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Quantum adiabatic machine learning by zooming into a region of the energy surface
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Recent work has shown that quantum annealing for machine learning, referred to as QAML, can perform
comparably to state-of-the-art machine learning methods with a specific application to Higgs boson classifi-
cation. We propose QAML-Z, an algorithm that iteratively zooms in on a region of the energy surface by
mapping the problem to a continuous space and sequentially applying quantum annealing to an augmented
set of weak classifiers. Results on a programmable quantum annealer show that QAML-Z matches classical
deep neural network performance at small training set sizes and reduces the performance margin between
QAML and classical deep neural networks by almost 50% at large training set sizes, as measured by area under
the receiver operating characteristic curve. The significant improvement of quantum annealing algorithms for
machine learning and the use of a discrete quantum algorithm on a continuous optimization problem both opens
a class of problems that can be solved by quantum annealers and suggests the approach in performance of
near-term quantum machine learning towards classical benchmarks.
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I. INTRODUCTION

Machine learning has gained an increasingly important
role in scientific discovery across chemistry, biology, environ-
mental science, and physics [1–5], including in the discovery
of the Higgs boson [6]. Various quantum computing algo-
rithms have been proposed for machine learning [7], including
support vector machines, principal component analysis, least-
squares fitting, topological analysis, and other optimization
problems [8–13]. Many of these algorithms include strict data
assumptions that provide critical caveats regarding sparsity,
state preparation, and rank [14,15]. Moreover, fault-tolerant
quantum computing will be required to implement the large
quantum circuits necessary for the proposed algorithms,
which has not yet been experimentally established at a scale
necessary for the implementation of such algorithms. Simi-
larly, quantum random access memory is typically required to
store data, but engineering challenges persist in developing a
sufficiently large memory [16].

One promising near-term avenue for quantum machine
learning is quantum annealing [17] (for recent reviews
see [18–20]) which can, e.g., perform binary classification
[21,22], learn Bayesian network structure [23], implement
quantum Boltzmann machines [24], train deep generative
models [25], and implement support vector machines [26].
Quantum annealing is the only current quantum comput-
ing paradigm that has resulted in architectures with a large
enough number of—albeit relatively noisy—qubits [27–29]
to address both real-world and fundamental science prob-

lems, e.g., in air traffic control [30], computational biology
[31–33], and high-energy physics [34–36]. Under the adi-
abatic theorem of quantum mechanics, quantum annealing
evolves from an initial transverse field Hamiltonian to the
target problem Hamiltonian, ensuring that the system remains
in the ground state if the system is perturbed slowly enough,
as given by the energy gap between the ground state and the
first excited state [37–39]. The ground state of the problem
Hamiltonian is then the solution (as in adiabatic quantum
computing [40,41]), although thermal excitations may move
the system out of the ground state [42–48], which can be
beneficial [49–52]. It is crucial to observe that evidence of
a quantum speedup in quantum annealing remains uncertain
[53–55], although quantum phenomena have been observed
in D-Wave quantum annealers [56–58]. While this remains a
speculative topic, quantum annealers may exhibit advantages
other than a speedup, such as sampling from nonequilibrium
distributions prepared during the anneal [59–61].

Here we propose a quantum algorithm inspired by the pre-
vious state-of-the-art quantum annealing for machine learning
(QAML) algorithm [34], which constructs a single strong
classifier from a linear combination of weak classifiers with
binary coefficients of 1 or 0. We propose two modifica-
tions to QAML, zooming into the energy surface to optimize
real-valued coefficients and artificially augmenting the set of
weak classifiers to create a stronger ensemble, and implement
the proposed algorithm (QAML-Z) on the D-Wave quantum
annealer to benchmark the results on a Higgs classification
problem, with available source code [62] and data [63].
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II. QAML-Z ALGORITHM

A. Background: QAML algorithm

In the original QAML algorithm, a training set with S
examples of labeled data {xτ , yτ } (where xτ is an input vector
and yτ = ±1 is a binary label for signal and background) is
optimized with a set of N weak classifiers ci, each of which
gives ci(xτ ) = ±1/N for a signal or background prediction.
Given spins si ∈ {0, 1} obtained by transforming up and down
spins, let R(xτ ) be a strong classifier given by

R(xτ ) =
N∑

i=1

sici(xτ ), (1)

i.e., an ensemble of the weak classifiers where each weak
classifier is either turned on or off (weight 1 or 0). To minimize
classification error, we simply minimize the distance between
y and R:

||y − R||2 =
S∑

τ=1

∣∣∣∣∣yτ −
N∑

i=1

sici(xτ )

∣∣∣∣∣
2

(2a)

= ||y||2 − 2
N∑

i=1

S∑
τ=1

sici(xτ )yτ

+
N∑

i=1

N∑
j=1

S∑
τ=1

sici(xτ )s jc j (xτ ). (2b)

Removing the spin-independent term ||y||2 and the self-
spin interactions c2

i (xτ ) to construct a problem suitable for
quantum annealing, we rewrite the Hamiltonian as follows
(scaling by a factor of 2 for convenience after manipulating
indices):

H =
N∑

i=1

N∑
j>i

S∑
τ=1

sici(xτ )s jc j (xτ ) −
N∑

i=1

S∑
τ=1

sici(xτ )yτ . (3)

For convenience, we define the variables:

Ci j =
S∑

τ=1

ci(xτ )c j (xτ ), (4)

Ci =
S∑

τ=1

ci(xτ )yτ . (5)

Hence, in the original QAML algorithm, the following Ising
model Hamiltonian is minimized after transforming the range
to si ∈ {−1, 1}, adding an additional λ regularization hyper-
parameter to penalize nonzero si [22]:

H =
N∑

i=1

(
λ − Ci + 1

2

N∑
j>i

Ci j

)
si + 1

4

N∑
i=1

N∑
j>i

Ci jsis j . (6)

We observe the following limitations in the QAML algo-
rithm: (i) arbitrary linear combinations of weak classifiers ci

are forbidden because the strong classifier R is simply formed
by turning weak classifiers ci on or off and (ii) the diversity
of the ensemble is limited by the selection of weak classifiers.
If the set of weak classifiers can be expanded, more nuanced
ensembles with more complex decision boundaries can be
learned.

FIG. 1. Zooming extension. While QAML only performs one
anneal, QAML-Z iteratively updates the weight μi (indicated by the
dot) of the ith weak classifier in the strong classifier ensemble by
performing a binary search over the energy surface using spin-up
and spin-down outcomes.

B. Zooming extension

By iteratively performing quantum annealing, the binary
weights on the weak classifiers can be made continuous, re-
sulting in a stronger classifier. This is achieved by performing
a search on the real numbers, effectively zooming in on a
region of the energy surface each iteration (Fig. 1). We denote
the zooming variant of quantum annealing for machine learn-
ing as QAML-Z. Under this reformulation, the weights of the
classifiers may be extended from the set {0, 1} to the continu-
ous interval [−1, 1], enabling the subtraction of classifiers to
reduce cross correlations between weak classifiers.

Let each qubit have a mean μi(t ) (starting at μi(0) = 0
for all i) and let the search breadth be σ (t ) = bt , where
t = 0, 1, . . . , T − 1 for T iterations and 0 < b < 1 is a free
parameter. Each iteration, the Hamiltonian is centered around
the previous mean and the search breadth is narrowed. Receiv-
ing spin up or spin down corresponds to shifting the new mean
either right or left by a distance given by the search breadth.
The weight given to each classifier is thus updated according
to the old mean and consequent shift, resulting in a mod-
ified Hamiltonian according to the substitution sici(xτ ) →
σ (t )sici(xτ ) + μi(t )ci(xτ ). The full expression is

H (t ) =
N∑

i=1

N∑
j>i

S∑
τ=1

(σ (t )sici(xτ ) + μi(t )ci(xτ ))

×(σ (t )s jc j (xτ ) + μ j (t )c j (xτ ))

−
N∑

i=1

S∑
τ=1

(σ (t )sici(xτ ) + μi(t )ci(xτ ))yτ (7a)

=
N∑

i=1

(
−Ci +

N∑
j=1

μ j (t )Ci j

)
σ (t )si

+
N∑

i=1

N∑
j>i

Ci jσ
2(t )sis j, (7b)

where Eq. (7b) is derived after dropping constants from
the Hamiltonian and applying the same Ci and Ci j nota-
tion as in QAML. This new Hamiltonian may be iteratively
optimized for t = 0, 1, . . . , T − 1 to update μi(t + 1) =
μi(t ) + siσ (t + 1), resulting in the strong classifier R(xτ ) =∑N

i=1 μi(T − 1)ci(xτ ).
Since the zooming algorithm increases the possibil-

ity of overfitting, we propose a two-step randomization
procedure to regularize the iterative process. After each it-
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eration, for each qubit si that the energy worsens by the
update (i.e., E [μ1(t + 1), . . . , μi(t + 1), . . . , μN (t + 1)] >

E [μ1(t ), . . . , μi(t ), . . . μN (t )]), we apply the flip si → −si

with monotonically decreasing probability p f (t ), similar to
an annealing schedule in classical simulated annealing. Sub-
sequently, all qubits are uniformly randomly flipped from si to
−si with probability q f (t ) where q f (t ) < p f (t ) for all t , akin
to a cluster-flip move in variants of simulated annealing. This
serves to prevent the strong classifier from overfitting as well
as to push it out of local minima. The functions p f and q f are
specified in the supplementary code.

To take full advantage of these continuous weights, we aug-
ment the set of original weak classifiers hi(xτ ) that returns a
value in [−1, 1]. For each hi, multiple classifiers are generated
by shifting the threshold to round to ±1:

cil (xτ ) = sgn[hi(xτ ) + δl]/N, (8)

where N is the number of classifiers, l ∈ Z : −A � l � A is
the offset, and δ is the step size. With a larger set of weak
classifiers to ensemble into a strong classifier, a more complex
decision boundary may be formed.

With the augmented set of classifiers, the Hamiltonian is
now given by

H (t ) =
A∑

l=−A

[
N∑

i=1

(
−Cil +

N∑
j>i

μ jl (t )Ci jl

)
σ (t )sil

+
N∑

i=1

N∑
j>i

Ci jlσ
2(t )sil s jl

]
, (9)

where H (t ) is iteratively optimized for t = 0, 1, . . . to up-
date μil (t + 1) = μil (t ) + silσ (t + 1). Similarly to before, we
have defined

Ci jl =
S∑

τ=1

cil (xτ )c jl (xτ ), (10)

Cil =
S∑

τ=1

cil (xτ )yτ . (11)

Quantum annealing yields a distribution of excited states,
allowing the construction of a stronger classifier than one
based purely on ground-state results. We take the supremum
over the set of excited states’ background rejection values for
each efficiency in the receiver operating characteristic (ROC)
curve according to a validation set of equal size to the training
set.

In the experimental demonstration of the algorithm, we set
an offset of A = 3 and a step size of δ = 0.0075. Addition-
ally, we set the zoom parameter b = 1

2 to perform a binary
search over the real numbers. Due to the definition of σ (t ),
the marginal impact of each iteration follows an exponential
decay. Thus, QAML-Z was trained for only eight iterations.

III. HIGGS BOSON CLASSIFICATION

As an application of QAML-Z, we revisit the Higgs op-
timization problem, in which kinematic variables describing
diphoton processes corresponding either to a Higgs boson
decay (signal) or other standard model processes (back-

ground) are used to identify simulated Higgs bosons [34]. The
simulation of H → γ γ (Higgs to diphoton decay) is limited
to the main process of gluon fusion, produced with PYTHIA

6.4 [64], while subleading contributions are not included. The
simulation of the background closely follows the one from
Ref. [65], produced with SHERPA 1.1 [66], and is limited to the
prompt diphoton production, that includes quark-antiquark
annihilation as well as gluon fusion at the two-loops level.
The simulated events (provided publicly [63]) are restricted
to realistic detector acceptance and with trigger requirements
that lie directly under the Higgs peak, that is, restricting to
events having photons with |η| < 2.5 (η = − log[tan(θ/2)]
is the pseudorapidity, where θ is the angle with the beam
axis), with one photon having pT > 32 GeV and the other
having pT > 25 GeV (pT is the transverse momentum, i.e.,
the momentum perpendicular to the axis defined by the col-
liding protons). The total diphoton invariant mass is restricted
to be between 122.5 and 127.5 GeV. We evaluated the per-
formance of the QAML-Z algorithm on the programmable
D-Wave 2X quantum annealer at the University of Southern
California’s Information Sciences Institute with 1098 physical
qubits [29]1. The Ising model is generated from weak classi-
fiers developed from kinematic variables such as transverse
momentum, pseudorapidity, and the invariant mass of the
diphoton system. However, the QAML-Z algorithm augments
this set of weak classifiers with regular offsets of the deci-
sion boundary, as described above. In our analysis, we seek
primarily to use the Higgs classification problem as a context
for providing a clear comparison between QAML-Z and state-
of-the-art algorithms in both quantum and classical machine
learning. A precise measurement of the Higgs mechanism is
beyond the scope of this paper.

A. Quantum annealing on D-Wave

From the 1098 physical qubits of the D-Wave 2X annealer,
only 33 fully connected logical qubits were available due
to the Chimera graph architecture. Implementing the exact
Ising model with all cross terms on the scale of the Higgs
optimization problem would require hundreds of fully con-
nected qubits; therefore, we prune the cross terms in the Ising
Hamiltonian, retaining only the largest 5% of weights. This
reduces the sensitivity to analog errors associated with small
weights [67] and also allows a minor embedding operation
[45–48] in combination with the classical polynomial-time
fix_variables procedure in the D-Wave API to program
the problem on the quantum annealer. Each logical qubit
is mapped to a chain of physical ferromagnetically coupled
qubits on the D-Wave device, where the internal coupling
of each chain may be set to prevent thermal excitations and
other noise from breaking the chain while still ensuring that
the Hamiltonian drives the system dynamics [68]. The cou-
pling within chains is scaled to the largest coupling in the
Hamiltonian and decayed with increasing iteration number.
Random errors on the local fields and couplers are reduced
by randomizing the encoding by sign flips (gauge averag-

1This device has since been replaced by the newer D-Wave Advan-
tage quantum annealer.
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FIG. 2. Area under the ROC curve for the QAML-Z extension,
simulated annealing (SA-Z), a logistic regression (LR-Z), the orig-
inal QAML, a deep neural network (DNN), and XGBoost (XGB)
[69] as a function of training set size. While QAML-Z matches
DNN performance at small training set sizes, it decreases the margin
between QAML and DNN by 47% for the largest training sets. Error
bars indicate 1σ error, including both variation over training sets and
statistical error estimated by reweighting samples from a Poisson
distribution.

ing). Annealing is performed with a 5 μs anneal time, with
minimal variation in performance observed for longer anneal
times (not shown). The anneal times were selected to attempt
to achieve high performance with the shortest anneal times
possible using the D-Wave 2X device, suggesting that future
quantum annealers may achieve a wall clock time advantage
over simulated annealing if the performance is sustained with
lower anneal times.

As in QAML, we use an ensemble of excited states to
strengthen the classifier. To select the excited states, we place
two criteria: a maximum distance d to the lowest-energy state
found [i.e., an excited state must have an energy less than
(1 − d )Eground for Eground < 0 or less than (1 + d )Eground for
Eground > 0], and a maximum total number of excited states,
ne, to be selected. To prevent an exponential increase in the
tree of excited states generated by the zooming algorithm, we
also decay the values of d and ne by iteration number. The
final classifier is then defined by maximizing the area under
the ROC curve on a validation set [equivalent to the validation
set used for deep neural network (DNN) hyperparameter tun-
ing], selecting the best-performing excited states for different
false-positive rates.

B. Results

Compared to the QAML algorithm, the area under the re-
ceiver operating characteristic (AUROC) curve is significantly
improved by QAML-Z on all training set sizes (Fig. 2). We
select the best-performing classical classifiers (a deep neural
network and XGBoost) from the QAML Higgs optimization
benchmark, although we optimize additional parameters of

FIG. 3. QAML-Z performance on the test set vs zooming
iteration number (training set size of 1000). Top: Significant im-
provements by QAML-Z can be separately seen for classifier
augmentation and zooming over the original QAML algorithm. Bot-
tom: Ising model energy on the test set improves monotonically,
indicating negligible overfitting. Error bars indicate 1σ error. Here
and in all subsequent figures, the energy is given in units correspond-
ing to the Hamiltonian in Eq. (9), which for our purposes may be
considered to be dimensionless.

the classical algorithms to further improve their performance
from Ref. [34]. A logistic regression (LR-Z) directly opti-
mizes the mean-squared error of classification over the set of
augmented classifiers that QAML-Z is applied to.

We observe the effectiveness of both the zooming and
augmentation aspects of QAML-Z (Fig. 3). The area under
the ROC curve illustrates both the impact of classifier aug-
mentation and the impact of zooming, showing advantages in
both the classifier augmentation and zooming methodologies.
Examining the normalized Ising model energy as a function
of iteration number, the zooming algorithm is also shown to
monotonically decrease the Hamiltonian energy with addi-
tional anneals.
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C. Simulated annealing benchmark

Given the analog of quantum annealing to simulated
annealing [17], we also implement the proposed zooming
algorithm in a simulated annealing framework, reporting on
simulated annealing with zooming (SA-Z). To attempt to
match the improved quantum annealing performance, we also
propose simulated annealing with excited states and zooming
(SAE-Z), in which the supremum over a set of excited states
from simulated annealing is used to improve the area under
ROC curve in the same manner as in the quantum algorithm.
While a ground-state solution minimizes error on the train-
ing set, it may overfit to the training data and cause poor
generalization on the test set. Hence, the inclusion of excited
states—either thermal noise in simulated annealing or sam-
pled from the quantum annealer—can improve performance
on the test set. Moreover, we expect a quantum annealer
that evolves adiabatically to sample from the quantum Gibbs
distribution. Hence sampling from excited states reflects the
inclusion of information that would not be easily classically
available, and can reasonably be expected to generate a perfor-
mance difference in comparison with classical methods such
as simulated annealing.

We perform simulated annealing using the Metropolis up-
date rule, flipping a random spin to construct a trial spin
vector �s ′ from the spin vector �s [70]. If the energy H (�s ′) <

H (�s), then the new vector �s ′ is accepted with probability 1.
However, if H (�s ′) > H (�s), the trial vector is accepted with
probability exp[−β(H (�s ′) − H (�s))]. After randomly select-
ing a spin to flip N times (where �s has N spins), a sweep has
been completed.

The inverse temperature β is stepped with a linear in-
verse temperature schedule from βi = 0.1 to β f = 5 over
W = 1000 sweeps, incrementing the inverse temperature by
β f −βi

W after each sweep. This process is repeated 1000 times,
and the lowest-energy state is selected in the SA-Z algorithm.
Inverse temperature schedules reaching β as large as 10 and
performing up to 100,000 sweeps per read were found to have
no significant impact on the results. To assemble excited states
for the SAE-Z benchmark, we perform 5000 sweeps for 5000
reads and select excited states using the same criteria as for
quantum annealing.

QAML-Z performs better than SA-Z on all training sets,
with a statistically significant advantage at larger training set
sizes (Fig. 4). This suggests that both simulated and quantum
annealing (QA) methods found similar ground states at the
end of the zooming procedure, although they likely took dif-
ferent paths to the final state due to the fact that SA evolves
purely under the classical Hamiltonian, whereas QA evolves
under the transverse field as well. When including excited
states in simulated annealing, SAE-Z achieves statistically
equivalent performance to QAML-Z (Fig. 4), with excited
states selected from a validation set improving the general-
ization ability by reducing overfitting on the training set.

A slight discrepancy remains between the two annealing
processes, due to the sampling of excited states from distinct
distributions of resulting states from simulated and quan-
tum annealing, as well as the analog errors introduced in
the implementation on the D-Wave device that are absent in
the SA case. However, on the training set, we observe that

FIG. 4. Comparison of quantum and simulated annealing for the
new and original algorithms, measured by area under ROC (AUROC)
curve. Although QAML-Z outperforms QAML and SA-Z, the in-
clusion of excited states in the SAE-Z variant reproduces QAML-Z
performance to one standard deviation. Error bars indicate 1σ error.

SA matches or bests QA with regards to minimum observed
energy when they are each supplied identical quadratic uncon-
strained binary optimization problems generated during the
zooming algorithm (Fig. 5).

D. Other classical benchmarks

We provide three additional classical benchmarks to com-
pare QAML-Z performance: a deep neural network (DNN),
XGBoost algorithm (XGB), and logistic regression (LR-Z).

FIG. 5. Difference between the lowest energy of quantum an-
nealing (QA) and simulated annealing (SA). SA finds a lower
minimum energy than QA given identical initial Hamiltonians. Error
bars show 1σ error.
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The LR-Z algorithm is a logistic ridge regression on the aug-
mented set of kinematic classifiers used by QAML-Z. The
DNN and XGB algorithms are applied to the raw kinematic
variables scaled to mean zero and unit standard deviation from
the training set and transformed by a principal component
analysis to cover 95% of variance. Just as excited states in
QAML-Z are selected by a validation set of equal size to the
training set, the hyperparameters of the DNN and XGB are
optimized over a similar validation set. While the original
DNN benchmark for the Higgs optimization problem [34]
fixed a given DNN architecture and optimized other hyperpa-
rameters, we perform Bayesian optimization over the number
of neurons in two hidden layers (2 to 1024 neurons in the
first hidden layer and 2 to 4096 neurons in the second hidden
layer), L2 regularization (2−12 to 0.5), and patience parameter
(0.25 to 32) of the DNN. Similarly, we optimize the number
of estimators (30 to 10 000), tree depth (1 to 10), learning rate
(0.0001 to 0.3), γ regularization (0 to 15), data set subsam-
pling (0.2 to 1.0), and feature subsampling (0.3 to 1.0).

IV. CONCLUSION

We find that the QAML-Z extension of quantum annealing
over a continuous space of weights on a set of augmented
weak classifiers yields strong classifiers that improve a state-
of-the-art quantum machine learning algorithm for quantum
annealers, which was previously benchmarked in a study of
Higgs decay classification [34]. Although QAML-Z remains
at a disadvantage to a deep neural network (DNN) for suffi-
ciently large data sets, the performance gap between QAML
and DNN has been reduced by a factor of 2 by applying
QAML-Z. Moreover, the successful performance at small
training set sizes and short 5 μs anneal times associated with
QAML-Z suggests promising applications for online learning
on problems that change rapidly, either using a quantum an-
nealer or a field-programable gate array device.

We observe that a logistic regression with LR-Z performs
as well as the DNN, which suggests that the augmented set of
weak physics-based classifiers is a highly effective method of
feature engineering. Although QAML-Z cannot directly min-
imize least-squares error due to the lack of self-spin terms in
the Ising model, it closely matches the performance of LR-Z
and DNN at small training set sizes, validating the effective-

ness of the quantum annealing approach. Moreover, QAML-Z
significantly outperforms an optimized XGBoost algorithm
for small training sets, demonstrating competitiveness with
state-of-the-art classical machine learning algorithms.

The extent of improvement of QAML-Z over QAML for
Higgs decay classification suggests that noisy intermediate-
scale quantum devices may be approaching real-world appli-
cability in machine learning despite their limitations. As var-
ious metrics affecting the performance of quantum annealing
technology continue to improve [71–77], we anticipate that
further work on benchmarking wall-clock times of classical
and quantum devices will benefit greatly from practically rel-
evant algorithms such as QAML-Z, where performance equal
to classical state-of-the-art machine learning has already been
demonstrated in certain regimes. More broadly, the favorable
results of zooming in on an Ising model to achieve a solution
unreachable by discrete optimization provides future direction
for quantum annealing applications, potentially extending to
quantum machine learning algorithms beyond QAML.
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