x0 + 1 to get the most of it.
The results are shown in Fig. 5(b) where, once again, disor-
der acts upon it favorably overall. Note that the concurrence
develops some extra oscillations around half period, which is
expected due to the interplay between ca,x0 (t ) and ca,x(t ), and
the fact that more amplitude is being released from the atom at
x0. Another consequence is a nonmonotonic behavior between
the maximum concurrence attained in a cycle and W . To better
see this, we may feed Eqs. (10), (11), and (21) with |vk′,x0 | = ζ

and |vk′,x| =
√

1 − ζ 2, and plot the provisional function

Cx0,x(t ) = 2|ζ
√

1 − ζ 2[1 + ζ 2(cos gt − 1)](cos gt − 1)|
(23)

for a range of ζ over a full cycle, as shown in Fig. 6. The
above toy model shows that there is a right amount of overlap
between the leading mode k′ and x0 able to maximize the
concurrence. For this particular situation where the available
amount of occupation probability to be shared between both
atoms is a unit (in general, |vk′,x0 |2 + |vk′,x|2 
= 1 unless there
are only two cavities involved), the maximum concurrence is
achieved when |ca,x0 (t )| and |ca,x0 (t )| reach 1/

√
2 simultane-

ously. It occurs twice, with the concurrence slowly building
up and fading away, with ζ further displaying a sharp revival
that would correspond to the strong-disorder regime [compare
it to the oscillation patterns in Fig. 5(b) for W/J = 2.0, 5.0],
thereby explaining the nonmonotonic behavior.

We shall highlight that another interesting feature provided
by Anderson localization, still regarding the strong-hopping
regime, is that the localization length of the free-field normal
modes is maintained for increasing N—and so do the figures
of merit for entanglement generation calculated above—
whereas for the ordered couple-cavity array, the atomic
trapping becomes even worse as vk′,x0 diminishes, for the

spectrum is made up by Bloch waves. Analogous behavior
was reported by Ciccarello in Ref. [29] using a staggered
pattern of hopping rates to induce a discrete, localized mode
at the center of the band.

V. CONCLUDING REMARKS

We have studied entanglement generation and its spatial
distribution control over a 1D uniform coupled-cavity array
described by the JCH Hamiltonian in the single-excitation
sector. We carried out detailed analytical calculations for
two limiting cases, namely, the weak- and strong-hopping
regimes, and set about to study entanglement generation
via time evolution of a single atomic excitation prepared
above the vacuum (ground) state. We focused on the von
Neumann entropy between atomic and field states and the
concurrence between pairs of atoms. We found that in the
strong-hopping regime (g � J), entropy generation follows
the same timescale as that of concurrence and directly depends
on the likelihood of energy release from the emitter located
at the initial cavity—which, in turn, depends on the resonant
field mode—thus being crucial to make resources available to
the other atoms to build up correlations. Due to the Bloch-like
spatial profile of the modes involved in the dynamics, an
atomic trapping sets in, preventing the initial atom to release
its amplitude, thus compromising entanglement generation.
By including static disorder in the cavity frequencies, we
showed that, curiously, Anderson localization prevents that
atomic trapping and allows for maximum atom-field entropy
and higher levels of concurrence between the central atom and
its neighbors. What is more, it was found that the atomic con-
currence responds nonmonotonically to the disorder strength.
This sort of interaction-induced localization occurring in the
strong-hopping regime is certainly worth further investigation
in other scenarios, such as beyond the single-excitation sub-
space where the photon blockade sets in [19].

In the weak-hopping regime (g � J), the entanglement
dynamics is more straightforward as the entropy oscillates
(now between minimum and maximum) much faster than the
actual propagation of the atomic wave function, meaning that
entropy generation is strictly due to local interactions, differ-
ently from the strong-hopping limit. Atomic concurrence then
builds up depending on the dispersion profile of the embedded
array at rate J/2. A uniform one entails ballistic spreading
and so the amplitudes are concentrated within the front pulse.
Higher degrees of pairwise entanglement are then to be found
in between nearest-neighbor atoms, and between them and
their equidistant counterpart at the other side of the array in
respect to its center.

Although we found that long-distance atomic entangle-
ment becomes weaker due to the dispersive effects of the array
itself, it may be distilled into pure singlets [36], to be used in,
e.g., quantum teleportation protocols. The natural dynamics
of the JCH Hamiltonian may thus be harnessed to generate
entanglement between distant nodes in hybrid light-matter
quantum network architectures [11,13].

Of course, a more realistic analysis should involve dissipa-
tion sources, such as spontaneous emission and photon loss,
which could be done via an effective non-Hermitian Hamilto-
nian upon ωc → ωc − iκ and ωa → ωa − iγ [37]. That would
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simply add an incoherent channel to the vacuum, making
the overall occupation probability in the single-particle sub-
space decay exponentially over time. Therefore, here we are
implicitly assuming that each cavity is set in the so-called
strong-coupling regime, where ωc, ωa � g � κ, γ so as to
fulfill the rotating-wave approximation and allow for many
Rabi cycles before the excitation leaves the system. One must
thus bear in mind that realization of the strong-hopping regime
(g � J) places some stringent conditions on the dissipation
rates. At the other end, for g � J , this becomes milder, but
then the effort turns into keeping the counter-rotating terms
neglected. In addition, as in the weak-hopping regime, the
atomic concurrence is generated with timescale ∼J , and we
also need J � κ, γ .

Apart from those experimental requirements concerning
actual cavity systems, the JCH model may also be explored

through another perspective, namely, that of ladderlike tight-
binding chains, as Fig. 1 suggests. There has been a lot of
interest in the transport properties of multichannel networks,
particularly when the channels are set with different degrees
and/or types of disorder, allowing for the engineering of
extended states on a disordered background, including the
emergence of disorder-free subspaces [38–42]. Here we have
seen a remarkable enhancement of entanglement upon plac-
ing disorder in the photonic channel, leaving the atomic one
unchanged, what leads to further venues of investigation.
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