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Hybrid encoding of quantum information is a promising approach towards the realization of optical quantum
protocols. It combines advantages of continuous variables encoding, such as high efficiencies, with those of
discrete variables, such as high fidelities. In particular, entangled hybrid states were shown to be a valuable
resource for quantum information protocols. In this work we present a hybrid entanglement witness that can be
implemented on available experiments and is robust to noise currently observed in quantum optical setups. The
proposed witness is based on measurements of genuinely hybrid observables. The noise model we consider is
general. It is formally characterized with Kraus operators since the considered hybrid system can be expressed
in a finite dimension basis. A practical advantage of the witness is that it can be tested by measuring just a few
experimentally available observables.
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I. INTRODUCTION

Many different platforms are envisaged to process quan-
tum information, corresponding to different ways of encoding
qubits. All these implementations fall into two main cate-
gories: discrete variables (DVs), based on observables with
discrete spectra and continuous variables (CVs), based on
ones with continuous spectra. Both regimes present specific
advantages and drawbacks: while DVs show high fidelities,
their efficiencies are in general low and the contrary applies
for CV implementations [1,2]. Hybridization between DV
and CV states can take advantage of both encodings to im-
plement certain quantum protocols [3]. An example is near
deterministic teleportation with high fidelities [4–6], steer-
ing [7], Bell protocols [8–11], and hybrid quantum repeaters
[12,13]. Quantum information processing using this technique
is currently being developed both theoretically [14–17] and
experimentally [7,18–21].

Entanglement lies at the heart of quantum physics and
is a key resource for quantum information and computation
[22,23]. Its detection is thus of crucial importance and has
been studied extensively, notably with so-called entanglement
witnesses (EW) [23]. The fact that there exist EW for every
entangled state [24] has raised their importance on a theo-
retical point of view even further [25], and links between
entanglement witness and other important features of quan-
tum physics such as Bell inequalities have been assessed [26].
Whenever one is interested in a hybrid resource, the issue of
entanglement appears naturally, since we deal with a bipar-
tite quantum system. As a consequence, the complementarity
principle will involve producing entangled states. For this rea-
son, entanglement detection is a foundational issue in hybrid
encoding.

*gael.masse@univ-paris-diderot.fr

Entanglement witnesses (EWs) have been studied ex-
tensively for discrete [27] and continuous [28] systems.
Nevertheless, EWs involving measurements of observables
with a continuous spectrum seem harder to establish [2].
This is particularly true if the states considered are non-
Gaussian, which is precisely the case of all hybrid states
[29]. The complete knowledge of the system’s density ma-
trix is a sufficient condition to compute EWs [30–35], but
it is not necessary. Besides, this is not a practical solu-
tion since it requires time demanding quantum tomography
techniques.

One natural way for detecting entanglement in CV sys-
tems is to use inseparability criteria based on matrices of
moments [36,37], an approach subsumed in Ref. [38] and
applied in Refs. [32,39–42], which can be generalized to a
hybrid system [1]. Another approach was given in [33] where
it was shown that the negativity volume of the generalized
Wigner function can be used to detect entanglement for hybrid
states. These approaches are however too sensitive to noise
or too costly in terms of measurements with regard to our
goals.

In this work we introduce an implementable entanglement
witness for a given quantum optics setup where hybrid en-
tangled states are currently produced experimentally [1,43].
Our approach is inspired by the well known entanglement
witness [25]

W = λ1 − |ψ〉 〈ψ | , (1)

where λ ∈ R is optimized such that Tr[W σ ] > 0 for any
separable state σ and Tr[W ρ] < 0, for the largest possible
set of entangled states including ρ = |ψ〉 〈ψ |. We then adapt
W so that it is robust to noise using a realistic noise model,
and require the measurement of only a few observables. We
choose to stick to a specific experimental setup to produce a
concrete and experimentally realistic example of an efficient
hybrid entanglement detection. However, the construction of
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the witness enables its adaptation to other experimental plat-
forms using different encodings, as for instance in [21], as we
will show.

We begin with the study of a general noise model ap-
plied on a specific hybrid entanglement setup (Sec. II). We
propose an entanglement witness, make it robust to noise,
implementable, and finally present a measurement protocol
(Sec. III). We sum up our work and discuss its scope in a last
part (Sec. IV).

II. NOISE MODELS FOR HYBRID OPTICAL STATES

We start by introducing the family of entangled states we
aim to characterize.

A. Case study on a specific encoding

We consider the experimental quantum optics setup de-
scribed in detail in Ref. [43]. It is designed to produce, in the
ideal scenario, the following pure state of the electromagnetic
field:

|ψ〉 = |0〉 |C−(α)〉 + |1〉 |C+(α)〉√
2

, (2)

where

|C±(α)〉 = |α〉 ± |−α〉
N±(α)

(3)

are the so-called symmetric and antisymmetric “Schrödinger
cat”-like states, with |α〉 ∈ C being a coherent state of am-
plitude α, and N±(α) = 2(1 ± e−2|α|2 ]), so that 〈ψ |ψ〉 = 1.
Its specific advantage with respect to the hybrid state
|0〉|α〉+|1〉|−α〉√

2
, which was considered in [1,44], is that in Eq. (3)

the two considered continuous variables states are orthogonal
to each other for all values of α. From now on, α will be taken
real, without loss of generality [43]. As for the discrete part of
|ψ〉, we consider, as in Ref. [43], that |0〉 is the vacuum and
|1〉 is the Fock state with one photon. However, the derivation
of the witness that we present here can be adapted to other
discrete encodings such as orthogonal polarization states of
the photon [17,45].

In experiments, the produced state is noisy and should
be described by a density matrix ρnoise instead of |ψ〉. A
correct modelization of ρnoise depends crucially on the type
of encoding as well as on the specificities of the consid-
ered experimental setup. In the present context we consider
photon losses in both discrete and continuous channels as
being the main source of noise. Such losses can be modeled
by the action of a beam splitter (BS) [46] which entangles
an ideal incoming state |ψ〉 〈ψ | with an ancillary fluctu-
ating quantum field. We note ρda and ρca the ancillary
fields, respectively, on the discrete channel and the contin-
uous channel, and these beam splitters are referred to as
TBS, for theoretical beam splitters, in the scheme we pro-
pose in Fig. 1. After recombination on the beam splitter,
two outputs are produced corresponding to the transmit-
ted part of the beam splitter and to the reflected one. We
trace out the reflected one which corresponds to the losses,
and obtain the mixed state ρnoise = Trrc,rd [|ψnoise〉 〈ψnoise|]

FIG. 1. Conceptual schematic for generating hybrid entangle-
ment by deflecting a photon from either a continuous mode |∼〉 or
a discrete mode |•〉 on a photon detector D. The effect of noise is
modelized by mixing either modes with vacuum |0〉 on a theoretical
beam splitter. The quadratures x̂, p̂ are measured with homodyne
detectors.

with

|ψnoise〉 =
(|√1 − ηcα〉tc |√ηcα〉rc

−) |0〉td |0〉rd√
2N−(α)

−
(|−√

1 − ηcα〉tc |−√
ηcα〉rc

) |0〉td |0〉rd√
2N−(α)

+
(|√1 − ηcα〉tc |√ηcα〉rc

)√
1 − ηd |1〉td |0〉rd√

2N+(α)

+
(|−√

1 − ηcα〉tc |−√
ηcα〉rc

)√
1−ηd |1〉td |0〉rd√

2N+(α)

+
(|√1 − ηcα〉tc |√ηcα〉rc

)√
ηd |0〉td |1〉rd√

2N+(α)

+
(|−√

1 − ηcα〉tc |−√
ηcα〉rc

)√
ηd |0〉td |1〉rd√

2N+(α)
,

(4)

where Trrc,rd denotes the partial trace over the reflected modes,
respectively, in the continuous and discrete channels, tc and td
are the transmitted modes, respectively, in the continuous and
discrete channels and η2

c , η
2
d are the reflectivity of the theo-

retical beam splitters, respectively for the continuous channel
and for the discrete channel. Therefore, ηc and ηd ∈ [0, 1]
characterize the noise in both channels ηc/d = 0 being the
ideal case and ηc/d = 1 the completely noisy channel.

The experimental setup we consider here uses optical fields
at room temperature, so it is reasonable to take ρca = ρda =
|0〉 〈0|. Indeed, for optical frequencies, the average number of
thermal photon at room temperature is 〈n〉 = 1

e
hν

kBT −1
≈ 10−54.

We nonetheless also considered the case where the fluctuat-
ing ancillary fields ρda and ρca are thermal fields at finite
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temperature instead of vacuum, as shown in Appendix A. It
does not change our results qualitatively.

An important aspect of the noise model we considered
is that it does not increase the dimension of the pure state.
Indeed, ρnoise can be represented as a 4 × 4 matrix like the
original |ψ〉 〈ψ |, albeit in a different basis. The complete ex-
pression of ρnoise after performing the partial trace is given in
Appendix B. It is a “mixed hybrid entangled states,” according
to the classification of Kreis and van Loock in their seminal
works [29,47]. Consequently, its entanglement can be studied
analogously to a DV only system: one can define a subspace
dependent Pauli-like algebra involving observables with a
continuous spectrum in order to define an easy-to-implement
EW.

In order to simplify the expression of the noisy state, it is
convenient to write it in the following orthonormal basis:

{|C+(
√

1 − ηcα)〉 |0〉 , |C+(
√

1 − ηcα)〉 |1〉 , (5)

|C−(
√

1 − ηcα)〉 |0〉 , |C−(
√

1 − ηcα)〉 |1〉}. (6)

In this basis, ρnoise takes the following simple form:

ρnoise =

⎛⎜⎝w 0 0 z
0 x1 c 0
0 c x2 0
z 0 0 y

⎞⎟⎠, (7)

where w, z, x1, f , x2, z, and y are functions of ηc, ηd , and
α, that are given in Appendix B.

B. Characterization of noise with Kraus operators

Another interesting aspect of being able to express the
noisy state as a 4 × 4 system is that the photon loss noise
model can be formulated as a quantum channel in terms
of Kraus operators. For such, we write U (ηc) the operator
performing the change of basis from {|C±(α)〉} to the noise
dependent basis {|C±(ηcα)〉}, for the continuous part. Then
the state ρnoise given by Eq. (7) can be obtained from the
ideal state |ψ〉 〈ψ |, with the help of local Kraus operators
Ci(ηc, α)U (ηc) ⊗ D j (ηd )(i, j = 1, 2) as

ρnoise =
2∑

i, j=1

Ci(ηc, α)U (ηc) ⊗ D j (ηd ) |ψ〉

× 〈ψ | [Ci(ηc, α)U (α)]† ⊗ D†
j (ηd ), (8)

where the operators (Ci) and (D j) are calculated in
Appendix D. For the discrete part we obtain

D1 =
(

1 0

0
√

1 − ηd

)
, D2 =

(
0

√
ηd

0 0

)
, (9)

which is an amplitude damping channel. The Kraus operators
for the continuous part can be written as

C1 =
(

cos γ 0

0 cos δ

)
, C2 =

(
0 sin δ

sin γ 0

)
, (10)

with

γ = arccos

√{1 + exp [−2(1 − ηc)α2]}[1 + exp (−2ηcα2)]√
2 + 2 exp (−2α2)

FIG. 2. Concurrence C(ρnoise ) as a function of noise parameters
ηc and ηd for an amplitude α = 1. The negative values are clipped,
only the positive values indicating entanglement of ρnoise are plotted
(in rainbow colors).

and

δ = arccos

√{1 − exp [−2(1 − ηc)α2]}[1 + exp (−2ηcα2)]√
2 − 2 exp (−2α2)

.

When γ = δ we obtain a dephasing channel, whereas when
δ = 0 we have an amplitude-damping channel [48], so for the
continuous part, aside from the unitary transformation U , the
quantum channel is a combination of these two channels.

An alternative encoding of DV quantum information for
the discrete part of our hybrid state would use the polarization
degrees of freedom instead of the vacuum and one photon
Fock state. In this case, the noise model would change, and it
would be reasonable to consider instead a depolarizing chan-
nel on the discrete side. We can show that even in this case,
the density matrix has the same form as the one presented in
Eq. (7).

C. Effect of noise on entanglement

As we have noted previously, for a given value of ηc and
ηd , the state ρnoise can be described by a 4 × 4 density matrix
in an orthonormal basis which depends on the noise param-
eter ηc. This means that we can consider it as an effective
4 × 4 DV system and completely characterize its entangle-
ment [47,49,50]. To this end, we choose the concurrence C
of ρnoise, which takes the following simple form [51]:

C(ρnoise) = max(0, 2c − 2
√

wy) (11)

(see Appendix B). For a 2-qubit system, as it is the case here,
it is positive if and only if the state is entangled.

We show in Figs. 2 and 3 the variation of the concurrence
C(ρnoise) as a function of noise parameters ηc and ηd and the
amplitude α. Figure 2 shows that the concurrence is decreas-
ing with respect to the amount of noise on each channel. With
α = 1, the state ceases to be entangled only for ηc = ηd �
0.8, i.e., noise values well above what is actually obtained
in the laboratory. Now, if we set ηc = ηd = η, we observe in
Fig. 3 that the concurrence decreases with respect to α and
η. Besides, the entanglement of the state becomes more and
more sensitive to noise, as the amplitude α increases.

However, we do not need a full quantification of entangle-
ment, but merely to detect its existence; besides, we want to
do with the minimum number of measurements.
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FIG. 3. Concurrence C(ρnoise ) as a function of the cat size α and
the noise ηc = ηd . The negative values are clipped, only the posi-
tive values indicating entanglement of ρnoise are plotted (in rainbow
colors).

III. ENTANGLEMENT WITNESS

We now consider the entanglement witness W = 1
21 −

|ψ〉 〈ψ |. Tr[W σ ] is positive for all separable state since the
Schmidt rank of |ψ〉 cannot exceed 2. This is due to the fact
that the Schmidt rank is bounded by the Hilbert space with the
lowest dimension value: the one of the qubit. W is well suited
to detect the target state |ψ〉 since 〈ψ |W |ψ〉 = − 1

2 < 0.

A. Noise robustness

The relevance and usefulness of W is related to its ability to
detect entanglement for a large set of ρnoise states. We compute
Tr[W ρnoise] and obtain

Tr[W ρnoise] = ω + y − 2c. (12)

We show in Figs. 4 and 5 the variation of −Tr[W ρnoise] as
a function of noise parameters ηc and ηd and the amplitude α

of the cat state. The sign has been changed just to make the
comparison with the concurrence easier. Figure 4 shows that
W detects entanglement even when ηc = ηd = 0.52 for α =
1. Since state-of-the-art optical setups can provide states with
less than 20% of noise on each channel [7], we consider that
the robustness is satisfying. We can now discuss the witness
implementation. By comparing Fig. 5 with Fig. 3, we see that

FIG. 4. −Tr[W ρnoise] as a function of the noise parameters ηc

and ηd for a cat size α = 1. The negative values are clipped, only
the positive values indicating entanglement of ρnoise are plotted (in
rainbow colors). We highlight a particular point at the frontier of the
detection area (coordinates ηc = ηd = 0.52).

FIG. 5. −Tr[W ρnoise] as a function of the cat size α and the noise
ηc = ηd . The negative values are clipped, only the positive values
indicating entanglement of ρnoise are plotted (in rainbow colors).

for increasing α, the region of nondetected entangled states in
the form of (3) decreases: the witness tends more and more
to become a necessary condition, i.e., Tr[W ρnoise] � 0 ⇐⇒
C(ρnoise) � 0. Mathematically, it corresponds to the fact that
ω → y when α → ∞, with the notations of Eq. (7).

B. Switching to experimentally measurable observables

Measuring W involves defining local projectors character-
izing |ψ〉 〈ψ | both on its discrete and its continuous parts.
For the discrete part, we can safely consider the Pauli ma-
trices σz = |0〉 〈0| − |1〉 〈1| , σx = |0〉 〈0| + |1〉 〈1|, and σy =
1
2i [σz, σx]. For the continuous part, we can define analogous
observables with a continuous spectrum, i.e., with the same
matrix but in the {|C−(1 − ηc)α)〉 , |C+(1 − ηc)α)〉} basis.
Specifically,

XC = |C−(1 − ηc)α)〉 〈C+(1 − ηc)α)|
+ |C+(1 − ηc)α)〉 〈C−(1 − ηc)α)| , (13)

ZC = |C−(1 − ηc)α〉〈C+(1 − ηc)α|
+ |C+(1 − ηc)α〉〈C−(1 − ηc)α|, (14)

YC = 1

2i
[ZC, XC]. (15)

This yields

4 |ψ〉 〈ψ | = [1 + σx ⊗ XC − σy ⊗ YC + σz ⊗ ZC]. (16)

Observables XC, YC , and ZC are non-Gaussian and cannot be
experimentally measured in a straightforward way. In order to
propose an easy way to measure the witness, we can replace
them by observables that reproduce a Pauli algebra in the
specific subspace of interest, that of states given in Eq. (3).
Accordingly, we replace the operators XC, YC , and ZC as
follows:

XC −→ a + a†

nx
, YC −→ i(a − a†)

ny
, (17)

ZC −→ λza
†a + μz, (18)

where nx, ny, μz, λz are normalization factors depending
weakly on the parameters α, ηc, ηd of the experiment. Such
observables correspond to homodyne measurements at fixed
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angles. Hence, we define a new operator

W̃ = 1 − 1

2

[
1 + σx ⊗ a + a†

nx
− σy ⊗ i(a − a†)

ny

]
, (19)

which is now written in terms of observables which are
currently measured in quantum optics experiments using ho-
modyne detection [1,7,52]. W̃ is only an approximation of
W , so we have to make sure that it is also a witness. We
initially chose nx and ny so that W and W̃ coincide exactly
in the subspace generated by the states of Eq. (6), but this is
not a necessary condition for W̃ to be a witness. We present
in Appendix C the calculations by which the values of nx

and ny are optimized with regards to our objectives. Note
that the term σz ⊗ ZC has been discarded since it does not
significantly change the value of Tr[W ρnoise] and thus does not
help to detect the entanglement of ρnoise. As a matter of fact,
it increases the difficulty to fulfill the condition Tr[W̃ σ ] � 0
for all σ separable.

C. Control of the new witness

We calculate in Appendix C an upper bound of the ex-
pectation value of W̃ for separable states. It depends on the
number of photons in the continuous channel and the noise
parameters ηc and ηd . The proof involves approximating the
Hilbert space of the continuous part of the hybrid state by a
finite dimensional Hilbert space spanned by the Fock states
{|n〉 ; N̂ |n〉 = n |n〉 and n � N} where N̂ is the photon number
operator. The value of the considered cut-off N must of course
increase when the cat size α increases, but this will have an
impact on the ability of the witness to detect entanglement.
Therefore, a balance must be found between the parameters
α, ηc, ηd in order to detect the entanglement of ρnoise.

The detection of entanglement can now be carried out
according to the following procedures: we choose a cut-off
N , compute nx and ny such that no separable states within the
sub-Hilbert space can violate the upper bound of the witness,
and consider that the states we produce are in this subspace.
This method is easy to test experimentally but overeval-
uates the upper bound for separable states, as detailed in
Appendix C, and necessitates the assumption that the states
produced experimentally have no components on the Fock
states |n〉 for n � N .

We propose a second method which requires additional
measurements but does not necessitate us to make this as-
sumption, and that is more accurate with respect to the upper
bound of the separable states. We explain it briefly here and
more precisely in Appendix E. We use the method described
in [53] to estimate the photon number distribution of the
experimental states on the continuous channel. Using an het-
erodyne detection (i.e.m two conjugate homodyne detectors)
on this channel, we are able to measure simultaneously two
noisy orthogonal quadratures of the electromagnetic field.
The sum of the square of these two output approximates
sufficiently well the photon number operator N̂ to obtain
the photon number distribution with a very good precision.
Thanks to this knowledge, we are able to determine precisely
the cut-off N of the continuous channel without assumptions
a priori, and to compute an upper bound on the separa-
ble states more precise than the one obtained by method 1.

FIG. 6. Tr[W̃ ρnoise] as a function of the noise parameters ηc = ηd

(same on both modes), with α = 1 and cutoff at N = 3. Entan-
glement is detected in the green zone, undetected in the red zone.
ηcrit = 0.24.

Finally, we also give in Appendix E, for experimental pur-
poses, an alternative protocol for method 2 which necessitates
only one homodyne detector for the continuous channel but at
the expense of the accuracy in the photon number distribution
estimation.

In summary, the first method uses only one homodyne for
the continuous channel, but necessitates to make assumptions
on the dimension of the Hilbert space. In contrast, the second
method does not necessitate any assumption, thanks to its
evaluation of the photon statistic. However, it requires two
conjugate homodyne detectors to be fully efficient, and con-
sequently more robust to noise.

We illustrate method 1 with two plots. Figure 6 shows the
evolution of Tr[W̃ ρnoise] as a function of the noise parameters
ηc = ηd , with α = 1 and a cutoff at N = 3. We see that the
critical η parameter ηcrit is equal to 24%. We plot in Fig. 7

FIG. 7. Critical percentage of noise vs cutoff in the Fock space.
The gold band corresponds to typical values of noise observed in
state-of-the-art experiments [54]. Green zone shows a zone where
the detection is experimentally easy. Red zone shows values of noise
harder to obtain. ηcrit = 0 corresponds to an ideal case.
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ηcrit against N for α = 1, α = 1.3, and α = 1.6 to show the
sensibility of ηcrit to N and α. Method 2 is intended to be used
on experiments. In order to test its relevance, we simulated ex-
periments, like in part IV of [53], with very good precision in
the photon number distribution, that showed we could obtain
ηcrit ≈ 20% for α = 1, which is reasonable.

IV. SUMMARY

In this work we considered the detection of a useful en-
tangled state currently experimentally produced in quantum
optics experiments. Our entanglement witness requires, to be
evaluated, only the measurements of correlations between two
Pauli matrices on the discrete side, and two quadratures of the
field on the continuous side. Hence, contrary to the detection
of a Wigner function or even of its negativity [33], we do not
need to measure displacement operators, nor do we need to
use photon number resolving (PNR) detectors [55,56]. The
proposed witness can be measured using homodyne detectors
on both sides, discrete and continuous. This would only re-
quire us to lock the phase of the local oscillator at two angles,
to obtain two orthogonal quadratures x̂ and p̂, whereas in a
full tomography the measurement of all possible orthogonal
quadratures is required. Accordingly, the protocol to detect
entanglement is the following:

(1) Lock the phase of the local oscillators on the homo-
dyne detectors to detect x̂.

(2) Record data on both sides.
(3) Compute correlations 〈σX ⊗ a+a†

nx (α,ηX ) 〉ρexpt .
(4) Lock the phase of the local oscillators on the homo-

dyne detectors to detect p̂.
(5) Record data on both sides.
(6) Compute correlations 〈σY ⊗ a−a†

ny (α,ηY ) 〉ρexpt .
(7) If method 2 is chosen, compute the bound on the

separable states.
(8) Compute the value of the witness.
We have presented an implementable hybrid entanglement

witness that can be experimentally detected with only a few
relatively easy to perform measurements. This was achieved,
in a first step, by identifying observables with a continuous
spectrum to Pauli matrices in a specific subspace. Such iden-
tification was possible thanks to the fact that noise, in the
considered subspace, does not increase its dimension. In a
second step, we replaced such observables by others, easier to

FIG. 8. Conceptual schematic for generating hybrid entangle-
ment by deflecting a photon from either a continuous mode |∼〉 or
a discrete mode |•〉 on a photon detector D. The effect of noise

is modelized by mixing either modes with thermal photons on
a theoretical beam splitter. The quadratures x̂, p̂ are measured with
homodyne detectors.

measure, that coincide within the targeted subspace. We hope
this work can help to understand better the subtle features
of hybrid entanglement and, more generally, hybrid quantum
protocols, both theoretically and experimentally.

ACKNOWLEDGMENTS

We acknowledge fruitful discussions with T. Darras, J.
Laurat, L. Garbe, and N. Fabre. G.M. acknowledges support
from the French Agence Nationale de la Recherche (ANR-17-
CE30-0006).

APPENDIX A: THERMAL NOISE

We study the effect of adding thermal photon noise. To do
so, we replace the vacuum that we put on the beam splitter
of the continuous channel by a thermal state, as featured in
Fig. 8.

We derive again the value of the witness. The effect of the
thermal noise on coherent states can be written, in agreement
with Kreis and van Loock [29]:

$thermal(|α〉〈α|) = 1

2π〈nth〉
∫
C

d2γ exp

(−|γ |2
〈nth〉

)
|
√

1 − ηcα − √
ηcγ 〉〈

√
1 − ηcα − √

ηcγ |

= 1

2π〈nth〉
∫
C

d2γ exp

(−|γ |2
〈nth〉

)
D(

√
1 − ηcα)|√ηcγ 〉〈√ηcγ |D†(

√
1 − ηcα)

= 1

2π〈nth〉D(
√

1 − ηcα)

[∫
C

d2γ exp

(−|γ |2
〈nth〉

)
|√ηcγ 〉〈√ηcγ |

]
D†(

√
1 − ηcα)

= D(
√

1 − ηcα)$thermal(|0〉〈0|)D†(
√

1 − ηcα),

where D is the displacement operator such that D(α)|0〉 =
|α〉. From this we can compute again the value of the

witness by computing the effect of the thermal noise on the cat
states.
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An interesting point is that the mean value of linear com-
binations of ladder operators with our thermal state does not
depend on the temperature. This implies that the mean value
of the witness defined in Eq. (19) for our class of noisy state is
the same at all temperatures.

However, we still have to take into account thermal effects
in the boundary of the value of the witness for separable

state given in Appendix C. The number of photons in the
continuous part can only grow, and the critical value of the
maximum number of photons for which our witness is still
positive for separable state would grow. The quantification
of the number of additional photons is obtained through the
formula 〈n〉 = 1

e
hν

kBT −1
.

APPENDIX B: CONCURRENCE

The expression of ρfull noise is in the basis formed by the kets

|0〉, |1〉, |
√

1 − ηcα〉, |−
√

1 − ηcα〉. (B1)

ρnoise = |0〉〈0|
[
|
√

1 − ηcα〉〈
√

1 − ηcα|
(

1

2N−2
+ ηd

2N+2

)
− |

√
1 − ηcα〉〈−

√
1 − ηcα|

(
(ηd ) f (ηc)

2N+2
+ ηd

2N−2

)
+ |−

√
1 − ηcα〉〈

√
1 − ηcα|

(− f (ηc)

2N−2
+ ηd f (ηc)

2N−2

)
+ |−

√
1 − ηcα〉〈−

√
1 − ηcα|

(
ηd

2N+2
+ ηd

2N+2

)]
+ |1〉〈1|

[
|
√

1 − ηcα〉〈
√

1 − ηcα|1 − ηd

2N+2
+ |

√
1 − ηcα〉〈−

√
1 − ηcα| (1 − ηd ) f (ηc)

2N+2

+ |−
√

1 − ηcα〉〈
√

1 − ηcα| (1 − ηd ) f (ηc)

2N+2
+ |−

√
1 − ηcα〉〈−

√
1 − ηcα|1 − ηd

2N+2

]
+ |0〉〈1|

[
|
√

1 − ηcα〉〈
√

1 − ηcα|
√

1 − ηd

2N+N− + |
√

1 − ηcα〉〈−
√

1 − ηcα|
√

1 − ηd f (ηc)

2N−N+

− |−
√

1 − ηcα〉〈
√

1 − ηcα|
√

1 − ηd f (ηc)

2N+N− − |−
√

1 − ηcα〉〈−
√

1 − ηcα|
√

1 − ηd

2N+N−

]
+ |1〉〈0|

[
|
√

1 − ηcα〉〈
√

1 − ηcα|
√

1 − ηd

2N+N− − |
√

1 − ηcα〉〈−
√

1 − ηcα|
√

1 − ηd f (ηc)

2N−N+

+ |−
√

1 − ηcα〉〈
√

1 − ηcα|
√

1 − ηd f (ηc)

2N+N− − |−
√

1 − ηcα〉〈−
√

1 − ηcα|
√

1 − ηd

2N+N−

]
,

with f (ηc) = exp (−2ηcα
2) and N± = N±(α) [see Eq. (3) of the main text].

If we take a specific orthonormalization, that of Eq. (6), the matrix is written

ρfull noise =

⎛⎜⎝w 0 0 z
0 x1 c 0
0 c x2 0
z 0 0 y

⎞⎟⎠, (B2)

with

w(ηc, ηd , α) = [1 + f (1 − ηc, α)]ηd [1 + f (ηc, α)]

N+(α)2
+ [1 − f (ηc, α)]

2N−(α)2
, (B3)

z(ηc, ηd , α) =
√

1 + f (1 − ηc, α)
√

1 − f (1 − ηc, α)
√

1 − ηc[1 − f (ηc, α)]

N−(α)N+(α)
, (B4)

x1(ηc, ηd , α) = [1 + f (1 − ηc, α)](1 − ηd )[1 + f (ηc, α)]

2N+(α)2
, (B5)

x2(ηc, ηd , α) = [1 − f (1 − ηc, α)][1 + f (ηc, α)]

2N−(α)2
+ ηd [1 − f (ηc, α)]

2N+(α)2
, (B6)

c(ηc, ηd , α) =
√

1 + f (1 − ηc, α)
√

1 − f (1 − ηc, α)
√

1 − ηd [1 + f (ηc, α)]

2N−(α)N+(α)
, (B7)

y(ηc, ηd , α) = [1 − f (1 − ηc, α)](1 − ηd )[1 − f (ηc, α)]

2N+(α)2
. (B8)
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APPENDIX C: PROOF THAT W̃ IS A WITNESS

Let us prove that W̃ , as defined in Eq. (19), is an entangle-
ment witness:

W̃ = 1 − 1

2

[
1 + XD ⊗ a + a†

nx
− YD ⊗ i(a − a†)

ny

]
. (C1)

We need to check that

W̃σ � 0 ∀ σ separable. (C2)

This is equivalent to proving that〈
XD ⊗ a + a†

nx
− YD ⊗ i(a − a†)

ny

〉
σ

� 1 ∀ σ separable.

(C3)

The most general separable state can be written

σ =
∑

k

λkσD ⊗ σC, (C4)

with {λk} being a convex set, σD is a 2 × 2 matrix, and σC a
N × N matrix that features the continuous part of the state, N
being the cutoff of the Hilbert space of the continuous part.

We present the proof of Eq. (C3) with a pure state on
the continuous part, the generalization to mixed states being
obtained by convexity. Let

σ̃ = σD ⊗ |ψ〉〈ψ |, (C5)

with

|ψ〉 =
N∑

i=0

λi|i〉, (C6)

with |i〉 an eigenstate of the operator a†a, with
∑N

i=0 |λi|2.
Since σD is a density matrix, we write it

σD =
(
σ11 σ12

σ̄12 1 − σ11

)
, (C7)

with 0 � σ11 � 1 and the following inequality holds:

det(σD) � 0 ⇐⇒ |σ12| �
√

σ11(1 − σ11). (C8)

Now, 〈
XD ⊗ a + a†

nx

〉
σ̃

= (σ12 + σ̄12)

(
N−1∑
i=0

(λ̄iλi+1

√
i + 1 + λiλ̄i+1

√
i + 1)

1

nx

)
. (C9)

〈
YD ⊗ i(a − a†)

ny

〉
σ̃

= (σ12 − σ̄12)

(
N−1∑
i=0

(λ̄iλi+1

√
i + 1 − λiλ̄i+1

√
i + 1)

1

ny

)
. (C10)

Hence, ∣∣∣∣〈XD ⊗ a + a†

nx

〉
σ̃

−
〈
YD ⊗ i(a − a†)

ny

〉
σ̃

∣∣∣∣ =
∣∣∣∣∣(σ12 + ¯σ12)

(
N−1∑
i=0

(λ̄iλi+1

√
i + 1 + λiλ̄i+1

√
i + 1) × 1

nx

)

− i(σ12 − ¯σ12)

(
N−1∑
i=0

(λ̄iλi+1

√
i + 1 − λiλ̄i+1

√
i + 1) × 1

ny

)∣∣∣∣∣ (C11)

=
∣∣∣∣2Re(σ12)2Re(

∑N−1
i=0 (λ̄iλi+1

√
i + 1))

nx
− 2Im(σ12)2Im(

∑N−1
i=0 (λ̄iλi+1

√
i + 1))

ny

∣∣∣∣ (C12)

= 4|σ12|
∣∣∣∣cos(σ12)

∑N−1
i=0 Re(λ̄iλi+1

√
i + 1)

nx
− sin(σ12)

∑N−1
i=0 Im(λ̄iλi+1

√
i + 1)

ny

∣∣∣∣ (C13)

= 4|σ12|
∣∣∣∣cos(σ12)

∑N−1
i=0 |λ̄i||λi+1|

√
i + 1) cos(θk )

nx
− sin(σ12)

∑N−1
i=0 |λ̄i||λi+1|

√
i + 1) sin(θk )

ny

∣∣∣∣ (C14)

= 4|σ12|
∣∣∣∣∣
N−1∑
i=0

|λ̄i||λi+1|
√

i + 1)

(
cos(σ12) cos(θk )

nx
− sin(σ12) sin(θk )

ny

)∣∣∣∣∣, (C15)

where we have used λk = |λk| exp iφk and θk = φk+1 − φk . Finally,∣∣∣∣〈XD ⊗ a + a†

nx

〉
σ̃

−
〈
YD ⊗ i(a − a†)

ny

〉
σ̃

∣∣∣∣ � 2

∣∣∣∣∣
N−1∑
i=0

|λ̄i||λi+1|
√

i + 1 max

(
1

|nx| ,
1

|ny|
)∣∣∣∣∣ (C16)

� 2

∣∣∣∣ f (N ) max

(
1

|nx| ,
1

|ny|
)∣∣∣∣ (C17)

where we have used max
σ11∈[0;1]

√
σ11(1 − σ11) = 1

2 , | cos(σ12 ) cos(θk )
nx

− sin(σ12 ) sin(θk )
ny

| � max( 1
|nx | ,

1
|ny| ) and defined f (N ) =

sup{λi}
∑N−1

i=0 |λi||λ̄i+1|
√

i + 1 with the constraint that the set of λi is convex.
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This upper bound depends on the number of photons since
it is related to the truncation in the Fock basis. Now, we
can either take an arbitrary cutoff and compute a worst-case
scenario with an optimization problem, or we can upper bound
it tightly if we possess the knowledge of the set of {λi}.
The former is presented below, whereas the latter procedure,
to obtain {λi} and upper bound the terms is explained in
Appendix E.

Method 1: Worst-case scenario

We write extensively the optimization problem in
Eq. (C18):

N−1∑
i=0

|λi||λ̄i+1|
√

i + 1,

N∑
i=0

|λi|2 = 1. (C18)

Let us write λk = |λk|eiφk . Now Re(λk λ̄k+1) =
|λk||λk+1| cos(φk − φk+1). If we want to maximize this
quantity, we need φk − φk+1 = 2nπ . This constrain can
indeed be reached. Without loss of generality, we can
consequently consider that the λk are positive reals. This
hypothesis is done from now on.

If we use the formalism of Lagrange multipliers, we need
to nullify the gradient of

L (λk, λ) = f (λk ) − μg(λk ), (C19)

with respect to every λk and μ, with

f (λk ) =
N−1∑
i=0

|λi||λi+1|
√

i + 1,

g(λk ) = 1 −
N∑

i=0

|λi|2. (C20)

We obtain

∂L

∂μ
= −

(
1 −

N∑
i=0

|λi|2
)

= 0,

∀ j ∈ [1; N − 1]
∂L

∂λk
= x j+1

√
j + 1 + x j−1

√
j + 2μx j = 0,

(C21)
∂L

∂λ0
= x1

√
1 + 2μx0 = 0,

∂L

∂λN
= xN−1

√
N + 2μxN = 0.

We can recast the last three lines into the following linear
problem:⎛⎜⎜⎜⎜⎜⎝

2μ
√

1 · · ·√
1 2μ

√
2 · · ·

...
. . .

...

· · · √
N − 1 2μ

√
N

· · · ...
√

N 2μ

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

x0

x1
...

xN−1

xN

⎞⎟⎟⎟⎟⎠ = 0. (C22)

Now we have

M(N )�x = �0, (C23)

where M is the matrix displayed in (C22) and �x is the vector.
There exists a solution for

det [M(N )] = 0. (C24)

The determinant of M, which we note dN , follows the recur-
rence relation

dN+2(μ) = 2μdN+1(μ) − (N + 1)dN (μ). (C25)

We can recognize the recurrence relation of the Hermite poly-
nomials. The protocol to solve the optimization problem is the
following:

(1) For a given N , compute the roots of the N th Hermite
polynomials.

(2) For every root, compute the M matrix, and look for the
kernel of M.

(3) Keep �x for which all terms have the same sign.
(4) Normalize it using the previous Lagrangian constraint.
Since f (N ), even after optimization, is above 1, we will

have to damp our witness to ensure it is always positive for
a separable state. This, in turn, will decrease the number of
entangled states that can be detected. We are able to produce
a witness for experimentally interesting values; we can obtain
negative values for cat states of size 1 and for which the noise
ηc, ηd can go up to 0.25, provided N is not above 4.

APPENDIX D: NAIMARK EXTENSION

We give explicit calculations of the Kraus operators. We
looked for expressions of Uc and Ud through

ρnoise = Trrc,rd (Uc ⊗ Ud )(ρ ⊗ R )
(
U †

c ⊗ U †
d

)
, (D1)

with R a reservoir at zero temperature,

R =

⎛⎜⎝1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎠, (D2)

and

Uc,d =

⎛⎜⎜⎜⎜⎝
eiβ1 cos (δ) 0 0 eiβ2 sin (δ)

0 eiφ1 cos (γ ) eiφ2 sin (γ ) 0

0 −e−iφ2 sin (γ ) e−iφ1 cos (γ ) 0

−e−iβ2 sin (δ) 0 0 e−iβ1 cos (δ)

⎞⎟⎟⎟⎟⎠, (D3)
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so that they could modelize exchange of photons between the
system and the reservoirs. We recall that ρ does not live in the
same exact basis than ρfull noise which is why our Naimark’s
transformation is a formal one:

ρ =

⎛⎜⎜⎜⎝
0 0 0 0
0 1

2
1
2 0

0 1
2

1
2 0

0 0 0 0

⎞⎟⎟⎟⎠. (D4)

In the basis

|+〉d |0〉rd
, |+〉d |1〉rd

, |−〉d |0〉rd
, |−〉d |1〉rd

, (D5)

where d stands for discrete and rd discrete reservoir, the
expression of Ud is given by the following matrix:

Ud =

⎛⎜⎜⎝
1 0 0 0
0

√
1 − ηd

√
ηd 0

0 −√
ηd

√
ηd 0

0 0 0 1

⎞⎟⎟⎠. (D6)

On the continuous side, in the basis:

|+〉c|0〉rc
, |+〉c|1〉rc

, |−〉c|0〉rc
, |−〉c|1〉rc

, (D7)

where c stands for discrete and rc continuous reservoir, the
expression of Uc is given by

Uc =

⎛⎜⎜⎜⎜⎜⎝

√
(1+K )(1+ f )

N+ 0 0
√

(1−K )(1− f )
N+

0
√

(1−K )(1+ f )
N−

√
(1+K )(1− f )

N− 0

0 −
√

(1+K )(1− f )
N−

√
(1−K )(1+ f )

N− 0

−
√

(1−K )(1− f )
N+ 0 0

√
(1+K )(1+ f )

N+

⎞⎟⎟⎟⎟⎟⎠, (D8)

with K = exp [−2(1 − ηc)α2], f = exp (−2ηcα
2). We obtain

ρcontinuous noise = Trprc,rd (Uc ⊗ 1)(ρ ⊗ R )
(
Uc† ⊗ 1

)
, (D9)

ρdiscrete noise = Trprc,rd (1 ⊗ Ud )(ρ ⊗ R )
(
1 ⊗ Ud†), (D10)

ρdiscrete noise =

⎛⎜⎜⎜⎜⎝
ηd

2 0 0 0

0 1−ηd

2

√
1−ηd

2 0

0
√

1−ηd

2
1
2 0

0 0 0 1

⎞⎟⎟⎟⎟⎠, (D11)

and ρcontinuous noise equal to ρnoise defined in (7), with ηd set
to 0 (the shape of the matrix does not change). We note that
ρdiscrete noise can be expressed as the convex sum of two pure
states ρent = |ψent〉〈ψent| and ρsep = |ψsep〉〈ψsep|,

ρdiscrete noise = 1 + (1 − ηd )

2
ρent + 1 − (1 − ηd )

2
ρsep,

(D12)

with |ψent〉 = |0〉|−〉+√
(1−ηd )|1〉|+〉√
ηd

an entangled state, and
|ψsep〉 = |0〉|+〉 a separable one. The computations of the
Kraus operators, from Uc and Ud , is straightforward.

APPENDIX E: CONTROL A POSTERIORI

We present here method 2 described briefly in the main
text. It consists of obtaining the photon number distribution,
and then to use this information to obtain a precise bound for
the witness described in Appendix C.

1. Photon number statistics evaluation

In this section we make a brief summary of the tech-
nique presented in the article Characterizing photon number
statistics using conjugate optical homodyne detection [53] to
evaluate very precisely the photon number distribution of a
given experimental state thanks to two conjugate homodyne

detectors. Given these apparatus, we measure simultaneously
two orthogonal quadratures of the electromagnetic field on
two different modes, which have been separated by a beam
splitter. We shall denote them X̂ and P̂, where

X̂ = 1√
2

[̂a† exp (iθ ) + â exp (−iθ )], (E1)

P̂ = i√
2

[̂b† exp (iθ ) − b̂ exp (−iθ )]. (E2)

θ is the phase of the local oscillator of one of the homodyne,
â† and â are photon creation and annihilation on one mode,
and b̂† and b̂ on the other one. This allows us to form the
following observable:

Ẑ = X̂ 2 + P̂2. (E3)

We can see it as an approximation of the photon number
operator N̂ (remember that X̂ and P̂ are not defined on the
same mode). The probability distribution function PZ (z) of
this observable depends only on the diagonal terms ρnn of the
density matrix, according to the equation

PZ (z) = exp(−z)
∞∑

n=0

ρnn

n!
zn. (E4)

It means that the photon number distribution can be evaluated
without having to scan the phase of the LO. Given a repeated
sequence of measurement of Ẑ , we obtain PZ (z). Then, thanks
to a Bayes inversion and an algorithm of maximum likeli-
hood, we are able to infer the diagonal terms of the density
matrix ρnn.

2. Precise upper bounding of the witness for separable states

This in turn allows us to upper bound Eq. (C17) and certify
that our witness cannot produce false positives. The compu-
tation of Appendix C is established for pure states but the
upper bounding we propose stays true in the general case of
mixed states. The calculations carried out in q. (C18) involve
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the terms of the sup and subdiagonal of the density matrix, but
they can be bounded by the diagonal terms, according to the
following expression:

|ρi,i±1| �
√|ρi,i||ρi+1,i+1|. (E5)

This relation is an equality in the case of pure states. If we
consider a mixed state:

ρ =
∑

i

pi|ψi〉〈ψi|, (E6)

with

|ψi〉 =
∑

k

λk,i|k〉, (E7)

we have

|ρi,i+1| =
∣∣∣∣∣∑

k

pkλi,k λ̄i+1,k

∣∣∣∣∣ (E8)

�
∑

k

|pkλi,k λ̄i+1,k| (E9)

=
∑

k

√
p2

k|λi,k|2|λ̄i+1,k|2 (E10)

�
√∑

k

pk|λi,k|2
∑

l

pl |λi+1,l |2 (E11)

= √|ρi,i||ρi+1,i+1|. (E12)

The additional experimental information we measured makes
it possible for us to define a tight upper bound for the sepa-
rable states that does not necessitate any prior knowledge of
the states that are produced. Note that recently a protocol has
been presented to directly estimate any element of a density

matrix with a heterodyne detection [57]. Our method is less
generic, but simple and sufficient for our needs.

3. A protocol with only one homodyne detector

We present a simple protocol to make a rough evaluation
of the photon number distribution ρnn that only necessitates
one homodyne detector, and where the quadratures will not
be measured jointly. We proceed in two times, recording suc-
cessively the values of X̂ , and then the values of P̂ for two
different set of states. We give indices 1 and 2 to the values
obtained for, respectively, the first set of experiments and the
second. Since we can not match anymore the right value of X̂
to that of P̂, we will form

〈Ẑ〉 = 〈X̂ 2 + P̂2〉 �
〈
X̂ 2

1 + sup
P̂2

P̂2
2

〉
= 〈Ẑsup〉. (E13)

Hence, we do not measure Ẑ , but with a sufficiently important
number of recorded data points, we can overevaluate it. As
a consequence, the photon number distribution ρnn that we
finally obtain will be shifted towards the higher values. The
population terms of the low n of ρnn will be underestimated,
and that of the high values of n will be overestimated. Conse-
quently, this distribution will allow us to form an upper bound
on the witness. The more the experimental states produced are
squeezed on one quadrature, say the X̂ quadrature, the less 〈Ẑ〉
will be affected by the value of the other quadrature P̂. As a
consequence, with sufficiently squeezed states 〈Ẑsup〉 will be
close to 〈Ẑ〉. This will allow us to improve the bound of the
witness from method 1. Note that other ways to form the upper
bound of Eq. (E13) can be envisaged, for instance matching
the most important value of P̂2 with that of X̂1, and then iterate
this procedure.
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