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Quantum cellular automata and quantum field theory in two spatial dimensions
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Quantum walks on lattices can give rise to one-particle relativistic wave equations in the long-wavelength
limit. In going to multiple particles, quantum cellular automata (QCA) are natural generalizations of quantum
walks. In one spatial dimension, the quantum walk can be “promoted” to a QCA that, in the long-wavelength
limit, gives rise to the Dirac quantum field theory (QFT) for noninteracting fermions. This QCA/QFT corre-
spondence has both theoretical and practical applications, but there are obstacles to similar constructions in two
or more spatial dimensions. Here we show that a method of construction employing distinguishable particles
confined to the completely antisymmetric subspace yields a QCA in two spatial dimensions that gives rise to
the two-dimensional (2D) Dirac QFT. Generalizing to 3D will entail some additional complications, but no
conceptual barriers. We examine how this construction evades the “no-go” results in earlier work.
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I. INTRODUCTION

If one applies quantum theory to sets of bits, the system’s
Hamiltonian will cause them to evolve in time just as they do
in a computer. It is natural, therefore, to view unitary evolution
as a kind of information processing, and to investigate the
connection between quantum systems and information. In the
four decades since Paul Benioff hatched the idea of a quantum
computer [1], the field of quantum information has grown into
one of the pillars of theoretical physics. But how deep is the
connection between information and the physical world? Does
what we observe as the physical world rest upon a substrate of
information processing? Is the universe itself an evolving set
of bits, a quantum computer, and, if so, what is its program?

One can trace the history of such questions to a famous
1982 talk in which Richard Feynman noted that classical
computers are ill suited to simulating quantum systems [2].
The difficulties stem from the fact that the wave functions of a
quantum system lie in a vector space whose dimension grows
exponentially with the system size, and so even the task of
recording a system’s state is an exponentially difficult problem
on a classical machine. Could a quantum computer operat-
ing on qubits rather than bits avoid that daunting blowup,
Feynman asked? Feynman made the “guess” that every finite
quantum mechanical system can indeed be described by an-
other system that at each point in space-time has only two
possible base states (a qubit), corresponding to that point
being either occupied or unoccupied. Today we know such
a system as a quantum cellular automaton (QCA) [3–11].

In 1989 John Wheeler put his own spin on Feynman’s
vision in his famous “it from bit” talk in Tokyo, in which he
stated
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“Every it—every particle, every field of force even the space
time continuum itself—derives its function, its meaning, its
very existence entirely—even if in some contexts indirectly—
from the apparatus-elicited answers to yes or no questions,
binary choices, bits. It from bit symbolizes the idea that every
item of the physical world has at bottom—at a very deep
bottom, in most instances—an immaterial source and expla-
nation; that what we call reality arises in the last analysis
from the posing of yes-no questions and the registering of
equipment-evoked responses; in short, that all things physical
are information theoretic in origin...” —John Wheeler [12]

Wheeler’s speculation was vague, and though he is often
quoted it was never clear exactly what he meant. Then, in
1996 Seth Lloyd proved that quantum computers could be
programmed to simulate the behavior of arbitrary quantum
systems whose dynamics are determined by local interactions
[13]. That same year Bialynicki-Birula showed that a discrete-
time quantum walk (QW) could, in the low-energy and
continuous-time limit, yield the single-particle Dirac equation
[14]. (He called it a cellular automaton—a QCA—and even
today the terms QW and QCA are sometimes employed inter-
changeably; but to be precise, a QW is the one-particle sector
of a QCA [15–18].)

Were Feynman and Wheeler correct in their vision? Are
quantum field theories (QFTs) such as QED and the standard
model, and even quantum gravity, obtainable as limits of
discrete space-time QCA theories? In the last decade or so
there has been a flurry of papers investigating that question; an
affirmative answer would be essentially a concrete realization
of Wheeler’s “it from bit.”

It is important to note that the goal of such studies is not
to derive the QCA by mimicking the dynamics of the QFT,
but rather to construct a QCA from a simple set of princi-
ples and symmetries, and show that we recover well-known
Lorentz invariant QFTs in the limit of continuous time, and at
energies low enough that the lattice spacing (say, the Planck
length) is not probed. Much of the recent work has been
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on the one-particle sector (QWs) [19–38], but progress has
been made towards multiparticle QCAs that yield QFTs in the
long-wavelength limit [39–43].

Being immune to ultraviolet divergences, QCAs may be of
use in regularizing the corresponding QFT, and some authors
emphasize their potential as algorithms for simulating the dy-
namics of QFTs on a quantum computer [44]. The QCA/QFT
correspondence could also provide a novel viewpoint that
will give new insight into QFTs. In the 1970s the realization
that low-energy strong force interactions could not be treated
perturbatively led to lattice field theories as an alternative for
numerical calculations, but also as a source of new under-
standing: QFTs are now often defined as the limit of lattice
theories [45]. In that regard, QCAs have some advantages
over lattice theories [46]. For one, if we want to discretize
space and retain causality, then we must also discretize time.
Lattice quantum field theories with local Hamiltonians in con-
tinuous time are not truly causal, while QCAs are. In addition,
there is evidence that QCAs do not suffer from the plague of
fermion doubling (extra low energy modes) [47–49]. Finally,
it is interesting to note that one cannot, a priori, rule out the
possibility that it is the QCA and not its corresponding QFT
that is fundamental. With neutron interferometer technology
not far beyond what exists today, it will be possible to detect
the existence of the QCA spatial lattice structure even if its
scale is that of the Planck length [50].

Though there has been a great deal of progress in under-
standing the QCA/QFT correspondence, almost all of it has
had to do with QCAs and QFTs in one space dimension.
The difficulty in going to higher dimensions is related to the
requirement that a QCA must be local, which in the context
of QCAs means that the transformation at each time step
depends only on the states of “nearby” qubits. That constrains
the theory in many respects, in particular with regard to the
issue of fermionization. If one has a set of qubits represent-
ing the presence or absence of particles in some internal
state at a given lattice point, the corresponding creation and
annihilation operators will anticommute while the operators
associated with different lattice points will commute.

One can remedy this problem by employing the Jordan-
Wigner transformation [51] to produce operators that anti-
commute at different points; but, under a rather general set
of conditions, in greater than one dimension a Jordan-Wigner
transformation will result in a nonlocal theory, i.e., the trans-
formed theory will not be a QCA. This result about QCAs
in more than one spatial dimension was proven for a very
large class of models [43]. The result in that paper creates
a conflict between three different properties one would like
to have in a QCA model: (1) that it be composed of local
subsystems with relatively low dimensional Hilbert spaces;
(2) that it allow nontrivial dynamics; and (3) that one can
define creation and annihilation operators that obey the usual
anticommutation relations, and that evolve into simple linear
combinations of creation and annihilation operators under the
unitary dynamics of the QCA. In Ref. [43] we show that in
spatial dimensions higher than one these properties are incom-
patible with the QCA having purely local interactions. The
conflict arises from the difficulty of maintaining a consistent
ordering of creation operators while evolving in more than one
dimension.

How can one get around this conflict? Alternatively,
one could switch to a momentum space picture and define
fermionic creation and annihilation operators for those states,
then employ the local unitary QCA evolution (defined on the
coordinate lattice) to determine how they transform in each
time step. However, since an n-particle QCA state generally
lacks a tensor product structure, it is difficult to define a
well-behaved momentum representation. This leads to a com-
plicated time evolution defined by sets of integral equations
and lacking a simple local interpretation.

Another approach would be to use fermionic degrees of
freedom in defining the QCA in the first place; clearly there
is no difficulty in maintaining fermionic anticommutation re-
lations then. (See, e.g., [46,52,53].) Fermionic QCAs are an
interesting topic in themselves, and are a natural approach
to simulating fermionic QFTs. However, this approach does
not answer the question that concerns us here: whether an
effective fermionic description can exist for a system with
truly local underlying dynamics. In this respect, the results
of Ref. [40] are particularly interesting. The authors construct
a fermionic QCA which recovers the Dirac field in the long-
wavelength limit. But they also show that they can “simulate”
the local fermionic degrees of freedom using systems with
large numbers of qubits, and that the dynamics remain local.
While they do not quite construct the resulting model explic-
itly, their procedure should work to construct a QCA with
an effective fermionic description. Such a construction would
evade the no-go theorem of [43] by going to local subsystems
with very high dimensions.

In this paper we get around this problem in a different
way. We embed the physical states of the theory in a larger
Hilbert space, somewhat analogous to the manner in which
the physical states of quantum theory are rays rather than
vectors in the Hilbert space in which they are defined. More
precisely, we define our theory as pertaining to distinguish-
able particles, and later restrict ourselves to the antisymmetric
subspace as the physical space. We show that this theory of
distinguishable particles can be embedded in a QCA with
very high-dimensional local subsystems, and has truly local
evolution. We show that this antisymmetrized subspace is
preserved by the QCA evolution, that it is possible to define
creation and annihilation operators that evolve simply and
obey the usual anticommutation relations, and that in the
long-wavelength limit this yields the multiparticle Dirac QFT.
We demonstrate this method first in one spatial dimension,
and then show that it can be straightforwardly extended to
two spatial dimensions, evading the no-go theorem in [43].
Moreover, this model gives a completely explicit construction
of the QCA.

II. A QCA FOR DISTINGUISHABLE PARTICLES

A. Quantum walks

A quantum walk is a unitary analog of a classical random
walk. In both cases, the “walker” is a particle that can reside
at any one of a set of positions, labeled by x. At each time
step, the particle can move to a neighboring position. (Here we
assume that time is discrete. We do not consider continuous-
time random walks and quantum walks in this paper.)
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We can think of these positions as being the vertices of a
graph, with edges between neighboring vertices. In a random
walk, the particle has some probability of moving to the neigh-
boring vertices. In a quantum walk, the evolution is unitary,
and the particle can move to a superposition of positions. For
the quantum walks in this paper, the graph is always regular,
with every vertex having the same number of neighbors. The
number of neighbors is the degree of the graph, labeled by
d . We can label each of the d outgoing edges from a vertex
1, . . . , d , with that label describing a direction the particle can
move. To start with, we will assume that this graph is finite,
but we will consider the infinite limit eventually.

To maintain both unitarity and nontrivial dynamics, the
particle generally must have an internal degree of freedom, or
“coin space.” The Hilbert space has the form HQW = HX ⊗
HC , where HX is the Hilbert space of the particle position,
and HC is the space of the internal degree of freedom. In a
standard quantum walk, the evolution from one time to the
next is given by a unitary evolution operator UQW of the form

|ψt+�t 〉 = UQW|ψt 〉 = (I ⊗ C)

(
d∑

j=1

S j ⊗ Pj

)
|ψt 〉, (1)

where the {S j} are shift operators that move the particle from
its current position to its neighbor in the direction j. The {Pj}
are a set of d orthogonal projectors on the internal space; and
C is a unitary that acts on the internal space, often called
the “coin flip” unitary. Unlike classical random walks, the
evolution is invertible and interference plays an important role
in the dynamics.

The idea is that the walk proceeds by a process analogous
to a series of coin flips. The projectors {Pj} correspond to
different faces of the coin, which indicate which direction to
move; the unitary C scrambles the faces, so that one does
not constantly move in the same direction. In the walk in
one dimension, there are two projectors {P±} corresponding
to shifts to the right or left along the line. When we go to the
walk on a two-dimensional lattice we will use a generalization
of this standard form involving successive shifts along the
different axes.

B. Multiparticle walks

We want to go to the multiparticle case. A simple way to
describe a fixed number N of particles is to have N indepen-
dent copies of the quantum walk: HN = (HQW)⊗N = HQW ⊗
· · · ⊗ HQW. The evolution operator is UN = (UQW)⊗N =
UQW ⊗ · · · ⊗ UQW. We can see that, in this construction, the
N particles all evolve independently; we can think of this as
a theory of N distinguishable, noninteracting particles. Each
particle is labeled by which Hilbert space describes it.

We can go a step beyond this simple construction by de-
scribing a space that can include any number of particles up
to some maximum Nmax. The Hilbert space is

Htotal = H(1) ⊗ H(2) ⊗ · · · ⊗ H(Nmax ), (2)

where H( j) is the Hilbert space of the particle labeled j. Since
we would like to allow any number of particles, each particle
j may or may not be present. We include this possibility by

using the Hilbert space

H( j) = HQW ⊕ span(|ω〉), (3)

where |ω〉 is a vacuum state indicating that particle j is not
present. We extend the evolution operator to leave this vacuum
state invariant:

U = UQW + |ω〉〈ω|. (4)

The overall evolution operator of the full space is

Utotal = U ⊗Nmax . (5)

C. Embedding in a cellular automaton

This is still a theory of distinguishable, noninteracting par-
ticles, but we have allowed the particle number to vary. The
question then arises, is this a QCA? Yes—the theory above
can be embedded in a manifestly local QCA.

To construct this QCA, we define a Hilbert space

HQCA =
⊗

x

Hx, Hx =
⊗

e∈[1,...,d]

Hx,e, (6)

where the local subsystem labeled by position x and internal
state e has the Hilbert space

Hx,e =
⊗

t∈[1,...,Nmax]

Hx,e,t , Hx,e,t = C2. (7)

Here the index t labels the “type” of the particle. The two
basis states of Hx,e,t correspond to the fact that we may or
may not have a particle of type t at the point x in the internal
state e. Now instead of all particles being distinguishable, we
have Nmax particle types, where in principle one can have
multiple particles of type t with different values of x and e.
Each particle type t essentially forms a parallel QCA. These
QCAs coexist without interacting. The QCA dynamics for
each particle type is chosen so that the one-particle sector
matches the dynamics of the quantum walk:

UQCA =
⊗

t∈[1,...,Nmax]

Ut , Ut = Ĉt �̂t , (8)

for each particle type t . The QCA shift operator �̂ acts on the
basis states of the QCA by moving the content 0 or 1 of each
position x and internal state e to the neighboring position in
the direction e from x, with the same internal state e.

The QCA coin-flip operator Ĉ is a tensor product of oper-
ators acting at each position x,

Ĉt =
⊗

x

Cx,t , (9)

where Cx,t is a unitary operator acting on the Hilbert space

Hx,t =
⊗

e∈[1,...,d]

C2. (10)

There is some freedom in defining Cx,t , but it must satisfy
these requirements:

(1) Cx,t is unitary;
(2) Cx,t conserves the number of particles (i.e., number of

|1〉 states);
(3) Cx,t acts as the identity on the state |0〉⊗d ;
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(4) Cx,t acts on the single-particle subspace just like the
unitary operator C in the quantum walk in Eq. (1).

With these requirements the single-particle states of the
QCA of type t will evolve exactly like the quantum walk in
Eq. (1).

Moreover, the dynamics thus defined are manifestly local.
The QCA system is a tensor product of local subsystems, as
defined in Eq. (6). The unitary evolution is the product for two
unitaries, Ĉ and �̂, each of which is manifestly local:

UQCA = Ĉ�̂ =
(⊗

t

Ĉt

)(⊗
t

�̂t

)
. (11)

One difference, however, from most QCA definitions is that
the local subsystem Hilbert spaces Hx tend to have very high
dimensions: dimHx = 2dNmax . This high dimensionality is one
factor that enables the model defined in this paper to evade the
no-go theorem proved in Ref. [43].

If we restrict our initial state in HQCA to include only 0 or 1
particle of each type t , this will be exactly the same as the mul-
tiparticle model described in Sec. II B above. The subspace of
all states with only 0 or 1 particles of each type is exactly
isomorphic to Htotal defined above, and by construction the
QCA evolution operator UQCA acts on this subspace in exactly
the same way that Utotal acts on Htotal. So we can think of Htotal

as a subspace of HQCA.
One might ask the question, why bother to embed Htotal in

HQCA? For that matter, why bother constructing Htotal at all?
Why not just use a multiparticle quantum walk with a fixed
particle number, since for the system we describe the particle
number is conserved? There are three main reasons to do so.
First, a QCA consists of local subsystems with truly local
interactions. This strong locality property is not so clear-cut
in a quantum walk, where states of the system are described
in terms of particle configurations. Second, we want to derive
a QFT in the long-wavelength limit which can be described in
terms of creation and annihilation operators. It makes sense,
then, to use a model which can accommodate different particle
numbers within the same theory. And finally, while the QCA
model that we construct in this paper corresponds to free
fields, where particle number is conserved, our ultimate goal is
to include interactions between fields, in which particles may
be created or destroyed. A QCA of the type constructed here
is a more suitable vehicle for that goal.

D. The physical subspace

Having defined our system of distinguishable particles as a
subspace Htotal of the full QCA Hilbert space HQCA, we can
now construct a theory that resides in a restricted subspace of
Htotal. We can decompose Htotal into the direct sum of sub-
spaces containing exactly n particles. Let (t1, t2, . . . , tn) be a
set of n distinct particle types t j ∈ [1, . . . , Nmax]. Then we can
define a subspace H(t1,t2,...,tn ) as the subspace of Htotal compris-
ing all states with exactly n particles of types (t1, t2, . . . , tn).
To avoid double counting, we will adopt a convention

t1 < t2 < · · · < tn. Then

Htotal = H0 ⊕
(⊕

(t1 )

H(t1 )

)
⊕

(⊕
(t1,t2 )

H(t1,t2 )

)
⊕ · · · ⊕

×
( ⊕

(t1,t2,...,tn )

H(t1,t2,...,tn )

)
⊕ · · · , (12)

where H0 is the one-dimensional (1D) space with no particles,

H0 = span(|�〉), |�〉 = |ω〉Nmax .

Define the antisymmetric subspace A(t1,t2,...,tn ) to be the
set of all states ψ (x1, e1; x2, e2; · · · ; xn, en) in H(t1,t2,...,tn ) such
that, if we interchange any two particles, the state is multiplied
by −1. That is, if π is a permutation of the labels [1, . . . , n],
and p(π ) is the parity of π (p(π ) = 0 if π is even and 1 if π

is odd), then

ψ (xπ (1), eπ (1); xπ (2), eπ (2); · · · ; xπ (n), eπ (n) )

= (−1)p(π )ψ (x1, e1; x2, e2; · · · ; xn, en). (13)

We now make the following observations:
(1) The evolution Utotal conserves the particle number of

each type.
(2) The evolution Utotal maps the antisymmetric subspace

A(t1,t2,...,tn ) to itself.
(3) All n-particle subspaces are exactly isomorphic and

have identical dynamics. That is, if we have an n-particle state
with particles of types t1, t2, . . . , tn, it will evolve exactly the
same way as the analogous state with a different set of particle
types t ′

1, . . . , t ′
n.

This means that if we want to describe a state of n particles,
we can without loss of generality just use the first n particle
types, t1 = 1, t2 = 2, etc. Based on these observations, we
define the “physical subspace” Hphys to be

Hphys = H0 ⊕ A(1) ⊕ A(1,2) ⊕ · · · ⊕ A(1,...,Nmax ). (14)

If the initial state of the system is in the physical subspace,
then as it evolves under Utotal it will remain in the physical
subspace at all times.

III. THE 1D QCA

Let us now apply this construction to the 1D QCA. This
is based on the one-dimensional quantum walk, This acts
on a Hilbert space Hpos ⊗ Hcoin, where the position space
is spanned by basis states |x〉 where x = j�x, and the coin
space has basis states |R〉 and |L〉. To keep everything simple
at first, we will assume that the position space is finite with N
locations corresponding to j = 0, 1, . . . , N − 1 and periodic
boundary conditions, |N�x〉 ≡ |0〉. The evolution operator is

U1D = (I ⊗ C)(S ⊗ |R〉〈R| + S† ⊗ |L〉〈L|), (15)

where

S|x〉 = |x + �x〉,
and C is a unitary that acts on the coin space. The exact form
of C is not that important; we will assume that

C = eiθQ, Q|R〉 = |L〉, Q|L〉 = |R〉, (16)
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where Q = Q† and Q2 = I . (We can always make such a
choice, up to a global phase.)

From this quantum walk we can build a QCA follow-
ing the procedure outlined in Sec. II above. We will now

construct a basis for the physical space of this QCA, and
show that it can be mapped straightforwardly onto a theory
of free fermions in one dimension in the long-wavelength
limit.

A. Energy eigenstates of the 1D quantum walk

The first step of this construction is to find the eigenstates of the unitary evolution operator in Eq. (15). We begin by defining
a set of momentum basis states:

|k〉 = 1√
N

N∑
j=0

e−ik j�x|x〉, k = 2π	/(N�x), (17)

where 	 = −N/2 + 1, . . . ,−1, 0, 1, . . . , N/2. The momentum k also has periodic boundary conditions, with k + 2πm/�x ≡ k
for any integer m. These states |k〉 are eigenstates of the shift operators:

S|k〉 = eik/�x|k〉, S†|k〉 = e−ik/�x|k〉. (18)

It is easy to check that

U1D|k〉 ⊗ |R〉 = eik�x|k〉 ⊗ [cos(θ )|R〉 + i sin(θ )|L〉],
U1D|k〉 ⊗ |L〉 = e−ik�x|k〉 ⊗ [cos(θ )|L〉 + i sin(θ )|R〉].

(19)

We see that these momentum states are not eigenstates of U1D, but they decompose the Hilbert space into two-dimensional
subspaces, span(|k〉 ⊗ |R〉, |k〉 ⊗ |L〉), that are preserved by U1D. A vector α|k〉 ⊗ |R〉 + β|k〉 ⊗ |L〉 transforms under U1D as(

α

β

)
→ M

(
α

β

)
≡

(
eik�x cos(θ ) ie−ik�x sin(θ )
ieik�x sin(θ ) e−ik�x cos(θ )

)(
α

β

)
. (20)

It can also be convenient to write M in terms of the Pauli matrices:

M = cos(k�x) cos(θ )I + i cos(k�x) sin(θ )σX + i sin(k�x) sin(θ )σY + i sin(k�x) cos(θ )σZ . (21)

We can diagonalize this matrix and find the eigenvalues of U1D:

λk,± ≡ e±iφk = cos(k�x) cos(θ ) ± i
√

1 − cos2(k�x) cos2(θ ), (22)

with eigenvectors

vk,± = 1

N±

(
sin(k�x) cos(θ ) ±

√
1 − cos2(k�x) cos2(θ )

eik�x sin(θ )

)
, (23)

with normalizations

N± =
√(

sin(k�x) cos(θ ) ±
√

1 − cos2(k�x) cos2(θ )
)2 + sin2(θ ). (24)

The eigenstates of U1D are therefore

|k,±〉 ≡
(|k〉 ⊗ |R〉

|k〉 ⊗ |L〉
)

· vk,±, (25)

and have eigenvalues λk,± = e±iφk . The phases of the eigenvalues are ±φk , where cos(φk ) = cos(k�x) cos(θ ), or φk =
cos−1[cos(k�x) cos(θ )].

B. The energy basis of the 1D QCA

We can use the energy eigenstates of the 1D quantum walk to construct a basis (which we will call the energy basis) for the
1D QCA space Hphys. These are antisymmetric combinations of tensor products of the energy eigenstates defined above. Let the
number of particles present be n. For n = 0 there is just one state, the vacuum:

|�〉phys ≡ |ω〉⊗Nmax . (26)

For n = 1 we have one particle (of type 1) in an energy eigenstate:

|k,±〉phys ≡ |k,±〉 ⊗ |ω〉⊗Nmax−1. (27)
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For n = 2 we have two particles (of types 1 and 2) in energy eigenstates:

|k1, ε1; k2, ε2〉phys ≡ 1√
2

(|k1, ε1〉 ⊗ |k2, ε2〉 − |k2, ε2〉 ⊗ |k1, ε1〉) ⊗ |ω〉⊗Nmax−2, (28)

where ε1,2 = ±. And for arbitrary n,

|k1, ε1; · · · ; kn, εn〉phys ≡ 1√
n!

∑
π

(−1)p(π )|kπ (1), επ (1)〉 ⊗ · · · ⊗ |kπ (n), επ (n)〉 ⊗ |ω〉⊗Nmax−n, (29)

where π is a permutation of [1, . . . , n] and p(π ) is the parity 1 or 0 (for odd or even) of the permutation π .
These antisymmetrized states |k1, ε1; · · · ; kn, εn〉phys for all values of n from 0 to Nmax form a basis for the physical subspace

Hphys. Moreover, they are all eigenstates of the evolution operator UQCA with eigenvalues

λk1,ε1;··· ;kn,εn = ei
∑n

j=1 ε jφk j . (30)

There is one minor ambiguity, however, that must be removed. As defined above, for example, |k1, ε1; kn, ε2〉phys =
−|k2, ε2; k1, ε1〉phys. So if we let the k j’s take arbitrary values then the basis would be overcomplete. We can remove this
ambiguity by establishing a fixed ordering on the pairs k, ε, and requiring that the labels k1, ε1; · · · ; kn, εn be listed in the correct
order. It does not matter what ordering we choose. For this 1D case, a convenient ordering would be to list k1 � k2 � · · · � kn;
and if both k,+ and k,− are present, to list k,− first. But any choice will work equally well. Note also that these pairs k, ε

cannot be repeated; the antisymmetrization would then yield zero. So k1, ε1; · · · ; kn, εn must all be distinct.

C. Creation and annihilation operators

Having defined a set of basis states for Hphys in Eq. (29), we can formally define a set of creation and annihilation operators
that move us between these states. We can define the creation and annihilation operators by their actions on the energy basis
states of Hphys:

|k1, ε1; · · · ; kn, εn〉phys = a†
k1,ε1

· · · a†
kn,εn

|�〉phys, ak,ε|�〉phys = 0, (31)

where these operators obey the usual anticommutation relations:

{ak1,ε1 , ak2,ε2} = {a†
k1,ε1

, a†
k2,ε2

} = 0, {a†
k1,ε1

, ak2,ε2} = δk1k2δε1ε2 I. (32)

Given that we have assumed a maximum number of distinct particle types Nmax, we must also have the somewhat unusual
property

a†
k,ε

|k1, ε1; · · · ; kNmax , εNmax〉phys = 0 ∀k, ε. (33)

We can avoid having this extra condition, however, if we choose Nmax = 2N , where N is the total number of lattice sites; in that

case, the condition in Eq. (33) is automatically satisfied by the usual property of fermionic creation operators (a†
k,ε

)
2 = 0. For

the purposes of this model, we will make this assumption, and then allow N → ∞.
As defined, these operators are clearly nonlocal; but that is not a problem, since the underlying dynamics of the QCA are

local. We have also not defined how these operators act on states outside of Hphys, but again this does not really matter. We can
choose, for example, to have them annihilate all states orthogonal to Hphys. How do these operators evolve under the unitary
U1D? We can see that

U1D|k1, ε1; · · · ; kn, εn〉phys = U1Da†
k1,ε1

· · · a†
kn,εn

|�〉phys

= U1Da†
k1,ε1

U †
1DU1D · · ·U †

1DU1Da†
kn,εn

U †
1DU1D|�〉phys

= (
U1Da†

k1,ε1
U †

1D

) · · · (U1Da†
kn,εn

U †
1D

)|�〉phys

= ei
∑n

j=1 ε jφk j |k1, ε1; · · · ; kn, εn〉phys, (34)

which implies that (
U1Da†

k,ε
U †

1D

) = eiεφk a†
k,ε

. (35)

This very simple time evolution, and the relationship between the creation operators and the basis states, allows us to write the
effective evolution operator U1D on the physical subspace Hphys. That is,

U1D = exp

{
i
∑

k

φk (a†
k,+ak,+ − a†

−k,−a−k,−)

}
. (36)

We can also define a momentum representation, and write U1D in terms of that. By diagonalizing the matrix M in Eq. (20)
we defined the energy basis states for the quantum walk that in turn were used to define the energy basis states of the QCA, and
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the creation and annihilation operators a†
k,±, ak,± that transform between them. By going back to the original basis we can define

creation operators a†
k,R, a†

k,L and their corresponding annihilation operators for momentum basis states. We write(
1
0

)
= αRvk,+ + βRvk,−,

(
0
1

)
= αLvk,+ + βLvk,−, (37)

where vk,± are given in Eq. (23), and solve for the coefficients(
αR

βR

)
= 1

NR

(
N+

−N−

)
, (38)(

αL

βL

)
= e−ik�x

NL

(
N+

(− sin(k�x) cos(θ ) +
√

1 − cos2(k�x) cos2(θ )
)

N−
(
sin(k�x) cos(θ ) +

√
1 − cos2(k�x) cos2(θ )

) )
, (39)

where

NR = 2
√

1 − cos2(k�x) cos2(θ ),

NL = 2 sin(θ )
√

1 − cos2(k�x) cos2(θ ), (40)

and N± are defined in Eq. (24). The creation operators for momentum states are

a†
k,R = αRa†

k,+ + βRa†
k,−, a†

k,L = αLa†
k,+ + βLa†

k,−. (41)

By construction, these evolve by

U1Da†
k,RU †

1D = eik�x cos(θ )a†
k,R + ie−ik�x sin(θ )a†

k,L,

U1Da†
k,LU †

1D = ieik�x sin(θ )a†
k,R + e−ik�x cos(θ )a†

k,L.
(42)

From the momentum representation defined above we can derive a Dirac field theory in the long-wavelength limit.

D. The Dirac equation in 1D

Define a long-wavelength limit with |k�x|, |θ |  1. Let
the duration of one time step be defined as �t , and define the
“speed of light” to be c ≡ �x/�t and the “rest mass” to be
mc2 ≡ h̄θ/�t . Expanding the matrix elements in Eq. (42) to
linear order, we see that(

U1Da†
k,RU †

1D

U1Da†
k,LU †

1D

)
≈

(
a†

k,R

a†
k,L

)
+ ik�x

(
a†

k,R

−a†
k,L

)
+ iθ

(
a†

k,L

a†
k,R

)
.

(43)
We can define a “time derivative” superoperator

∂t O ≡ (1/�t )
(
U1DOU †

1D − O
)
, (44)

and rewrite Eq. (43) as

ih̄∂t

(
a†

k,R

a†
k,L

)
≈ (−pcσZ − mc2σX

)(a†
k,R

a†
k,L

)
, (45)

where the momentum is p = h̄k. This is the evolution equation
for the Dirac field in one dimension, where σX and σZ play the
roles of γ0 and γ0γ1, respectively.

If we instead look at the energy representation, in the long-
wavelength limit we can write the eigenvalues of U1D in the
form

λk,± = e±iφk ≡ e∓iEk�t/h̄, (46)

and expanding φk to first order we get

Ek ≡ h̄φk/�t ≈ (h̄/�t )
√

k2�x2 + θ2 =
√

p2c2 + m2c4,

(47)
which is the usual classical formula for the energy of a rela-
tivistic particle with rest mass m and momentum p.

In the derivation presented here, the vacuum state is the
state with no particles present. However, it is possible to
introduce a “Dirac sea” construction, as described in [43],
in which all negative energy states are occupied. In such a
construction, antiparticles can be interpreted as holes in the
space of negative energy states.

IV. THE 2D QCA

The same kind of procedure can be done for higher-
dimensional quantum walks. As shown in Ref. [36], a
quantum walk on the 2D square lattice can also be defined
using a two-dimensional internal coin space, which yields
the 2D Dirac equation in the long-wavelength limit. We will
demonstrate the construction above in this case, which over-
comes the difficulties described in Ref. [43] and will allow us
to recover the Dirac field theory in two spatial dimensions. For
the present we will assume that this lattice is finite, N × N ,
with periodic boundary conditions (so it is equivalent to a
torus), which gives a dimension 2N2 for the overall Hilbert
space. Later we will let N → ∞.

The particular quantum walk on the 2D square lattice from
[36] has an evolution unitary that takes the form

U2D = (I ⊗ C)(SY ⊗ |U 〉〈U | + S†
Y ⊗ |D〉〈D|)

× (SX ⊗ |R〉〈R| + S†
X ⊗ |L〉〈L|), (48)

where the coin-flip operator can again be written

C = eiθQ. (49)

More about Q in a moment, but first note that the 2D shift
operators act as one would expect on the position of the
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particle,

SX |x, y〉 = |x + �x, y〉, SY |x, y〉 = |x, y + �x〉,
S†

X |x, y〉 = |x − �x, y〉, S†
Y |x, y〉 = |x, y − �x〉.

(50)

We can use a vector notation |x, y〉 = |x〉, where x is the 2D
real vector

x =
(

x
y

)
≡

(
q�x
r�x

)
,

where q and r are integers modulo N .
The projectors on the coin space correspond to a pair of

unbiased bases:

〈R|L〉 = 〈U |D〉 = 0, |〈R|U 〉| = |〈R|D〉|
= |〈L|U 〉| = |〈L|D〉| = 1/

√
2. (51)

This last condition is equivalent to the “equal norm condition”
in Ref. [36]. As in the 1D case, Q = Q† and Q2 = I . Q is

chosen to switch the particle’s direction, but now it must do
so for both the X and the Y directions:

Q|R〉 = |L〉, Q|L〉 = |R〉,
Q|U 〉 = |D〉, Q|D〉 = |U 〉. (52)

As shown in Ref. [36], this implies that if we define op-
erators �PX = |R〉〈R| − |L〉〈L| and �PY = |U 〉〈U | − |D〉〈D|,
then the three operators �PX , �PY , and Q all mutually anti-
commute,

{�PX ,�PY } = {�PX , Q} = {�PY , Q} = 0, (53)

and also

(�PX )2 = (�PY )2 = Q2 = I. (54)

A. Energy eigenstates of the 2D quantum walk

Just as in the 1D case, we begin by transforming to the momentum picture:

|k〉 = 1

N

∑
x,y

e−ik·x|x〉, (55)

where

k =
(

kX

kY

)
≡

(
2πn/(N�x)
2πo/(N�x)

)
,

where n and o are integers modulo N . It is easy to see that |k〉 is an eigenstate of SX and SY :

SX |k〉 = eikX �x|k〉, SY |k〉 = eikY �x|k〉. (56)

We can rewrite the evolution operator in this momentum representation:

U2D = eiθ (I⊗Q)ei(KY ⊗�PY )�xei(KX ⊗�PX )�x, (57)

where KX and KY are the operators corresponding to the X and Y components of the momentum:

KX |k〉 = kX |k〉, KY |k〉 = kY |k〉.
The two-dimensional subspace spanned by |k〉 ⊗ |R〉 and |k〉 ⊗ |L〉 will therefore be preserved by the evolution operator U2D.

Let us make the specific choice �PX = σX , �PY = σY , and Q = σZ (which is the same as assuming that {|R〉, |L〉} is the σZ

eigenbasis). (Any other choice that meets the requirements above will give the same dynamics up to a change of basis for the
coin space.) Then the superposition vector α|k〉 ⊗ |R〉 + β|k〉 ⊗ |L〉 is transformed by U2D as(

α

β

)
→ M

(
α

β

)
, (58)

where the 2 × 2 matrix M can be written

M = [cos(kX �x) cos(kY �x) cos(θ ) − sin(kX �x) sin(kY �x) sin(θ ))]I

+ i[cos(kX �x) cos(kY �x) sin(θ ) + sin(kX �x) sin(kY �x) cos(θ )]σX

+ i[− cos(kX �x) sin(kY �x) cos(θ ) + sin(kX �x) cos(kY �x) sin(θ )]σY

+ i[sin(kX �x) cos(kY �x) cos(θ ) + cos(kX �x) sin(kY �x) sin(θ )]σZ . (59)

The matrix M is a 2 × 2 unitary of the form

M = r0I + i(r1σX + r2σY + r3σZ ),

where r2
0 + r2

1 + r2
2 + r2

3 = 1; its eigenvalues are

λ± ≡ e±iφ = cos(φ) ± i sin(φ), (60)
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where cos(φ) = r0 and sin φ =
√

r2
1 + r2

2 + r2
3 , and the eigenvectors take the form

v+ = 1√
2

⎛
⎝ sin(φ)+r3√

sin2(φ)+r3 sin(φ)
r1+ir2√

sin2(φ)+r3 sin(φ)

⎞
⎠, v− = 1√

2

⎛
⎝− sin(φ)−r3√

sin2(φ)−r3 sin(φ)
r1+ir2√

sin2(φ)−r3 sin(φ)

⎞
⎠. (61)

Plugging in the values from the matrix in Eq. (59) we have

r0 = cos(kX �x) cos(kY �x) cos(θ ) − sin(kX �x) sin(kY �x) sin(θ ),

r1 = cos(kX �x) cos(kY �x) sin(θ ) + sin(kX �x) sin(kY �x) cos(θ ),

r2 = − cos(kX �x) sin(kY �x) cos(θ ) + sin(kX �x) cos(kY �x) sin(θ ),

r3 = sin(kX �x) cos(kY �x) cos(θ ) + cos(kX �x) sin(kY �x) sin(θ ). (62)

The solution in Eqs. (60) and (61) tells us that the energy eigenstates of the 2D quantum walk have eigenvalues

λk,± ≡ e±iφk , (63)

where φk = cos−1(r0). We can label the energy eigenstates |k,±〉, where

|k,±〉 = α±|k〉 ⊗ |R〉 + β±|k〉 ⊗ |L〉, (64)

and the coefficients α± and β± are taken from the eigenvectors v± in Eq. (61).

B. Creation and annihilation operators

Just as we did in the 1D case, we can now define a set of
basis states for the subspace Hphys in two spatial dimensions.
For n = 0 particles there is a unique vacuum state:

|�〉phys ≡ |ω〉⊗Nmax . (65)

For n = 1 we have one particle (of type 1) in an energy
eigenstate:

|k,±〉phys ≡ |k,±〉 ⊗ |ω〉⊗Nmax−1. (66)

For n = 2 we have two particles (of types 1 and 2) in energy
eigenstates:

|k1, ε1; k2, ε2〉phys ≡ 1√
2

(|k1, ε1〉 ⊗ |k2, ε2〉 − |k2, ε2〉

⊗|k1, ε1〉) ⊗ |ω〉⊗Nmax−2, (67)

where ε1,2 = ±. And for arbitrary n,

|k1, ε1; · · · ; kn, εn〉phys ≡ 1√
n!

∑
π

(−1)p(π )|kπ (1), επ (1)〉 ⊗ · · ·

⊗|kπ (n), επ (n)〉 ⊗ |ω〉⊗Nmax−n,

(68)

where once again π is a permutation of [1, . . . , n] and p(π ) is
the parity 1 or 0 (for odd or even) of the permutation π .

Just as in the 1D case, we can remove the ambiguity by
adopting an ordering convention on the pairs of indices k, ε

and requiring that (k1, ε1) < · · · < (kn, εn). However, unlike
the 1D case, there is no choice of ordering that is obviously
more natural than any other. In fact, it does not matter to the
theory which ordering is chosen.

As an example, to show that it is possible to choose a
consistent ordering, we could first order the momentum vec-
tors k = (kx, ky), where k1 < k2 if (ky)1 < (ky)2, or if (ky)1 =
(ky)2 and (kx )1 < (kx )2. If both k,+ and k,− are present we
list the − state first.

As before, having defined a set of basis states for Hphys we
can formally define a set of creation and annihilation operators
that move us between these states. We can define the creation
and annihilation operators by their actions on the energy basis
states of Hphys:

|k1, ε1; · · · ; kn, εn〉phys = a†
k1,ε1

· · · a†
kn,εn

|�〉phys,

ak,ε|�〉phys = 0, (69)

where these operators obey the usual anticommutation rela-
tions:

{ak1,ε1 , ak2,ε2} = {a†
k1,ε1

, a†
k2,ε2

} = 0,

{a†
k1,ε1

, ak2,ε2} = δk1k2δε1ε2 I.

Again, if a creation operator ak,± acts an a state that already
has the maximum number of particles Nmax it must annihilate
that state. We can get rid of this problem by having Nmax equal
the maximum number of available sites 2N2.

From the way that the basis states are defined in terms of
energy eigenstates, we can easily see that the creation opera-
tors transform under the time evolution operator by acquiring
a phase:

(U2Da†
k,εU

†
2D) = eiεφk a†

k,ε. (70)

Just as in the 1D case, we can use this to define creation oper-
ators for momentum states, by inverting the transformation to
the eigenvector basis in Eq. (61):(

1
0

)
= αRv+ + βRv−, (71)

which has solutions

αR =
√

sin(φ) + r3

2 sin(φ)
, βR =

√
sin(φ) − r3

2 sin(φ)
, (72)

αL = r1 − ir2√
2 sin(φ)(sin(φ) + r3)

, βL = r1 − ir2√
2 sin(φ)(sin(φ) − r3)

.

(73)
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We can use this to define creation operators for momentum
states:

a†
k,R = αRa†

k,+ + βRa†
k,−,

a†
k,L = αLa†

k,+ + βLa†
k,−.

(74)

These have time evolution(
a†

k,R

a†
k,R

)
→

(
U2Da†

k,RU †
2D

U2Da†
k,RU †

2D

)
= M

(
a†

k,R

a†
k,R

)
, (75)

where the matrix M is given in Eq. (59).

C. The Dirac equation in 2D

Going again to the limit where |k|�x  1 and |θ |  1, we
can recover the 2D Dirac field in the long-wavelength limit.
Considering the time evolution in the momentum description
given by Eq. (75), we can approximate(

U2Da†
k,RU †

2D

U2Da†
k,LU †

2D

)
≈

(
a†

k,R

a†
k,L

)
+ ikX �x

(
a†

k,R

−a†
k,L

)

+ ikY �x

(
ia†

k,L

−ia†
k,R

)
+ iθ

(
a†

k,L

a†
k,R

)
. (76)

Defining once again a “time derivative” superoperator

∂t O ≡ (1/�t )
(
U2DOU †

2D − O
)
, (77)

and making the same definitions p = h̄k, c = �x/�t , and
mc2 ≡ h̄θ/�t , Eq. (76) becomes

ih̄∂t

(
a†

k,R

a†
k,L

)
≈ (−cpX σZ + cpY σY − mc2σX

)(a†
k,R

a†
k,L

)
. (78)

This is the evolution equation for the Dirac field in two di-
mension, where σX , −σY , and σZ play the roles of γ0, γ0γ1,
and γ0γ2, respectively.

As for the energy eigenvalues, in the long-wavelength limit

λk,± = e±iφk ≡ e∓iEk�t/h̄ (79)

becomes

Ek ≡ h̄φk/�t ≈
√

p2
X c2 + p2

Y c2 + m2c4 (80)

to first order in kX �x, kY �x and θ . This is the usual classical
formula for the energy of a relativistic particle with rest mass
m and momentum p. Just as in the 1D case described above,
we can introduce a “Dirac sea” construction for the 2D QFT.

V. DISCUSSION AND FUTURE WORK

In this paper we have presented a cellular automaton
construction that yields the Dirac field theory in one and
two dimensions in the long-wavelength limit. We are quite
confident that the same type of construction will work in
three spatial dimensions as well. However, that will require
a four-dimensional internal space, and is sufficiently more
complicated that we defer it to a later publication.

This construction—based on confining a set of distinguish-
able particles to their completely antisymmetric subspace—
evades the no-go result demonstrated in Ref. [43], which rules
out a much simpler family of QCA constructions in dimen-
sions higher than 1. It does so at the cost of requiring a QCA
whose local subsystems are very high dimensional, and in
producing the theory only within an antisymmetric subspace
of a larger Hilbert space. However, having introduced this
more complex system, the time-evolution of the physical basis
states becomes a simple phase rotation, which allows the
definition of creation and annihilation operators with simple
time evolution as well.

Much remains to be understood. The extension of this
paper’s construction to three dimensions is conceptually
straightforward, but will entail some mathematical compli-
cations that go beyond those in this paper. A good QCA
model of bosons will not suffer from the no-go result in [43];
but how to combine bosons and fermions in a single QCA
theory of interacting particles is not at all obvious. It will
also be interesting to inquire whether such a theory, with an
underlying discrete space-time implying that Lorentz invari-
ance is only approximately valid at high energies, would have
observable consequences that could be tested experimentally,
as in Ref. [50]. We plan to tackle these questions in our future
work.
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