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Complete and nondestructive distinguishment of many-body Rydberg entanglement
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Practical application of quantum information requires distinguishing multipartite entanglement in a complete,
nondestructive, and robust way. Here we explore the possibility to accomplish such a task using Rydberg atoms
based on blockade effect and user-defined-passage-based geometric quantum logic gates. Our proposal focuses
on distinguishing groups of many-body Greenberger-Horne-Zeilinger (GHZ) states and groups of cluster states,
and for bipartite cases distinguishing Bell states, which are basic ingredients of quantum information processing.
We validate our proposal by numerical results, showing complete and nondestructive accomplishment of
distinguishing above multipartite entangled states and also robustness against decoherence. We exemplify two
practical applications regarding quantum teleportation and quantum dense coding to demonstrate the value of
our proposal. This idea is scalable and experimentally relevant and can be readily generalized to other quantum
information candidates, such as superconducting circuits, NV centers, as well as trapped-ion systems with
different-level structures.
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I. INTRODUCTION

In view of the long coherence time of internal atomic
states and strong Rydberg-Rydberg interaction (RRI), Ryd-
berg atoms have become a particularly attractive platform
for quantum computation [1]. One of the most fascinating
phenomena caused by RRI is Rydberg blockade [1–9], which
can suppress the excitation of other (ambient) Rydberg atoms
when one atom is excited to the Rydberg state. Rydberg
blockade, which has been observed experimentally [3,6], pro-
vides a way to implement fast quantum gates [1,7,10,11]
and generate quantum entanglement [12]. The experimental
progress [13–22] and very recent theoretical works [23–30]
have demonstrated great potential applications of Rydberg
atoms in quantum information processing. In addition, Ryd-
berg atoms have many other dramatic effects, such as Rydberg
antiblockade [31–38], and Rydberg dressing [39–41], which
enrich the charm of Rydberg atoms as an excellent platform
in quantum technology.

As one of the most famous entangled states, the
Greenberger–Horne–Zeilinger (GHZ) state have exhibited
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more profound nonlocality of quantum physics [42–44] than
Bell state, applicable for quantum networks [45,46], quantum
metrology [47], and measurement-based quantum computa-
tion [48–50]. Another vital entangled state is the cluster state
[51], which is more stable than Bell and GHZ states and can
be used in one-way quantum computation [52,53]. Hein et al.
proved that the cluster states are resistant to decoherence [54].
Through some local operations, two- and three-qubit cluster
states can be converted to Bell states and three-qubit GHZ
states, respectively [51]; with more qubits involved, however,
this state converting is not available by only local operations.
Until now, various methods of preparing Bell states, GHZ
states and cluster states have been developed [55–61],
while the complete distinguishment of entangled states, an
important operation for obtaining quantum state information,
is still highly demanded [61–66]. In 1998, Pan and Zeilinger
proposed the first practical GHZ-state analyzer with linear-
optical elements, which can identify two of N-photon GHZ
states [64]. On that basis, the entanglement distinguishment
for photon systems [65,66] and superconducting systems [67]
have also been studied. In Rydberg atom systems, however,
distinguishing multipartite entangled states, such as GHZ
states and cluster states, have not been studied yet.

On the other hand, geometric phases [68,69], which are
insensitive to the evolution details but the whole process, are
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robust to local noises. Besides, to avoid decoherence caused
by the interaction between the quantum system and envi-
ronment, a series of quantum computation schemes based
on Abelian or non-Abelian geometric phases [70–72] were
proposed. However, the early geometric quantum computation
was based on the geometric phase obtained by the adiabatic
evolution [73–75], where the interaction between the system
and the environment is of a long time, susceptible to decoher-
ence and errors. Recently, schemes of nonadiabatic holonomic
quantum computation (NHQC) [76–85] were proposed to
avoid the long run-time requirement but share the robust-
ness advantages of its adiabatic counterparts. Considering
a quantum system with general time-dependent Hamilto-
nian Ĥ (t ) and assuming a time-dependent L-dimensional
subspace S (t ) spanned by the orthonormal basis vectors
{|φk (t )〉}L

k=1 at each moment of time, where |φk (t )〉 sat-
isfy the Schrödinger equation i d

dt |φk (t )〉 = Ĥ (t )|φk (t )〉, we
have, for {|φk (t )〉} at each instant t , |φk (t )〉 = Û (t, 0)|φk (0)〉
with time evolution operator Û (t, 0) = Te−i

∫ t
0 Ĥ (t ′ ) dt ′

, T being
time ordering. If |φk (t )〉 satisfy (i)

∑L
k=1 |φk (τ )〉〈φk (τ )| =∑L

k=1 |φk (0)〉〈φk (0)| and (ii) 〈φk (t )|Ĥ (t )|φl (t )〉 = 0 (k, l =
1, . . . , L), the unitary transformation Û (τ, 0) is a holon-
omy matrix acting on L-dimensional subspace S (0) spanned
by {|φk (0)〉}L

k=1 [76,77]. They are cyclic condition and
parallel-transport condition of NHQC, respectively. Nev-
ertheless, conventional NHQC gates need to meet strict
conditions of achieving cyclic evolution [76,77], which re-
duces the robustness of the geometric quantum gates against
control errors. To this end, Liu [86] et al. proposed alter-
nate geometric gates named NHQC+, which only requires
the accumulated dynamic phase being zero in the whole
evolution process. This maintains the flexibility and error
tolerance, but breaks the parallel-transport condition of the
NHQC.

In this manuscript, based on geometric quantum op-
erations, we propose schemes to completely distinguish
entangled states in a nondestructive way. The nonadiabatic ge-
ometric gates on Rydberg atoms are constructed by NHQC+
[86] with the user-defined-passage-based pulse design [87].
Based on the constructed geometric quantum gates, we first
construct parity discriminator and phase discriminators, and
then realize distinguishment for Bell states, N-qubit GHZ
states, as well as four- and five-qubit cluster states. Examples
regarding quantum teleportation [88] and quantum dense cod-
ing [89] are given for practical application and significance of
our entanglement discriminators.

The article is organized as follows. In Sec. II, robust
Rydberg geometric quantum gates are introduced based on
the user-defined passages. In Sec. III, we discuss the re-
alization schemes of N-qubit Rydberg parity discriminator
and entangled state phase discriminators, respectively. In
Sec. IV, we construct nondestructive N-qubit entangled state
discriminators by combining the presented parity discrimina-
tor and phase discriminators, then, Bell states, N-qubit GHZ
states, four- and five-qubit cluster states will be distinguished
completely. Besides, the discriminators can be employed in
quantum teleportation and quantum dense coding as exempli-
fied to simply demonstrate the practical applications. Sec. V
is for discussion and conclusion.

FIG. 1. Configuration diagram of Rydberg single-qubit gate.

II. RYDBERG GEOMETRIC QUANTUM GATE

A. Single-qubit gate

Now we show how to construct the single-qubit gate via
NHQC+ dynamics. As sketched in Fig. 1, we consider a
Rydberg atom with two stable ground states |0〉, |1〉 and a
Rydberg state |r〉. |0〉 and |1〉 are coupled to |r〉 with Rabi
frequencies �0(t )eiϕ0 and �1(t )eiϕ1 , respectively, where ϕ0

and ϕ1 are time-independent phases. In the interaction picture,
such a system in units of h̄=1 can be written as

Ĥ = 1
2 [�0(t )|0〉〈r|eiϕ0 + �1(t )|1〉〈r|eiϕ1 ] + H.c. (1)

We choose two user-defined passages |ξ0(t )〉 and |ξ1(t )〉
and an orthogonal state |ξ2(t )〉 by defining some time-
parameterized states (as input) for inversely engineering the
driving Hamiltonian [87], as

|ξ0(t )〉 = cos
θ

2
|0〉 − sin

θ

2
e−iϕ |1〉,

|ξ1(t )〉 =
[

cos
�

2
e−iα/2 sin

θ

2
eiϕ |0〉 + cos

�

2
e−iα/2 cos

θ

2
|1〉

+ sin
�

2
eiα/2|r〉

]
e−iγ /2,

|ξ2(t )〉 =
[

sin
�

2
e−iα/2 sin

θ

2
eiϕ |0〉 + sin

�

2
e−iα/2 cos

θ

2
|1〉

− cos
�

2
eiα/2|r〉

]
eiγ /2, (2)

where �, α, θ, φ are generally parameters to be determined
below, � =

√
�2

0 + �2
1 , �0/�1 = tan(θ/2), and ϕ = ϕ0 −

ϕ1. To achieve geometric gates in the computational sub-
space {|0〉, |1〉}, we impose the boundary condition �(0) =
�(T ) = 2nπ, n = 0, 1, 2 . . . . Therefore the time dependence
of the control fields can be determined by the pas-
sages through solving the Schrödinger equation i d

dt |ψ (t )〉 =
H |ψ (t )〉,

� cos ϕ1 = cos α sin �γ̇ − sin α�̇,

� sin ϕ1 = − sin α sin �γ̇ − cos α�̇,

α̇ = − cos �γ̇ . (3)

For �(t ) and α(t ), a simple choice is to set � = 2πτ/t f ,
γ = 4πτ/t f , α = −2 sin �, with τ and t f being the accumu-
lated operation time and total operation time of this atom,
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FIG. 2. Configurational diagram of Rydberg two-qubit CPG.

respectively. θ and ϕ are set as time-independent parame-
ters to be determined according to different geometric gates.
Meanwhile, to get purely geometric phase under a cyclic evo-
lution, we require the control pulses and user-defined passages
satisfying the following condition,∫ t f

0
〈ξk (t )|Ĥ |ξl (t )〉 dt = 0, k, l = 0, 1. (4)

Next, we demonstrate how to build up geometric
quantum gate. Let us start with the following set of basis
states, {|ξ0〉, |ξ1(0)〉}. Note that these basis states can be
spanned in the computational subspace {|0〉, |1〉} when
� = 0. Since Ĥ |ξ0〉 = 0 in the whole process, one can
get

∫ t f

0 〈ξ0(t )|Ĥ |ξ0(t )〉 dt = ∫ t f

0 〈ξ0(t )|Ĥ |ξ1(t )〉 dt = 0 easily.
For

∫ t f

0 〈ξ1(t )|Ĥ |ξ1(t )〉 dt = 1/2
∫ t f

0 � sin �(cos ϕ1 cos α −
sin ϕ1 sin α)dt , we divide the process into two intervals. In
the first interval (0 � t � t f /2), the corresponding evolution
operator is Û1(t f /2, 0) = |ξ0〉〈ξ0| + |ξ1(t f /2)〉〈 ξ1(0)|; In the
second interval (t f /2 � t � t f ), the corresponding evolution
operator is Û2(t f , t f /2) = |ξ0〉〈ξ0| + |ξ1(t f )〉〈ξ1(t f /2)|,
where a minus sign is suddenly applied to � and ϕ1 at the
beginning of the second interval to eliminate the dynamical
accumulation of the phase. Thus the final evolution operator
is Û (t f , 0) ≡ Û0 = |ξ0〉〈ξ0| − |ξ1(0)〉〈ξ1(0)|, leading to a
geometric single-qubit gate in the computational subspace
{|0〉, |1〉} as

Û0 =
(

cos θ − sin θeiϕ

− sin θe−iϕ − cos θ

)
. (5)

General single-qubit logical operations can be achieved, based
on Eq. (5), by setting different values of θ and ϕ.

B. Two-qubit gate

Figure 2 sketches two identical Rydberg atoms under the
vdW interaction Hamiltonian Hr = V |rr〉〈rr|, where each
atom consists of two stable ground states |0〉, |1〉 and a Ry-
dberg state |r〉, and the subscript “c” (“t”) denotes the control
(target) atom. |1〉c and |0〉t (|1〉t ) are coupled to |r〉c and
|r〉t by Rabi frequencies �c(t )eiϕc and �0(t )eiϕ0 [�1(t )eiϕ1 ],
respectively, where ϕc, ϕ0, and ϕ1 are time-independent laser
phases. The target atom can be described by Eq. (1), while the
control atom is governed by

Ĥc = 1
2�c(t )|1〉c〈r|eiϕc + H.c. (6)

Equation (6) would have the similar form to Eq. (1) if �0 = 0
is satisfied in Eq. (1). Thus one can use the similar user-
defined passage to design the NHQC+ dynamics based on

Eq. (6). On that basis, the two-qubit gate can be constructed
by three steps as follows, and the NHQC+ conditions are
satisfied after accomplishing all the steps.

Step (i). In the time interval [0, tf/2], excite the control
atom to |r〉c if its state is |1〉c initially and the condition∫

�c dτ = π is satisfied.
Step (ii). Perform the single-qubit geometric operations on

the target atom in the time interval [tf/2, 3tf/2], as shown in
Sec. II A. The process could be classified as two types [90].
Type I. When control atom is initially in state |0〉c, it is not
excited after step (i), so the operations on the target atom will
work validly in step (ii) similar to the process in Sec. II A.
Type II. When the control atom is initially in state |1〉c, it
is excited to Rydberg state |r〉c after Step (i), the operations
on the target atom would not work due to Rydberg blockade
[2,90] with condition V � �.

Step (iii) In the time interval [3tf/2, 2tf ], perform an oper-
ation similar to Step (i) to de-excite the control atom from |r〉c

to |1〉c under the condition
∫

�c dτ = π .
The operation Û = |0〉c〈0| ⊗ Û0 + |1〉c〈1| ⊗ Î will be

achieved after finishing all the three steps with total time 2t f .
It should be noted that the cyclic condition of NHQC+ is not
satisfied for the evolution process of step (i) or step (iii) on the
control atom. Nevertheless, for the whole process consisting
of steps (i)–(iii), the conditions of NHQC+ are well satisfied.
Firstly, the state evolution of the target atom in step (ii) can be
proved to satisfy the NHQC+ conditions based on Sec. II A.
Secondly, the whole evolution process of the control atom in
steps (i) and (iii) satisfies the cyclic condition as well as the
accumulated dynamic phase being zero, like the process in
Sec. II A. It should be noted that we need to add a minus sign
suddenly on ϕc at 3t f /2 to ensure that the dynamic phase can
be eliminated and the evolution process |1〉c → |1〉c can be
completed.

Similarly, if Hamiltonian of the control atom is re-
designed as H̃c = 1

2�c(t )|0〉c〈r|eiϕc + H.c., the operation
Ũ = |0〉c〈0| ⊗ Î + |1〉c〈1| ⊗ Û0 will be achieved.

III. MULTIQUBIT PARITY DISCRIMINATOR
AND PHASE DISCRIMINATORS

Here we illustrate how to realize N-qubit parity discrimi-
nator and phase discriminators.

A. Multiqubit Rydberg parity discriminator

Firstly, we define the parity to distinguish whether our state
is of odd or even parity. If a state of N qubits can be expressed
as |ζ1ζ2 · · · ζN 〉 with ζ ∈ {0, 1}, we can set S = ∑N

i=1 ζi⊕,
where ⊕ denotes the summing modulo 2 of all the single
states. The N-qubit state is of even parity when the result
of S is 0 while odd parity when the result of S is 1. For
instance, for the two-qubit state |11〉, the result is S = 0, so
|11〉 is of even parity. But for the three-qubit state, |111〉 is of
odd parity due to S = 1. Secondly, we need a two-qubit gate
with θ = 0, ϕ = 0, i.e., a controlled-Z gate/ π controlled-
phase gate (CPG): ÛCPG = |0〉c〈0| ⊗ Ûz + |1〉c〈1| ⊗ Î , where
the operator Ûz = (1 0

0 −1) is for a Pauli Z gate. We now show
the way to realize a multi-qubit parity discriminator with the
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operation ÛCPG. An N-qubit initial state can be written as

|�〉 =
2N−1∑
i=1

(αi|O〉i + βi|E〉i ), (7)

where |O〉i denotes an odd-parity state, |E〉i an even-parity
state, and

∑2N−1

i=1 (|αi|2 + |βi|2) = 1.
Next, we utilize an auxiliary Rydberg atom A with the ini-

tial state 1√
2
(|0〉a + |1〉a ) to control the change of systematic

atoms sequentially. The operational process is given by

|�〉 ⊗ 1√
2

(|0〉a + |1〉a )

Û N
CPG,...,Û 1

CPG−−−−−−−→
2N−1∑
i=1

αi|O〉i ⊗ 1√
2

(|1〉a − |0〉a )

+
2N−1∑
i=1

βi|E〉i ⊗ 1√
2

(|0〉a + |1〉a ), (8)

where Û i
CPG (i = 1, 2, . . . , N) is the operation on atom i and

the auxiliary atom. Then the auxiliary atom A can be detected
after performing a Hadamard operation (|1〉a + |0〉a )/

√
2 →

|0〉a and (|0〉a − |1〉a )/
√

2 → |1〉a. If the auxiliary atom A is
detected in |1〉a, the systematic state projected on a multi-atom
state is of odd parity. If the atom A is in |0〉a, the systematic
state is of even parity. For clarity, we take a two-qubit parity
discriminator as an example. The two-qubit systematic initial
state can be written as [62,91]

|�〉12 = α|00〉12 + β|01〉12 + γ |10〉12 + δ|11〉12, (9)

with |α|2 + |β|2 + |γ |2 + |δ|2 = 1. Regarding the auxiliary
atom as a control atom and the two systematic atoms as the
target atoms to perform ÛCPG operations. The result is given
by

|�〉12 ⊗ 1√
2

(|0〉a + |1〉a )

Û 2
CPGÛ 1

CPG−−−−−→ (α|00〉12 + δ|11〉12) ⊗ 1√
2

(|0〉a + |1〉a )

+ (β|01〉12 + γ |10〉12) ⊗ 1√
2

(|1〉a − |0〉a ). (10)

If the measurement result of the auxiliary atom is in state
1√
2
(|0〉a + |1〉a ), the systematic state is of even parity with

α|00〉12 + δ|11〉12. If the measurement result is in state
1√
2
(|1〉a − |0〉a ), the systematic state is of odd parity with

β|01〉12 + γ |10〉12. For a N-qubit state, we implement the
operation ÛCPG to each atom.

B. GHZ-state Rydberg phase discriminator

For the GHZ-state phase discriminator of Rydberg atoms,
a two-qubit controlled-NOT (CNOT) gate is needed, which
is constructed by setting θ = π/2 and ϕ = π : ÛCNOT =
|0〉c〈0| ⊗ Ûx + |1〉c〈1| ⊗ Î , where the operator Ûx = (

0 1
1 0)

is for a Pauli X gate. Beyond that, before discussing the
construction of the GHZ-state Rydberg phase discriminator,

we show a Rydberg discriminator with special ability to dis-
tinguish |�±〉, which is given by

|�+〉 = α(|μ1 · · ·μN 〉 + |μ1 · · · μN 〉)

±β(|ν1 · · · νN 〉 + |ν1 · · · νN 〉),

|�−〉 = α(|μ1 · · ·μN 〉 − |μ1 · · · μN 〉)

±β(|ν1 · · · νN 〉 − |ν1 · · · νN 〉),

where μ, ν ∈ {0, 1}, μi = 1 − μi, ν i = 1 − νi (i =
1, 2, . . . , N). If we carry out these operations
Û 1

CNOT , . . . , Û N
CNOT with an auxiliary atom prepared initially

in 1√
2
(|0〉a + |1〉a ), we can get

|�+〉 ⊗ 1√
2

(|0〉a + |1〉a )

Û N
CNOT ,...,Û 1

CNOT−−−−−−−−→ |�+〉 ⊗ 1√
2

(|0〉a + |1〉a ),

|�−〉 ⊗ 1√
2

(|0〉a + |1〉a )

Û N
CNOT ,...,Û 1

CNOT−−−−−−−−→ |�−〉 ⊗ 1√
2

(|1〉a − |0〉a ). (11)

The detailed calculation can be found in Appendix A.
The GHZ-state phase discriminator can be regarded as a

special case of Eq. (11). For clarity and to show GHZ-state
Rydberg phase discriminator, we take eight three-qubit GHZ
states as an example, which read

|�±
0 〉123 = 1√

2
(|000〉 ± |111〉),

|�±
1 〉123 = 1√

2
(|100〉 ± |011〉),

|�±
2 〉123 = 1√

2
(|010〉 ± |101〉),

|�±
3 〉123 = 1√

2
(|001〉 ± |110〉). (12)

We can express them in another way as |�±
i 〉123 =

1√
2
(|μνχ〉 ± |μ ν χ〉), where μ, ν, χ ∈ {0, 1}, μ = 1 − μ,

ν = 1 − ν, χ = 1 − χ , and assume that the auxiliary atomic
state is initially in 1√

2
(|0〉a + |1〉a ). The process of the scheme

is

|�+
i 〉123 ⊗ 1√

2
(|0〉a + |1〉a )

Û 3
CNOT Û 2

CNOT Û 1
CNOT−−−−−−−−−−→ |�+

i 〉123 ⊗ 1√
2

(|0〉a + |1〉a ), (13)

|�−
i 〉123 ⊗ 1√

2
(|0〉a + |1〉a )

Û 3
CNOT Û 2

CNOT Û 1
CNOT−−−−−−−−−−→ |�−

i 〉123 ⊗ 1√
2

(|1〉a − |0〉a ). (14)

Finally, we detect the state of the auxiliary atom. If the
measurement result is 1√

2
(|0〉a + |1〉a ), the systematic state

is |�+
i 〉123. Otherwise, if the result is 1√

2
(|1〉a − |0〉a ),
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the systematic state is |�−
i 〉123. Similarly, the four Bell

states |�±
0 〉12 = 1√

2
(|00〉 ± |11〉) and |�±

1 〉12 = 1√
2
(|01〉 ±

|10〉) can also be distinguished by this method.

C. Four- and five-qubit cluster-state Rydberg phase
discriminators

The term “cluster state” is first proposed by Briegel and
Raussendorf [51], and the one-dimensional standard form
reads

|�〉N = 1√
2N

N⊗
i=1

(|0〉i + |1〉iσ̂
i+1
z ),

where σ̂z (or Ûz) denotes the Pauli Z operator and σ̂ N+1
z ≡ Î .

For N = 4, the general form of four-qubit cluster state is

|�〉4 = 1
2 (|0000〉 + |0011〉 + |1100〉 − |1111〉). (15)

Based on Eq. (15), a set of orthogonal basis can be constructed
by corresponding local unitary operations:

∣∣�μν
1

〉 = 1
2 (|0μ0ν〉 + |0μ1ν〉 + |1μ0ν〉 − |1μ1ν〉),∣∣�μν

2

〉 = 1
2 (|0μ0ν〉 + |0μ1ν〉 − |1μ0ν〉 + |1μ1ν〉),∣∣�μν

3

〉 = 1
2 (|0μ0ν〉 − |0μ1ν〉 + |1μ0ν〉 + |1μ1ν〉),∣∣�μν

4

〉 = 1
2 (|0μ0ν〉 − |0μ1ν〉 − |1μ0ν〉 − |1μ1ν〉),

where μ, ν ∈ {0, 1}, μ = 1 − μ, ν = 1 − ν. For distinguish-
ment of four-qubit cluster-state phase, two similar discrimina-
tors will be constructed. For the first four-qubit cluster-state
phase discriminator, we carry out Û 1

CNOT and Û 2
CNOT and

Ũ 3
CPG, where ŨCPG = |0〉c〈0| ⊗ Î + |1〉c〈1| ⊗ Ûz. This distin-

guishment process (see Appendix B) can be shown as

∣∣�μν
1

〉 ⊗ 1√
2

(|0〉a + |1〉a )

Ũ 3
CPGÛ 2

CNOT Û 1
CNOT−−−−−−−−−→ |�μν

3 〉 ⊗ 1√
2

(|0〉a + |1〉a ),

∣∣�μν
2

〉 ⊗ 1√
2

(|0〉a + |1〉a )

Ũ 3
CPGÛ 2

CNOT Û 1
CNOT−−−−−−−−−→ |�μν

4 〉 ⊗ 1√
2

(|1〉a − |0〉a ).

When we distinguish the states |�μν
3 〉 and |�μν

4 〉 with the
auxiliary initial state 1√

2
(|0〉a + |1〉a ), we acquire the results

|�μν
1 〉 with 1√

2
(|0〉a + |1〉a ) and |�μν

2 〉 with 1√
2
(|1〉a − |0〉a ).

For the second phase discriminator, we carry out Û 3
CNOT ,

Û 4
CNOT , and Ũ 1

CPG in sequence, where ŨCPG = |0〉c〈0| ⊗ Î +
|1〉c〈1| ⊗ Ûz. The distinguishment process is given by

∣∣�μν
1

〉 ⊗ 1√
2

(|0〉a + |1〉a )

Ũ 1
CPGÛ 4

CNOT Û 3
CNOT−−−−−−−−−→ |�μν

2 〉 ⊗ 1√
2

(|0〉a + |1〉a ),

∣∣�μν
3

〉 ⊗ 1√
2

(|0〉a + |1〉a )

Ũ 1
CPGÛ 4

CNOT Û 3
CNOT−−−−−−−−−→ |�μν

4 〉 ⊗ 1√
2

(|1〉a − |0〉a ).

When we distinguish the states |�μν
2 〉 and |�μν

4 〉 with the
auxiliary state 1√

2
(|0〉a + |1〉a ), we can also acquire the results

|�μν
1 〉 with 1√

2
(|0〉a + |1〉a ) and |�μν

3 〉 with 1√
2
(|1〉a − |0〉a ).

For N = 5, the general form of five-qubit cluster state is

|�〉5 = 1
2 (|00000〉 + |00111〉 + |11101〉 + |11010〉).

We can also construct orthogonal basis by corresponding local
unitary operations:∣∣�μνλ

1

〉 = 1
2 (|0μ0νλ〉 + |0μ1νλ〉 + |1μ1νλ〉 + |1μ0νλ〉),∣∣�μνλ

2

〉 = 1
2 (|0μ0νλ〉 − |0μ1νλ〉 + |1μ1νλ〉 − |1μ0νλ〉),∣∣�μνλ

3

〉 = 1
2 (|0μ0νλ〉 + |0μ1νλ〉 − |1μ1νλ〉 − |1μ0νλ〉),∣∣�μνλ

4

〉 = 1
2 (|0μ0νλ〉 − |0μ1νλ〉 − |1μ1νλ〉 + |1μ0νλ〉),

where μ, ν, λ ∈ {0, 1}, μ = 1 − μ, ν = 1 − ν, λ = 1 − λ.
For distinguishing five-qubit cluster-state phase, we obtain
two discriminators by specifically distinguishing three-qubit
states, which can be regarded as another special case of
Eq. (11). Let’s take |�μνλ

3 〉 as an example, which can be
rewritten in two ways as∣∣�μνλ

3

〉 = |0μ〉12(|0νλ〉 + |1νλ〉)345 − |1μ〉12(|1νλ〉
+ |0νλ〉)345,

= |0λ〉35(|0μν〉 − |1μ ν〉)124 + |1λ〉35(|0μν〉
− |1μν〉)124.

When the initial state of the auxiliary atom is still 1√
2
(|0〉a +

|1〉a ), if we carry out Û 3
CNOT , Û 4

CNOT and Û 5
CNOT , we may

detect the auxiliary atom to be in 1√
2
(|0〉a + |1〉a ). In another

case, if we carry out Û 1
CNOT , Û 2

CNOT , and Û 4
CNOT , we find the

auxiliary atom is in 1√
2
(|1〉a − |0〉a ).

IV. NONDESTRUCTIVE N-QUBIT ENTANGLEMENT
DISCRIMINATORS

Here we construct nondestructive N-Rydberg-atom
entangled-state discriminators by combining the above parity
discriminator and phase discriminators.

A. GHZ-State and Bell-state Rydberg discriminators

We first show how to construct nondestructive N-qubit
GHZ-state discriminator. As shown in Fig. 3(a), we can dis-
tinguish GHZ states by the two steps as below. Step (i), the
phase information can be detected by GHZ-state phase dis-
criminator. Step (ii), the parity information can be detected
by GHZ-state parity discriminators, in which each parity dis-
criminator check the parity information of two adjacent atoms.
Both parity and phase information can be reflected by the
measurement results of the auxiliary atom, and then the GHZ
states can be distinguished completely without entanglement
collapse. Take the distinguishment of eight GHZ states in
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FIG. 3. Schematic diagrams of (a) N-qubit GHZ-state dis-
criminator, (b) four-qubit cluster-state discriminator, (c) five-qubit
cluster-state discriminator, where PAD denotes different parity dis-
criminators and PHD denotes different phase discriminators for
different tasks, for example, GHZ-state phase discriminator in (a).
The numbers in the diamond represent the operation steps of the
discriminator.

Eq. (12) as an example. With the phase information obtained,
we divide the |�±

i 〉123 into |�+
i 〉123 and |�−

i 〉123 after step (i).
Applying the parity discriminators on atoms 1 and 2 as well
as atoms 2 and 3 in step (ii), we further divide |�+

i 〉123 into
|�+

0 〉123, |�+
1 〉123, |�+

2 〉123 and |�+
3 〉123, as well as |�−

i 〉123

into |�−
0 〉123, |�−

1 〉123, |�−
2 〉123 and |�−

3 〉123, completely dis-
tinguishing these eight GHZ states. The relationships between
the measurement results of the auxiliary atom and the infor-
mation of phase and parity can be obtained from Eqs. (13)
and (10). We list the distinguishment results of the three-qubit
GHZ states in Table I, in which |+〉a ≡ 1√

2
(|0〉a + |1〉a ) and

|−〉a ≡ 1√
2
(|1〉a − |0〉a.

Similarly, the parity and phase information of four Bell
states |�±

i 〉12, where i ∈ {0, 1}, can also be completely distin-
guished in these steps, and the results are shown in Table II.

B. Four- and five-qubit cluster-state Rydberg discriminators

Here we present the distinguishment process of four-qubit
cluster state, as shown in Fig. 3(b). Step(i), the parity discrim-
inator on atoms 1 and 2 (PAD1) and parity discriminator on
atoms 3 and 4 (PAD2) can detect each four-qubit cluster-state
parity information. After PAD1, we divide the state |�μν

i 〉
into |�0ν

i 〉 and |�1ν
i 〉, where i ∈ {1, 2, 3, 4}. After PAD2, we

further divide |�0ν
i 〉 into |�00

i 〉 and |�01
i 〉 as well as |�1ν

i 〉
into |�10

i 〉 and |�11
i 〉. Step(ii), after our cluster-state phase

TABLE I. The corresponding relationship between different ini-
tial GHZ states and the measurement results of the auxiliary atom, in
which |+〉a ≡ 1√

2
(|0〉a + |1〉a ) and |−〉a ≡ 1√

2
(|1〉a − |0〉a ).

Measurement result

Initial GHZ state PHD PAD1 PAD2

|�+
0 〉123 = 1√

2
(|000〉 + |111〉) |+〉a |+〉a |+〉a

|�−
0 〉123 = 1√

2
(|000〉 − |111〉) |−〉a |+〉a |+〉a

|�+
1 〉123 = 1√

2
(|100〉 + |011〉) |+〉a |−〉a |+〉a

|�−
1 〉123 = 1√

2
(|100〉 − |011〉) |−〉a |−〉a |+〉a

|�+
2 〉123 = 1√

2
(|010〉 + |101〉) |+〉a |−〉a |−〉a

|�−
2 〉123 = 1√

2
(|010〉 − |101〉) |−〉a |−〉a |−〉a

|�+
3 〉123 = 1√

2
(|001〉 + |110〉) |+〉a |+〉a |−〉a

|�−
3 〉123 = 1√

2
(|001〉 − |110〉) |−〉a |+〉a |−〉a

discriminator on atoms 1, 2, and 3 (PHD1) and cluster-state
phase discriminator on atoms 3, 4, and 1 (PHD2), the phase
information of cluster states can be determined, for example,
after PHD1 and PHD2, |�00

i 〉 will be divided into |�00
1 〉,

|�00
2 〉, |�00

3 〉, and |�00
4 〉, which can be determined by observ-

ing the two times measurement results of the auxiliary atom
in Sec. III C. Distinguishing other twelve four-qubit cluster
states is similar to this process. Generally, the cluster-state
parity discriminators determine states with superscript μ and
ν, the phase discriminators determine states with subscript
i. Combining the cluster-state discriminators for parity and
phase, all four-qubit cluster states can be completely distin-
guished. Step (iii), different from distinguishment of GHZ
and Bell state, the initial state changes after completing the
distinguishment of four-qubit cluster state. So we need further
unitary operation to restore each initial state. For example,
|�00

2 〉 will become |�00
4 〉 after phase discriminator on atoms

1, 2, and 3, then |�00
4 〉 will become |�00

3 〉 after phase discrim-
inator on atoms 3, 4, and 1, so we need I1 ⊗ σ 2

z ⊗ σ 3
z ⊗ I4 to

restore |�00
3 〉 to |�00

2 〉. We list the distinguishment results and
the corresponding local unitary operations in Table III.

For five-qubit cluster state, the distinguishment process is
shown in Fig. 3(c). Step (i): we determine the parity infor-
mation of five-qubit states by using PAD1, PAD2 and PAD3
in Fig. 3(c), distinguishing the state |�μνλ

i 〉 with specific su-
perscript μ, ν and λ, where i ∈ {1, 2, 3, 4, 5}. Step(ii), we
use PHD1 and PHD2 in Fig. 3(c) by observing the double

TABLE II. The corresponding relationship between different ini-
tial Bell states and the measurement results of the auxiliary atom.

Measurement result

Initial Bell state PHD PAD

|�+
0 〉12 = 1√

2
(|00〉 + |11〉) |+〉a |+〉a

|�−
0 〉12 = 1√

2
(|00〉 − |11〉) |−〉a |+〉a

|�+
1 〉12 = 1√

2
(|01〉 + |10〉) |+〉a |−〉a

|�−
1 〉12 = 1√

2
(|01〉 − |10〉) |−〉a |−〉a
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TABLE III. The corresponding relationship between different initial cluster states, auxiliary atom measurement results and local unitary
operations.

Measurement result

Initial cluster state PAD1 PAD2 PHD1 PHD2 Local unitary operation

|�00
1 〉 = 1

2 (|0000〉 + |0011〉 + |1100〉 − |1111〉) |+〉a |+〉a |+〉a |−〉a I1 ⊗ σ 2
z ⊗ σ 3

z ⊗ I4

|�00
2 〉 = 1

2 (|0000〉 + |0011〉 − |1100〉 + |1111〉) |+〉a |+〉a |−〉a |−〉a I1 ⊗ σ 2
z ⊗ σ 3

z ⊗ I4

|�00
3 〉 = 1

2 (|0000〉 − |0011〉 + |1100〉 + |1111〉) |+〉a |+〉a |+〉a |+〉a I1 ⊗ σ 2
z ⊗ σ 3

z ⊗ I4

|�00
4 〉 = 1

2 (|0000〉 − |0011〉 − |1100〉 − |1111〉) |+〉a |+〉a |−〉a |+〉a I1 ⊗ σ 2
z ⊗ σ 3

z ⊗ I4

|�01
1 〉 = 1

2 (|0001〉 + |0010〉 + |1101〉 − |1110〉) |+〉a |−〉a |+〉a |−〉a I1 ⊗ σ 2
z ⊗ σ 3

z ⊗ I4

|�01
2 〉 = 1

2 (|0001〉 + |0010〉 − |1101〉 + |1110〉) |+〉a |−〉a |−〉a |−〉a I1 ⊗ σ 2
z ⊗ σ 3

z ⊗ I4

|�01
3 〉 = 1

2 (|0001〉 − |0010〉 + |1101〉 + |1110〉) |+〉a |−〉a |+〉a |+〉a I1 ⊗ σ 2
z ⊗ σ 3

z ⊗ I4

|�01
4 〉 = 1

2 (|0001〉 − |0010〉 − |1101〉 − |1110〉) |+〉a |−〉a |−〉a |+〉a I1 ⊗ σ 2
z ⊗ σ 3

z ⊗ I4

|�10
1 〉 = 1

2 (|0100〉 + |0111〉 + |1000〉 − |1011〉) |−〉a |+〉a |+〉a |−〉a σ 1
z ⊗ I2 ⊗ σ 3

z ⊗ I4

|�10
2 〉 = 1

2 (|0100〉 + |0111〉 − |1000〉 + |1011〉) |−〉a |+〉a |−〉a |−〉a σ 1
z ⊗ I2 ⊗ σ 3

z ⊗ I4

|�10
3 〉 = 1

2 (|0100〉 − |0111〉 + |1000〉 + |1011〉) |−〉a |+〉a |+〉a |+〉a σ 1
z ⊗ I2 ⊗ σ 3

z ⊗ I4

|�10
4 〉 = 1

2 (|0100〉 − |0111〉 − |1000〉 − |1011〉) |−〉a |+〉a |−〉a |+〉a σ 1
z ⊗ I2 ⊗ σ 3

z ⊗ I4

|�11
1 〉 = 1

2 (|0101〉 + |0110〉 + |1001〉 − |1010〉) |−〉a |−〉a |+〉a |−〉a σ 1
z ⊗ I2 ⊗ σ 3

z ⊗ I4

|�11
2 〉 = 1

2 (|0101〉 + |0110〉 − |1001〉 + |1010〉) |−〉a |−〉a |−〉a |−〉a σ 1
z ⊗ I2 ⊗ σ 3

z ⊗ I4

|�11
3 〉 = 1

2 (|0101〉 − |0110〉 + |1001〉 + |1010〉) |−〉a |−〉a |+〉a |+〉a σ 1
z ⊗ I2 ⊗ σ 3

z ⊗ I4

|�11
4 〉 = 1

2 (|0101〉 − |0110〉 − |1001〉 − |1010〉) |−〉a |−〉a |−〉a |+〉a σ 1
z ⊗ I2 ⊗ σ 3

z ⊗ I4

measurement results of the auxiliary atom in Sec. III C to
identify the phase information of five-qubit cluster states,
distinguishing the state with specific value of subscript i.
Combined with the steps (i) and (ii), the five-qubit cluster
states can be distinguished completely and nondestructively.
We list the results of the distinguishment in Table IV of
Appendix C. There are also many practical applications of the
proposed discriminators. Here, we only make a brief discus-
sion for two of them, i.e., quantum teleportation and quantum
dense coding, in Appendix D.

V. DISCUSSION AND CONCLUSION

We now discuss the performance and experimental fea-
sibility of the scheme. The entanglement discriminator is
employed to distinguish the mixed state practically. There-
fore, we set the mixed state to be distinguished as ρ(0) =∑

i Piρi, where ρi is the density matrix of the ith purity state
to be distinguished, Pi denotes the probability of the state
that makes up ρi and

∑
i Pi = 1, i = 1, 2, 3, . . . , 2N . N is the

qubit number. Finally, all the entangled states are completely
distinguished based on the measurement results. Thus, we set
the ideal state, after entanglement discriminator is applied, as
ρideal = ρi. The evolution of the system under consideration of
atomic spontaneous emission from Rydberg states to ground
states is governed by the Lindblad master equation

ρ̇(t ) = i[ρ(t ), H (t )] +
∑

j

∑
k

[
Lk

jρLk†
j

− 1

2

(
Lk†

j Lk
j ρ + ρLk†

j Lk
j

)]
, (16)

where H (t ) is the total Hamiltonian, ρ(t ) the density operator
of systematic state, and Lk

j = √
�/2|k〉 j〈r| a Lindblad opera-

tor with the superscript j labeling the jth atom. The fidelity

is defined as F = tr[ρ(t )ρideal]/Pi, where ρ(t ) is the evolution
density matrix calculated by the master equation in Eq. (16).
To evaluate the performance of the quantum logic gate, we use
the fidelity definition F = |〈ψideal|ψ (t )〉|2, where |ψ (t )〉 is the
state calculated by master equation in Eq. (16) with the given
initial state and |ψideal〉 being the state experiencing the ideal
gate.

For the given Rydberg states |r〉c = |r〉t = |71s1/2〉, the
RRI strength is V = 2π × 185.83 MHz when the interatomic
distance is set about d = 4.2 μm [92]. The decay rate from
Ryderg state |r〉 to ground states |0〉 and |1〉 is about � =
2.5 kHz [93]. If we choose Eq. (9) as the initial state to
evaluate the performance of the proposed CPG in Sec. II B.
After solving the master equation numerically, one can get the
fidelity versus the Rabi frequency �, as shown in Fig. 4. In the
case of � = 2π × 4.67 MHz, the fidelity can reach 99.84%.
When the value of � is less than 2π × 4.67 MHz, however,
the evolution time of the system increases, thus the influence
of decoherence is enhanced, leading to lower fidelity. While

2 3 4 5 6 7 8 9
 (2 MHz)

0.9975

0.998

0.9985

F
id

el
ity

FIG. 4. Performances of different values of �. The optimal � is
2π × 4.67 MHz, the corresponding fidelity of numerical simulation
can reach 99.84%. If �/2π < 4.67 MHz, the fidelity is low in virtue
of the influence of decoherence with long time. While �/2π >

4.67 MHz, fidelity is still low due to blockade errors.
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FIG. 5. Schematic diagram of the effective Rabi frequency
within a single step time. Maximum value of the Rabi frequency is
�MAX/2π = 4.67 MHz.

when the value of � is greater than 2π × 4.67 MHz, the
blockade errors enlarge and the fidelity would also decrease.
In order to minimize these two kinds of effects, we choose
the maximum value of the effective Rabi frequency �max =
2π × 4.67 MHz, the corresponding time of evolution within a
single step is about 0.49 μs and the effective Rabi frequency
within a single step time is plotted in Fig. 5.

One can simulate the fidelity of our proposed discrimi-
nators with a few qubits. However, it will be challenging
when more than four qubits are involved, due to requirement
of large size of the density matrix (more than 35 × 35) with
respect to the limited computational resource. Here we make a
simple estimation to roughly analyze the fidelity of multiqubit
discriminators. Our approach is divided into three steps. Step
(i): finding the rule. Perform the two-qubit CPG/CNOT gate
successively on the system with a group of given initial states,
finding out the rule of fidelity versus performance time. Here
we only consider the exponential fitting (EF) and linear fitting
(LF). Step (ii): validity testing. For a few-body discrimina-
tor that can be numerically simulated by solving the master
equation, we here also consider the rule in step (i) in the
calculation of the fidelity based on the number of CPG and
CNOT, and compare these fidelities to test validity of the rule
in step (i). Step (iii): estimating fidelity. Estimate the fidelity
of many-body entanglement discriminators which is hard to
achieve through numerically solving the master equation.

These three steps can be described in detail as follows.
Step (i) For two-qubit CNOT gate, with the initial state as
|ψ〉 = |00〉12, we perform this gate M times successively and
record the fidelity after performing each CNOT gate. We use
the fidelity of the CNOT gate for LF, i.e., 1 − N × (1 − F1) and
for EF, i.e., (F1)N , respectively, where F1 is the fidelity of the
CNOT gate. The results are presented in Fig. 6(a). For two-
qubit CPG with the initial state |ψ〉 = (|00〉12 + |01〉12)/

√
2,

the similar results are shown in Fig. 6(b). Finally, we can
find that EF agrees with the result of numerical analysis (NA)
better than that of LF.

Step (ii): To verify the feasibility of EF, we compare the
numerical results of Bell state, three- and four-qubit GHZ-
state as well as four-qubit cluster-state discriminators with
the results from EF. Suppose that m CPGs and n CNOT gates
are involved in an entanglement discriminator, the estimated
fidelity is given by (FCNOT

1 )m × (F CPG
1 )n. Here, FCNOT

1 and
F CPG

1 denote the gate fidelities of CNOT and CPG, respectively.
For example, for the Bell state discriminator, two CPGs and

1 3 5 7 9 11 13
0.97

0.98

0.99

1

F
id

el
ity
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LF

11 12 13

0.97

0.975

1 3 5 7 9 11 13
0.97

0.98

0.99

1

F
id
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ity
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EF
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11 12 13

0.97

0.975

(a)

(b)

FIG. 6. Schematic diagrams of the comparison among numeri-
cal analysis (NA), linear fitting (LF) and exponential fitting (EF)
to explore performance of (a) CNOT gate and (b) CPG gate with
the initial state in Eq. (9). For (a) α = 1 and β = γ = δ = 0. For
(b) α = β = 1/

√
2 and γ = δ = 0 with decay rate � = 2.5 kHz.

two CNOT gates are used, thus the estimated fidelity should
be (FCNOT

1 )2 × (F CPG
1 )2. One can calculate that of many-body

entanglement discriminator in the similar way. In Table V,
we exemplifies some cases to test the validity of our thought.
One can see that the results of Bell-, GHZ- and cluster-state
discriminators from EF and NA are very close to each other.

Step (iii) Following the results from steps (i) and (ii), we
are able to fit the fidelity of the many-body entanglement
discriminators. Then, we demonstrate the EF results of Bell-
state, N-qubit GHZ-state and cluster-state discriminators in
Fig. 7. Besides, we also plot the fidelity of few-body en-
tanglement discriminator achieved by NA. The results show
good agreement between EF and NA as well as high fi-
delity under the consideration of dissipation. It should be
noted that throughout our discussion about decoherence, we
only considered the decay of Rydberg states. Experimentally,
because the auxiliary atoms should be moved or re-trapped
when we add individually addressable atomic qubits during

2 3 4 5 6 7
N (qubits)

0.96

0.98

1

F
id

el
ity

GHZ-state EF
GHZ-state NA
Cluster-state EF
Cluster-state NA

FIG. 7. Schematic diagram of EF of discriminators for Bell state
|�+

0 〉12, N-qubit GHZ state |�+
0 〉12···N , four-qubit cluster state |�00

3 〉
and five-qubit cluster state |�000

1 〉 and NA that we can achieve, in
which we set decay rate � = 2.5 kHz. In fact, the two-qubit GHZ
state here means the Bell state.
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the state discrimination process, the additional source of deco-
herence would definitely occur. Thus with the consideration of
both the Rydberg state decay and the additional decoherence
source, the experimental fidelity as well as the scalability
of the proposed scheme would be further reduced. In con-
clusion, we have proposed schemes to achieve many-body
entanglement discriminators for N-qubit GHZ state, four- and
five-qubit cluster states as well as two-body Bell state, based
on the geometric quantum gate constructed by user-defined
passage. To clarify the potential application of entanglement
discriminators in quantum information processing, we have
exemplified some key operations in quantum teleportation
and quantum dense coding. Our numerical simulations have
indicated that our proposal works with high fidelity even when
N = 7 involving the decay of Rydberg states. In addition,
our scheme, based on geometric phases, is robust against the
systematic errors. Moreover, our proposed discriminators can

be straightforwardly applied to other three-level systems that
are able to construct two-qubit quantum logic gates. Therefore
we believe that with further development of quantum technol-
ogy, our study may be very useful in accomplishing tasks for
Rydberg-atom-based quantum information processing in the
near future.
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APPENDIX A: SPECIAL RYDBERG DISCRIMINATOR

|�+〉 ⊗ 1√
2

(|0〉a + |1〉a ) = 1√
2

[α(|μ1 · · · μN 〉 + |μ1 · · · μN 〉) ± β(|ν1 · · · νN 〉 + |ν1 · · · νN 〉)] ⊗ (|0〉a + |1〉a )

Û N
CNOT ,...,Û 1

CNOT−−−−−−−−→ 1√
2

[α(|μ1 · · · μN 〉 + |μ1 · · · μN 〉) ± β(|ν1 · · · νN 〉 + |ν1 · · · νN 〉)] ⊗ |0〉a

+ 1√
2

[α(|μ1 · · · μN 〉 + |μ1 · · · μN 〉) ± β(|ν1 · · · νN 〉 + |ν1 · · · νN 〉)] ⊗ |1〉a

= |�+〉 ⊗ 1√
2

(|0〉a + |1〉a ),

|�−〉 ⊗ 1√
2

(|0〉a + |1〉a ) = 1√
2

[α(|μ1 · · ·μN 〉 − |μ1 · · · μN 〉) ± β(|ν1 · · · νN 〉 − |ν1 · · · νN 〉)] ⊗ (|0〉a + |1〉a )

Û N
CNOT ,...,Û 1

CNOT−−−−−−−−→ 1√
2

[α(|μ1 · · ·μN 〉 − |μ1 · · ·μN 〉) ± β(|ν1 · · · νN 〉 − |ν1 · · · νN 〉)] ⊗ |0〉a

+ 1√
2

[α(|μ1 · · · μN 〉 − |μ1 · · · μN 〉) ± β(|ν1 · · · νN 〉 − |ν1 · · · νN 〉)] ⊗ |1〉a

= |�−〉 ⊗ 1√
2

(|1〉a − |0〉a ). (A1)

This discriminator has special ability to distinguish |�+〉 and |�−〉. Both GHZ-state and five-qubit cluster-state phase discrimi-
nators can be regarded as its special cases.

APPENDIX B: FOUR-QUBIT CLUSTER-STATE PHASE DISCRIMINATOR

|�μν
1 〉 ⊗ 1√

2
(|0〉a + |1〉a ) = 1

2
√

2
(|0μ0ν〉 + |0μ1ν〉 + |1μ0ν〉 − |1μ1ν〉) ⊗ (|0〉a + |1〉a )

Û 2
CNOT Û 1

CNOT−−−−−−→ 1

2
√

2
[(|1μ0ν〉 + |1μ1ν〉 + |0μ0ν〉 − |0μ1ν〉) ⊗ |0〉a + (|0μ0ν〉 + |0μ1ν〉

+ |1μ0ν〉 − |1μ1ν〉) ⊗ |1〉a]

Ũ 3
CPG−−→ 1

2
√

2
[(|1μ0ν〉 + |1μ1ν〉 + |0μ0ν〉 − |0μ1ν〉) ⊗ |0〉a + (|0μ0ν〉 − |0μ1ν〉 + |1μ0ν〉

+ |1μ1ν〉) ⊗ |1〉a]

= |�μν
3 〉 ⊗ 1√

2
(|0〉a + |1〉a ),
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|�μν
2 〉 ⊗ 1√

2
(|0〉a + |1〉a ) = 1

2
√

2
(|0μ0ν〉 + |0μ1ν〉 − |1μ0ν〉 + |1μ1ν〉) ⊗ (|0〉a + |1〉a )

Û 2
CNOT Û 1

CNOT−−−−−−→ 1

2
√

2
[(|1μ0ν〉 + |1μ1ν〉 − |0μ0ν〉 + |0μ1ν〉) ⊗ |0〉a + (|0μ0ν〉 + |0μ1ν〉 − |1μ0ν〉

+ |1μ1ν〉) ⊗ |1〉a]

Ũ 3
CPG−−→ 1

2
√

2
[(|1μ0ν〉 + |1μ1ν〉 − |0μ0ν〉 + |0μ1ν〉) ⊗ |0〉a + (|0μ0ν〉 − |0μ1ν〉 − |1μ0ν〉

− |1μ1ν〉) ⊗ |1〉a]

= |�μν
4 〉 ⊗ 1√

2
(|1〉a − |0〉a ),

|�μν
1 〉 ⊗ 1√

2
(|0〉a + |1〉a ) = 1

2
√

2
(|0μ0ν〉 + |0μ1ν〉 + |1μ0ν〉 − |1μ1ν〉) ⊗ (|0〉a + |1〉a )

Û 4
CNOT Û 3

CNOT−−−−−−→ 1

2
√

2
[(|0μ1ν〉 + |0μ0ν〉 + |1μ1ν〉 − |1μ0ν〉) ⊗ |0〉a + (|0μ0ν〉 + |0μ1ν〉 + |1μ0ν〉

− |1μ1ν〉) ⊗ |1〉a]

Ũ 1
CPG−−→ 1

2
√

2
[(|0μ1ν〉 + |0μ0ν〉 + |1μ1ν〉 − |1μ0ν〉) ⊗ |0〉a + (|0μ0ν〉 + |0μ1ν〉 − |1μ0ν〉

+ |1μ1ν〉) ⊗ |1〉a]

= |�μν
2 〉 ⊗ 1√

2
(|0〉a + |1〉a ),

|�μν
3 〉 ⊗ 1√

2
(|0〉a + |1〉a ) = 1

2
√

2
(|0μ0ν〉 − |0μ1ν〉 + |1μ0ν〉 + |1μ1ν〉) ⊗ (|0〉a + |1〉a )

Û 4
CNOT Û 3

CNOT−−−−−−→ 1

2
√

2
[(|0μ1ν〉 − |0μ0ν〉 + |1μ1ν〉 + |1μ0ν〉) ⊗ |0〉a + (|0μ0ν〉 − |0μ1ν〉 + |1μ0ν〉

+|1μ1ν〉) ⊗ |1〉a]

Ũ 1
CPG−−→ 1

2
√

2
[(|0μ1ν〉 − |0μ0ν〉 + |1μ1ν〉 + |1μ0ν〉) ⊗ |0〉a + (|0μ0ν〉 − |0μ1ν〉 − |1μ0ν〉

− |1μ1ν〉) ⊗ |1〉a]

= ∣∣�μν
4

〉 ⊗ 1√
2

(|1〉a − |0〉a ). (B1)

APPENDIX C: FIVE-QUBIT CLUSTER-STATE RYDBERG DISCRIMINATOR

For five-qubit cluster-state discriminators, each cluster state would be distinguished completely and nondestructively. We list
the each cluster state and the corresponding result of the distinguishment in Table IV.
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TABLE IV. The corresponding relationship between different initial cluster states and the measurement results of the auxiliary atom. Here
for three-qubit state |000〉 jkm, |011〉 jkm, |101〉 jkm, |110〉 jkm, the measurement result of the auxiliary atom is |+〉a,implying even parity, while for
three-qubit state |001〉 jkm, |010〉 jkm, |100〉 jkm, |111〉 jkm, the measurement result is |−〉a, implying odd parity, which correspond to the results of
PAD2 when j, k, and m are 2, 3, and 4, respectively, while correspond to the results of PAD3 when j, k, and m are 2, 4, and 5, respectively.

Measurement result

Initial cluster state PAD1 PAD2 PAD3 PHD1 PHD2

|�000
1 〉 = 1

2 (|00000〉 + |00111〉 + |11101〉 + |11010〉) |+〉a |+〉a |+〉a |+〉a |+〉a

|�000
2 〉 = 1

2 (|00000〉 − |00111〉 + |11101〉 − |11010〉) |+〉a |+〉a |+〉a |−〉a |−〉a

|�000
3 〉 = 1

2 (|00000〉 + |00111〉 − |11101〉 − |11010〉) |+〉a |+〉a |+〉a |+〉a |−〉a

|�000
4 〉 = 1

2 (|00000〉 − |00111〉 − |11101〉 + |11010〉) |+〉a |+〉a |+〉a |−〉a |+〉a

|�001
1 〉 = 1

2 (|00001〉 + |00110〉 + |11100〉 + |11011〉) |+〉a |+〉a |−〉a |+〉a |+〉a

|�001
2 〉 = 1

2 (|00001〉 − |00110〉 + |11100〉 − |11011〉) |+〉a |+〉a |−〉a |−〉a |−〉a

|�001
3 〉 = 1

2 (|00001〉 + |00110〉 − |11100〉 − |11011〉) |+〉a |+〉a |−〉a |+〉a |−〉a

|�001
4 〉 = 1

2 (|00001〉 − |00110〉 − |11100〉 + |11011〉) |+〉a |+〉a |−〉a |−〉a |+〉a

|�010
1 〉 = 1

2 (|00010〉 + |00101〉 + |11111〉 + |11000〉) |+〉a |−〉a |−〉a |+〉a |+〉a

|�010
2 〉 = 1

2 (|00010〉 − |00101〉 + |11111〉 − |11000〉) |+〉a |−〉a |−〉a |−〉a |−〉a

|�010
3 〉 = 1

2 (|00010〉 + |00101〉 − |11111〉 − |11000〉) |+〉a |−〉a |−〉a |+〉a |−〉a

|�010
4 〉 = 1

2 (|00010〉 − |00101〉 − |11111〉 + |11000〉) |+〉a |−〉a |−〉a |−〉a |+〉a

|�011
1 〉 = 1

2 (|00011〉 + |00100〉 + |11110〉 + |11001〉) |+〉a |−〉a |+〉a |+〉a |+〉a

|�011
2 〉 = 1

2 (|00011〉 − |00100〉 + |11110〉 − |11001〉) |+〉a |−〉a |+〉a |−〉a |−〉a

|�011
3 〉 = 1

2 (|00011〉 + |00100〉 − |11110〉 − |11001〉) |+〉a |−〉a |+〉a |+〉a |−〉a

|�011
4 〉 = 1

2 (|00011〉 − |00100〉 − |11110〉 + |11001〉) |+〉a |−〉a |+〉a |−〉a |+〉a

|�100
1 〉 = 1

2 (|01000〉 + |01111〉 + |10101〉 + |10010〉) |−〉a |−〉a |−〉a |+〉a |+〉a

|�100
2 〉 = 1

2 (|01000〉 − |01111〉 + |10101〉 − |10010〉) |−〉a |−〉a |−〉a |−〉a |−〉a

|�100
3 〉 = 1

2 (|01000〉 + |01111〉 − |10101〉 − |10010〉) |−〉a |−〉a |−〉a |+〉a |−〉a

|�100
4 〉 = 1

2 (|01000〉 − |01111〉 − |10101〉 + |10010〉) |−〉a |−〉a |−〉a |−〉a |+〉a

|�101
1 〉 = 1

2 (|01001〉 + |01110〉 + |10100〉 + |10011〉) |−〉a |−〉a |+〉a |+〉a |+〉a

|�101
2 〉 = 1

2 (|01001〉 − |01110〉 + |10100〉 − |10011〉) |−〉a |−〉a |+〉a |−〉a |−〉a

|�101
3 〉 = 1

2 (|01001〉 + |01110〉 − |10100〉 − |10011〉) |−〉a |−〉a |+〉a |+〉a |−〉a

|�101
4 〉 = 1

2 (|01001〉 − |01110〉 − |10100〉 + |10011〉) |−〉a |−〉a |+〉a |−〉a |+〉a

|�110
1 〉 = 1

2 (|01010〉 + |01101〉 + |10111〉 + |10000〉) |−〉a |+〉a |+〉a |+〉a |+〉a

|�110
2 〉 = 1

2 (|01010〉 − |01101〉 + |10111〉 − |10000〉) |−〉a |+〉a |+〉a |−〉a |−〉a

|�110
3 〉 = 1

2 (|01010〉 + |01101〉 − |10111〉 − |10000〉) |−〉a |+〉a |+〉a |+〉a |−〉a

|�110
4 〉 = 1

2 (|01010〉 − |01101〉 − |10111〉 + |10000〉) |−〉a |+〉a |+〉a |−〉a |+〉a

|�111
1 〉 = 1

2 (|01011〉 + |01100〉 + |10110〉 + |10001〉) |−〉a |+〉a |−〉a |+〉a |+〉a

|�111
2 〉 = 1

2 (|01011〉 − |01100〉 + |10110〉 − |10001〉) |−〉a |+〉a |−〉a |−〉a |−〉a

|�111
3 〉 = 1

2 (|01011〉 + |01100〉 − |10110〉 − |10001〉) |−〉a |+〉a |−〉a |+〉a |−〉a

|�111
4 〉 = 1

2 (|01011〉 − |01100〉 − |10110〉 + |10001〉) |−〉a |+〉a |−〉a |−〉a |+〉a

APPENDIX D: APPLICATIONS OF ENTANGLEMENT
DISCRIMINATOR

Here we demonstrate applications of our proposed entan-
glement discriminators in quantum teleportation and quantum
dense coding.

TABLE V. Comparison between NA of Bell-state discriminators
and EF rule after successive gate operations, in which no effect of
local unitary operations on four-qubit cluster states is considered.

Different initial state NA EF

(|00〉 + |11〉)/
√

2 99.24% 99.04%
(|000〉 + |111〉)/

√
2 98.30% 98.33%

(|0000〉 + |1111〉)/
√

2 96.94% 97.62%
(|0000〉 − |0011〉 + |1100〉 + |1111〉)/2 98.41% 97.62%

1. Quantum teleportation

Quantum teleportation [88] presents a process in which
quantum information can be transmitted from one location to
another, with the help of classical communication and previ-
ously shared quantum entanglement between the sending and
receiving locations. Now, we show how to accomplish tele-
portation by using our proposed entanglement discriminators.
If Alice initially possesses a single atom with

|φ〉1 = c1|0〉1 + c2|1〉1,

where c1 and c2 are unknown coefficients with |c1|2 + |c2|2 =
1. If two other atoms 2 and 3 are prepared in entangled Bell
state |�−

1 〉23 = 1√
2
(|01〉 − |10〉)23, and the atom 2 is given to

Alice, while the atom 3 is given to Bob. Thus the complete
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state of the three atom is

|�〉 = |φ〉1|�−
1 〉23

= (c1|0〉 + c2|1〉)1 ⊗ 1√
2

(|01〉 − |10〉)23

= c1√
2

(|001〉 − |010〉)123 + c2√
2

(|101〉 − |110〉)123

= 1

2
[|�+

0 〉12(c1|1〉 − c2|0〉)3 + |�−
0 〉12(c1|1〉 + c2|0〉)3

+ |�+
1 〉12(c2|1〉 − c1|0〉)3 − |�−

1 〉12(c2|1〉 + c1|0〉)3].

(D1)

where the direct product of atoms 1 and 2 is re-expressed as
Bell states. Alice performs Bell-state measurement on atoms
1 and 2 of her own by Bell-state discriminator, and each
probability of Bell state is 1/4. After measurement of Alice,
the state of atom 3 of Bob will also be determined by Eq. (D1).
In order to get the information of initial state of atom 1, Bob
only need to perform the corresponding unitary operation to
atom 3. For example, if measurement result of Alice is |�+

0 〉12,
the corresponding state of the atom 3 is (c1|1〉 − c2|0〉)3 and
perform Û 3

y (c1|1〉 − c2|0〉)3 = (c1|0〉 + c2|1〉)3 to atom 3 to

get the same state as atom 1, where U 3
y = i(0 −i

i 0 ) is for a
Pauli Y gate. Other corresponding states of the atom 3 and uni-
tary operations are |�−

0 〉12 ↔ Û 3
x (c1|1〉 + c2|0〉)3, |�+

1 〉12 ↔
(−Û 3

z )(c2|1〉 − c1|0〉)3, |�−
1 〉12 ↔ Û 3

I (c2|1〉 + c1|0〉)3, where

Û 3
I = (1 0

0 1) is for a identity quantum gate. Through classical
channels, such as telephone, etc., Alice tells Bob the measure-
ment results, and Bob can select the corresponding unitary
operation to obtain information of atom 1. Then, quantum
teleportation will be realized.

2. Quantum dense coding

We discuss below how to accomplish a quantum dense
coding [89] using our proposed entanglement discriminators.

TABLE VI. The relationship between local operations by Alice,
the new cluster state and the corresponding classical information.

Local operations Transformed states Transmitted information

Û 2
I Û 4

I |�00
1 〉1234 0000

Û 2
z Û 4

I |�00
2 〉1234 1000

Û 2
I Û 4

z |�00
3 〉1234 0010

Û 2
z Û 4

z |�00
4 〉1234 1010

Û 2
I Û 4

x |�01
1 〉1234 0001

Û 2
z Û 4

x |�01
2 〉1234 1001

−Û 2
I Û 4

y |�01
3 〉1234 0011

−Û 2
z Û 4

y |�01
4 〉1234 1011

Û 2
x Û 4

I |�10
1 〉1234 0100

−Û 2
y Û 4

I |�10
2 〉1234 1100

Û 2
x Û 4

z |�10
3 〉1234 0110

−Û 2
y Û 4

z |�10
4 〉1234 1110

Û 2
x Û 4

x |�11
1 〉1234 0101

−Û 2
y Û 4

x |�11
2 〉1234 1101

−Û 2
x Û 4

y |�11
3 〉1234 0111

Û 2
y Û 4

y |�11
4 〉1234 1111

The protocol starts with the preparation of a cluster state, i.e.,
|�00

1 〉1234 = 1
2 (|0000〉 + |0011〉 + |1100〉 − |1111〉)1234. The

atoms 2 and 4 are sent to Alice and the atoms 1 and 3 are
sent to Bob. Alice can perform four possible operations ÛI ,
Ûx, Ûy, Ûz on atom 2 or 4, respectively. We carry out 16 kinds
of local operations on two atoms to define four bits of classical
information. For example, if Alice wants to send the classical
four-bit string 0000 to Bob, she could apply the operation
Û 2

I Û 4
I to atoms 2 and 4, and |�00

1 〉1234 is unchanged. The
other corresponding correlations between local operations and
classical information are listed in Table VI. After having
performed one of the operations, Alice sends her two atoms
to Bob. Then Bob can know what operation Alice performs
by using four-qubit cluster-state discriminator to measure the
new cluster state, the corresponding classical information that
Alice wants to send can be obtained by Bob. In this process,
two qubits are sent while four-qubit classical information are
transmitted, i.e., quantum dense coding was realized.
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