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Long-time semiclassical evolution of spinlike systems from Majorana sampling
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We propose an approach to the analysis of the semiclassical evolution of spinlike systems. We show that an
appropriate discretization of distributions in classical phase space (in this case the two-dimensional sphere S2)
allows us to describe long-time dynamics (including the Schrödinger cat times) in terms of classical trajectories,
both in stable and nonstable regimes and for a variety of initial states. The discretization method is based on
the Majorana stellar representation of spin states and takes into account dynamical properties of the initial
distribution in the corresponding classically generated potential on S2.
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I. INTRODUCTION

The idea to employ classical language for description of
quantum systems has attracted considerable attention for a
long time. Such a semiclassical approach not only allows us
to gain a deeper insight into the nature of quantumness, but
can also be very useful for practical calculations when, due to
the overwhelming complexity of macroscopic quantum states,
the exact solution cannot be obtained inclusively by numerical
methods [1]. The reduction of the effective dimension of a
quantum dynamical system using the concept of classical
propagation is a key ingredient in different types of semi-
classical approximations in the configuration and momentum
space and in the abstract Hilbert space [2–4]. Over the last
decades several procedures were developed in order to intro-
duce quantum nonlocality in classically motivated calculation
schemes [4–8].

Unfortunately, most of the proposed methods are techni-
cally cumbersome and do not provide a clear physical and/or
geometrical interpretation. Phase-space methods [9–11] offer
a more natural way to analyze the quantum-classical transi-
tion both from kinematic and dynamic perspectives. In the
framework of this approach every operator f̂ is mapped into a
function Wf (�) (the Weyl symbol) defined on the correspond-
ing classical phase space M , � ∈ M being the phase-space
coordinates. The most appropriate for applications is the self-
dual (Wigner) map, when the mean values of observables are
computed by convoluting the symbol of an operator with the
symbol of the density matrix (the Wigner function) Wρ (�).
The quantum dynamics is then seen as an evolution of the
Wigner function and described by a partial differential equa-
tion (the Moyal equation) generally containing higher-order
derivatives.

The simplest (Liouvillian) approximation, consisting in
propagating every point of the initial distribution along the
corresponding classical trajectory, allows one to represent a
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short-time dynamics of coherentlike states quite well. For
longer times, the initial localized distribution spreads in phase
space, and its evolution starts to deviate considerably from
that predicted by the classical dynamics. The timescale where
the classical-quantum correspondence breaks down is usu-
ally referred to as Ehrenfest (or semiclassical) time [12]
tsem. Although several improvements to Liouvillian approach,
aimed to include quantum coherences, have been considered
[13–15], it seems inadequate to assess the nonharmonic quan-
tum dynamics of the Wigner function Wρ (�|t ) beyond the
semiclassical time by assigning a single deterministic trajec-
tory to each phase-space point [16]. Significant progress in
construction of semiclassical phase-space propagators, able
to describe quantum interference effects for systems evolving
in flat phase space, has been recently achieved [17,18]. In
this case, a particular form of the WKB solution proper to
the Heisenberg-Weyl (HW) symmetry and accounting a co-
herence between several trajectories was used. The quantum
systems with higher symmetries are considerably less scruti-
nized on the subject of long-time semiclassical evolution [19].

In spite of the intrinsic problems with the Liouvillian ap-
proximation, the estimation of average values according to

〈 f̂ (t )〉 ≈
∫

d�Wf (�cl (t ))Wρ (�), (1.1)

where �cl (t ) denotes the classical trajectories, has been
widely applied for the analysis of semiclassical dynamics
of quantum systems with the Heisenberg-Weyl [2,20] (see
also [15] and references therein), SU(2) [21,22] and SU(3)
symmetries [22,23]. The approximation (1.1), usually called
the truncated Wigner approximation (TWA), leads to exact
results for the harmonic evolution. In the nonharmonic case
TWA describes relatively well only a short-time behavior
of low-order correlation functions for initial smooth and lo-
calized distributions (representing the so-called semiclassical
states) in stable dynamical regimes. It was detected [14] that
direct improvements of TWA not only require considerable
numerical efforts, but also do not substantially increase the
accuracy of the approximation.
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It is clear that statistically independent (noncorrelated)
classical trajectories originated at every point of the initial
distribution produce only a destructive dynamic interference
when the average values are computed according to Eq. (1.1).
Indeed, in stable nonharmonic regimes the integration of
rapidly oscillating functions, where the period of oscillations
inversely depends on the effective dimension of the system,
may lead to an acceptable description only of the initial stage
of evolution (in the best case the collapse but never the re-
vival). In unstable configurations even the first oscillation of
〈 f̂ (t )〉 is usually not described by the prescription (1.1). In
addition, integrating Wf (�cl (t )) with the initial distribution
one assumes that even infinitesimally close phase-space points
are classically distinguishable at any time (since there is no
trajectory crossing).

One of the proposals to emulate quantum evolution of
certain observables beyond semiclassical times by using the
idea of propagation along classical trajectories consists in
a discrete sampling of initial phase-space distributions. In
general, it is not obvious if it is possible to find such a
phase-space discretization so that the classical trajectories
started only at appropriate points of the initial distribution
constructively interfere and produce results consistent with
quantum calculations. For instance, it was suggested in [24]
that an ensemble of classical trajectories with a single one
for a Planck cell may describe certain quantum interference
effects in the semiclassical limit. In a similar vein, the discrete
Wigner function formalism [25] was employed in order to
extend TWA to N-partite 1

2 -spin systems [26]. The discrete
TWA (DTWA) method, based on a classical evolution of dis-
tributions sampled in a discrete phase space, has been recently
successfully applied for semiclassical description of Ising-
type chains dynamics [26,27]. Unfortunately, the intrinsic
problem of the DTWA scheme related to the determination of
optimal sampling of initial states may significantly restrict the
range of its applications, especially for finding the long-time
behavior [28].

Here, we propose an alternative approach to the problem of
semiclassical description of phase-space dynamics focusing
on spinlike systems in the limit of large spin length S � 1.
We will introduce a method of dynamical discretization which
allows us to sample the Wigner function of the initial state
for a given Hamiltonian, so that the long-time behavior of
physical observables can be computed in terms of classically
evolved quantities. We will show that a faithful discrete sam-
pling of a variety of initial distributions can be performed by
employing the Majorana description [29] of quantum states.
Specifically, a short-time dynamics of the Majorana points
corresponding to an initial (pure) state leads to a constellation
which, if mapped appropriately to an initial Wigner distribu-
tion, describes the latter one with high accuracy. Moreover, the
classical trajectories originated in these projected Majorana
points are used for the simulation of the quantum evolution
of mean values. It will be shown that such an approach leads
to drastically better results than the TWA solution, especially
in unstable dynamical configurations, i.e., when the initial
distribution is located in a neighborhood of unstable fixed
points (of an integrable system).

We do not attempt to describe the entire quantum state
dynamics, but instead we will be interested in the evolution

of the lowest moments of spin observables for timescales
where quantum interference effects have already manifested.
In addition, it will be shown that only a small number of
sampling points ∼S suffice to describe dynamics of spin ob-
servables for a variety of initial (not necessarily semiclassical)
states and governing Hamiltonians. Here, we consider only
time-independent second order on spin operator Hamiltoni-
ans, which commonly appear in physical applications.

II. MAJORANA DISCRETIZATION

For spinlike systems, where the classical manifold is the
S2 sphere, the standard tracelike map [30] from operators
acting in the Hilbert space, spanned by the angular momentum
basis {|S, k〉, k = −S, . . . , S}, into distributions on the S2

sphere

f̂ ⇔ Wf (�) = Tr( f̂ ω̂(�)), � = (θ, φ) ∈ S2, (2.1)

is generated by the kernel

ω̂(�) =
√

4π

2S + 1

2S∑
L=0

L∑
M=−L

Y ∗
LM (�)T̂ S

LM, (2.2)

where YLM (�) are the spherical harmonics and T̂ S
LM are the

irreducible tensor operators [31].
In the semiclassical limit corresponding to large spins

S � 1, the Liouvillian equation

∂tWf (�) ≈ ε{Wf (�),WH (�)}P, ε = (S + 1/2)−1 (2.3)

where

{. . . , . . .}P = 1

sin θ
(∂φ ⊗ ∂θ − ∂θ ⊗ ∂φ ) (2.4)

are the Poisson brackets on S2 and WH (�) is the Weyl symbol
of the Hamiltonian, describes the (classical) evolution of the
distribution

Wf (�) ⇒ Wf (�|t ) ≈ Wf (�cl (t )),

�cl (t ) being the corresponding classical trajectories.
Let us consider a discretized form of the kernel (2.2), which

is determined by a set of points on the sphere (a sampling set)
{� j, j = 1, . . . , N},

ω̂d (�) = 4π

2S + 1
λ

∑
j

ω̂(� j )δ(�,� j ), (2.5)

where

δ(�,�′) =
∑
LM

Y ∗
LM (�)YLM (�′)

is the delta function on the sphere. The discretized kernel (2.5)
satisfies the normalization condition

λ
∑

j

ω̂d (� j ) = 1, (2.6)

where the constant λ will be defined later.
The main approximation consists in propagating the dis-

cretized symbols of physical observables

W d
f (�) = Tr( f̂ ω̂d (�))
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along classical trajectories �cl (t ), so that the average values,
computed according to Eq. (1.1), are recast as follows:

〈 f̂ (t )〉 = λ
∑

j

W d
ρ (� j )W

d
f

(
�cl

j (t )
)
, (2.7)

where �cl
j (t ) indicates trajectories originated at the sampling

points {� j}.
The choice of the optimal set of sampling points is a com-

monly arising problem in the field of state estimation. The
sampling sets are usually determined from algebraical and/or
geometrical considerations, imposing the condition that the
homogeneous functions (on a given manifold), evaluated at
the elements of the set, constitute a specific basis allowing
estimation of certain types of correlation functions (i.e., {� j}
form appropriate t designees [32,33]).

Unfortunately, such an approach results inefficient in the
framework of simulation of quantum evolution through clas-
sical propagation since the dynamic properties of the initial
distribution, generated by a given Hamiltonian, are not taken
into account. The dynamic characteristics of trajectories (e.g.,
the stability of the classical motion) are, however, very im-
portant and strongly reflected in the corresponding quantum
dynamics. For instance, the semiclassical time for a stable
(nonlinear) evolution of spin coherent states on the S2 sphere
is χtsem ∼ ε1/2, while in the unstable integrable case χtsem ∼
ε [34], where χ is a coupling constant that determines the
timescale of the nonlinear evolution.

The idea of dynamical discretization comes from the fol-
lowing observation. Any pure spin state |ψ〉 is completely
defined by its Majorana stellar representation [29,35,36]
through the points on the two-dimensional sphere {z j, j =
1, . . . , 2S}, which are zeros of the Q function,

Q(�) = |〈�|ψ〉|2 ∼ � j[z(�) − z j],
(2.8)

z(�) = cot
θ

2
eiφ,

where |�〉 stands for the spin coherent state.
For an initial coherent state |�0〉 there is just a single 2S-

degenerated Majorana point Q0(�) ∼ |z − z0|2S . Under the
action of a nonlinear Hamiltonian this single point is rapidly
split into 2S points spread over the sphere

Q(�|t ) ∼ � j[z − z j (t )].

The time-evolved position z j (t ) on the sphere depends both on
the location of the distribution corresponding to |�0〉 inside
the potential generated by the symbol of the Hamiltonian
WH (�), and on the degree of nonlinearity of the Hamiltonian.
The Hamiltonians linear on the angular momentum operator
produce just a solid rotation of the initial distribution, i.e.,

Q0(�|t ) ∼ |z − z0(t )|2S.

It turns out that already for short times χt ∼ S−1, the antipo-
dal Majorana points, i.e.,

α j (t ) = −1/z∗
j (t ), (2.9)

partially cover the initial distribution [observe that the max-
imum of Q(�|0) is reached at the point α0 = −1/z∗

0 for an
initial spin coherent state]. From now on, we will use the nota-
tion τ for times corresponding to the initial stage of quantum

evolution, i.e., for the timescales χτ ∼ S−1. Our main idea
consists of using the Majorana points (2.8) and (2.9) to sample
the initial Wigner distribution

Wρ (�) → W d
ρ (� j (τ )),

where

{� j (τ )} ⇔
{
α j (τ ) = − tan

θ j

2
eiφ j

}
. (2.10)

The sampling time τs, {� j (τs)} ⇔ {α j (τs)}, determining
the configuration of the sampling set optimal for the classical
simulation (2.7) can be obtained by imposing the condition of
the best sampling of the initial distribution Wρ (�) by {� j (τs)},
i.e., by maximizing the fidelity (the normalized overlap be-
tween the distribution and its discrete sampling)

F (τ ) = 2S + 1

4π

∫
d�Wρ (�)W d

ρ (�|τ )

= λ
∑

j

W 2
ρ (� j (τ )), (2.11)

so that

max F (τ ) = F (τs). (2.12)

We stress that here � j (τ ) indicates the (exact) quantum dy-
namics of the antipodal Majorana points, which play the role
of “seeds” for the consecutive classical evolution �cl

j (t ).
Obviously, only those points {� j (τs), j = 1, . . . , N} that

are located inside the principal part of the initial Wigner
distribution [i.e., inside the phase-space area A(�) describing
fluctuations of the spin variables] significantly contribute to
the sampling. This allows us to estimate the normalization
constant λ from the condition

λ

N∑
j=1

W d
ρ (� j (τs)) = 1, (2.13)

which follows from Eq. (2.6). Actually,

λ−1 ≈ NW̄ρ (�),

W̄ρ (�) = [Wρ (�0) + Wρ (�N )]/2,
(2.14)

�N being a border point of A(�), is an excellent approxi-
mation for the coherent states where at the maximum of the
distribution Wρ (�0) = 2.

In general, the dynamics of Majorana points is described
by a system of nonlinear differential equations, which exact
solution is a nontrivial task [37]. Nevertheless, in the case of
initial semiclassical states with A(�) ∼ S, e.g., spin coherent
states, the situation is significantly simplified for short-time
dynamics of the points {α j (τ ), j = 1, . . . , N} such that

α j (τ ) = α0[1 + μ j (τ )], |μ j (τ )| ∼ S−1/2, (2.15)

where z0 = −1/α∗
0 is a Majorana point characterizing the

initial Q distribution. Below, we will show particular exam-
ples where {μ j (τ )} satisfies some approximate equations of
motion which can be solved analytically.

A discrete Majorana sampling can be performed not only
for localized functions on S2 (describing coherentlike states),
but also for a variety of initial distributions including non-
localized states (e.g., Dicke state) and squeezed states. The
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FIG. 1. (a) Density plot of the classical potential (3.2) generated by the Hamiltonian (3.1); (b) evolution of the fidelity (2.11) corresponding
to the sampling points (3.4); (c) distribution of the Majorana points at the best sampling time τs; (d) evolution of 〈Ŝx (t )〉. Exact dynamics (black
solid line), the dynamically discretized TWA (blue dotted line), and the standard TWA (red dotted-dashed line); S = 10.

map from the Majorana points {z j (τ )} onto points inside the
distribution could be more involved than for the coherent
spin states, but the optimization procedure, described by the
maximization of F (τ ), remains the same. It turns out that the
sampling time is very short for nonlocalized distributions too,
χτs ∼ S−1.

It is worth noting that the distribution of the Majorana
points were numerically analyzed for studying classically
chaotic quantum systems [36].

III. EXAMPLES

A. Kerr dynamics

The finite Kerr Hamiltonian

Ĥz = χ Ŝ2
z (3.1)

generates the simplest nonlinear evolution where such phys-
ical effects as spin squeezing [38] and the Schrödinger cat
states [39] naturally emerge. The symbol of the Hamiltonian
(3.1),

WH (�) � χε−2cos2θ, (3.2)

corresponds to a potential valley on the equator [see Fig. 1(a)]
of the sphere and allows us to find an analytical expression for
the classical trajectories leading to the following discretized
TWA solution:

〈 f̂ (t )〉 = λ
∑

j

W d
ρ (� j )W

d
f (θ j, φ j − 2ε−1χt cos θ j ). (3.3)

For the initial spin coherent state located on the equator
|θ = π/2, ϕ = 0〉, the sampling points are (see Appendix)

θ j ≈ π/2 +
√

2χτν j, φ j ≈ (
√

2ν j − 1)χτ, (3.4)

where ν j are zeros of the Hermite polynomial H2S (ν j ) = 0.
The optimal sampling time corresponds to the first maximum
of the fidelity (2.11) [see Fig. 1(b)], where χτs ∼ 0.021 for
S = 10. The number of sampling points inside the coherent
state area, which is always taken as 3σ of the standard quan-
tum spin noise, scales as N ∼ S0.4. In Fig. 1(c) we show the
distribution of the Majorana points at the best sampling time
χτs ∼ 0.021. Only the points inside the (red) circle contribute
to the sampling of the initial coherent state.

In Fig. 1(d) we plot the evolution of 〈Ŝx(t )〉 obtained
from Eq. (3.3) and compare with the exact dynamics and the
standard TWA; while the standard TWA fails at χt ∼ S−1/2

(and does not reproduce even the first revival at χt = π ) the
dynamically discretized TWA (DDTWA) exhibits a very good
agreement with the results of the exact calculations for times
far beyond the first revival. Evolution of other observables and
different initial states is discussed in Sec. IV.

B. Lipkin-Meshkov-Glik dynamics

As an example of unstable evolution we consider the
Lipkin-Meshkov-Glik (LMG) Hamiltonian [40]

Ĥ = −hŜx + λ

2(2S + 1)

(
Ŝ2

z − Ŝ2
y

)
. (3.5)

The main interesting feature of this model is a presence of
the quantum phase transition at λ = h/2. In the undercritical
regime λ < h/2, where the energy levels are well separated,
there are two types of classical trajectories corresponding to
oscillations inside a single potential well with the minimum
at (θ = π/2, φ = 0) and “rotations” outside the well. In the
critical regime λ = h/2, only oscillations remain and after the
phase transition point λ > h/2 the energy levels become de-
generated, the oscillation areas are separated by local maxima.

We will be interested in the unstable regime λ > h/2, when
the potential on the sphere described by the Weyl symbol

WH (�) ≈ −(2ε)−1[h sin θ cos φ + λ sin2 θ (1 + sin2 φ)]

(3.6)

consists of two minima separated by local maxima [see
Fig. 2(a)] and the classical trajectories can be expressed in
terms of elliptic functions [41]. This Hamiltonian is integrable
but not exactly solvable and is characterized by a nontrivial
phase-space evolution significantly different from that of the
Kerr dynamics. It is worth noting that the nonlinear part of
the Hamiltonian (3.5) is equivalent to the so-called two-axis
squeezing Hamiltonian H = ξ (Ŝ2

z − Ŝ2
y ) = 2ξ{Ŝx, Ŝy}+ [38],

under π/4 rotation around the z axis.
The distribution corresponding to the initial spin coherent

state |π/2, 0〉 is centered at one of the local maxima (in the
vicinity of the classical separatrix) and leads to the classically
unstable motion. For this initial state the sampling points are
(see Appendix)

θ j ≈ π

2
+ Re(e−iβτ 2

√
2iγ τ

√
1 − iβτν j ), (3.7)

φ j ≈ Im(e−iβτ 2
√

2iγ τ
√

1 − iβτν j ), (3.8)
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FIG. 2. (a) Density plot of the classical potential (3.6) generated by the Hamiltonian (3.5) with λ = 30; (b) evolution of the fidelity (2.11)
for the sampling points (3.7) and (3.8); (c) distribution of the Majorana points at the best sampling time τs = 0.0095; (d) evolution of 〈Ŝx〉
for the coherent state |π/2, 0〉; (e) evolution of the fidelity for the initial Dicke state |S, 0〉; (f) distribution of the Majorana points at the best
sampling time τs = 0.0005; (g) evolution of 〈Ŝx〉 for the Dicke state |S, 0〉. Exact evolution (black solid line), the DDTWA (blue dotted line),
and the standard TWA (red dotted-dashed line); S = 10.

where β = λ(2s−1)
2(2s+1) − h, γ = λ

2(2s+1) , and H2S (ν j ) = 0 (as in
the Kerr case). The optimal sampling time corresponding to
the first maximum of the fidelity (2.11) [see Fig. 2(b)] is
slightly shorter than in the Kerr case γ τs ∼ 0.0095 for S = 10.
The number of sampling points inside the coherent state area
A(�) scales as N ∼ S0.5 [see Fig. 3(a)] and their distribution
is similar to that of the Kerr medium [see Fig. 2(c)], although
the analytical expressions (3.7) and (3.8) are quite different.

In Fig. 2(d) we plot the evolution of 〈Sx(t )〉 along with
the exact and the standard TWA. One can observe that the
DDTWA (2.7), (2.10), and (2.12) describe very well the exact
dynamics even for long times in the deeply unstable regime
λ = 30, while the standard TWA fails at very short times
γ t ∼ S−1 [34].

As a remarkable application of the present approach, we
study the evolution of the initial angular momentum state with
zero projection to the z axis |0, S〉, which is equivalent to the
Dicke state with S among 2S excited two-level atoms. The
Wigner function of this state has the form of a narrow belt
on the equator of the sphere, i.e., it is completely delocalized.
The state |0, S〉 is an “opposite” to a semiclassical state and
the standard TWA usually does not describe even short-time
nonharmonic dynamics.

FIG. 3. (a) The distribution corresponding to the squeezed state
e−0.5i(S2+−S2− )|π/2, 0〉; (b) evolution of 〈Sx〉 generated by the two-axis
Hamiltonian, exact evolution (black solid line), DDTWA (blue dotted
line), and the standard TWA (red dotted-dashed line); S = 10.

The corresponding Majorana constellation consists in two
S-times degenerated points at the north and south poles. Un-
der the action of the Hamiltonian (3.5), the Majorana points
z j = z(θ j, φ j ) for short times spread in small vicinities of both
poles:

(θ = 0, φ = 0) ⇒ (θ+
j (τ ), φ+

j (τ ); j = 0, . . . , S),

(θ = π, φ = 0) ⇒ (π − θ−
j (τ ), φ−

j (τ ); j = S, . . . , 2S),

where θ±
j (τ ) � 1. The sampling set in this case is obtained by

a direct projection of the Majorana points at γ τ ∼ S−1 onto
the initial distribution by preserving the angles φ±

j (τ ):

{α+
j (τ )} ⇔ (π/2, φ+

j (τ ); j = 0, . . . , S), (3.9)

{α−
j (τ )} ⇔ (π/2, φ−

j (τ ); j = S, . . . , 2S). (3.10)

The optimal sampling time is significantly shorter for the
state |0, S〉 in comparison with an initial coherent state: the
maximum fidelity (2.11) is reached at χτs ∼ 0.0005 for S =
10 [see Fig. 2(e)]. It is worth noting that in contrast to the
coherent state, all the Majorana points are required for a good
sampling of Dicke states. In Fig. 2(f) we show the distribution
of the Majorana points at the best sampling time.

The normalization constant λ, evaluated according to
Eq. (2.13) with N = 2S, can be also estimated from Eq. (2.14)
as λ−1 ≈ 2S, since the value of the Wigner function at the
maximum of the distribution (on the equator) is 1.

In Fig. 2(d) the exact evolution of 〈Ŝx(t )〉 is plotted along
with the discretized TWA and compared to the standard TWA
(which does not describe even the initial stage of the evolu-
tion). A similar procedure can be carried out for any other
Dicke state |S, m〉, whose Majorana constellation consists of
S + m degenerate points on the north pole and S − m degen-
erate points on the south pole, while the Wigner function for
m �= ±S has the form of a ring on the sphere around the z axis.

The general form of the map z → α = F [z] from the Majo-
rana points z j (t ) in the vicinity of poles onto the distributions
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corresponding to the states |S, m〉, −S � m � S is

F [z] = |z|(|z|z0 − 1)

z∗(|z| + z0)
, z0 = cot

(
π

m + S

4S

)
. (3.11)

For instance, the map (3.9) and (3.10) corresponds to z0 = 1,
i.e.,

α j = cot θ j/2 − 1

cot θ j/2 + 1
eiφ j .

Dicke states in any other basis are sampled by applying a
corresponding Mobius transformation to the map (3.11).

IV. DISCUSSION

We have shown that the long-time, χt � Sα , α > 0, non-
linear evolution of some spin observables can be described
in terms of classical trajectories originated at appropriately
chosen phase-space points. It is worth noting that the semi-
classical approximations based on statistically independent
classical trajectories in general do not lead to a faithful rep-
resentation of the long-time evolved Wigner function since
the classical dynamics preserves the phase-space area and
thus fails to describe any properly quantum deformations
of the initial phase-space distribution [16], for instance its
splitting.

Thus, an efficient emulation of the quantum interference
effects, reflected in a close resemblance to the exact and
approximate calculations [Eq. (2.7)], should be attributed to
a suitable discretization of the initial phase-space distribution.
Actually, the form of the employed dynamical discretization
plays the crucial role in our framework. Such a discretiza-
tion is obtained from a systematic procedure involving an
analytical description of the short-time quantum dynamics
in terms of Majorana point evolution. The discrete sam-
pling is performed by mapping the evolved Majorana points
z j (t ) to the initial Wigner function. For localized distribution,
such a map is just F [z] = −1/z∗, while for nonlocalized
ones the map may acquire more sophisticated form, as for
instance, Eq. (3.11) for Dicke states. The proposed discretiza-
tion method provides good results, i.e., close to unity overlap
between the Wigner distribution and its discretized sampling,
when the Q and Wigner functions are of similar form. For
instance, the Majorana sampling does not work for super-
positions of strongly interfering states, e.g., catlike states
(superposition of two distant coherent states), where the in-
terference term in the Wigner function is significantly larger
than the corresponding term in the Q function.

In a sense, the classical trajectories used for the simulation
of the interference pattern start at the points forming a “corre-
lated set,” while all the other trajectories are disregarded. We
emphasize that the number of sampling points N ∼ Sa, a � 1,
required for the simulation of quantum dynamics is signifi-
cantly smaller than that used in other semiclassical calculation
schemes, for instance, in the DTWA [26,27].

We have performed extensive numerical simulations ap-
plying our method to different initial states and observables
in case of second degree on the spin-operator Hamiltonians.
We obtained that the evolution of the first-order moments
are well described for initial coherentlike states (deformations
of coherent states) and Dicke states in different bases (i.e.,

FIG. 4. Evolution of 〈S2
x (t )〉 and 〈{Ŝz, Ŝy}+(t )〉 corresponding to

the LMG dynamics (3.5), for (a) the initial coherent state |π/2, 0〉;
(b) the coherent state |π/2, 3π/4〉 exact evolution (solid line), the
DDTWA (dotted line), and the standard TWA (dotted-dashed line);
S = 10.

eigenstates of Ŝx,y,z operators). In case of more “sophisticated”
initial states, represented by nonsmooth distributions on the
sphere, the main features of the evolution are still grasped in
the present approach [see Fig. 3 where we plot the evolution of
〈Ŝx(t )〉 for an initial spin coherent state (maximally) squeezed
by the action of the two-axis Hamiltonian].

The situation becomes more delicate with higher-order
moments. In general, the results obtained from the proposed
method fit well with the exact calculations for a wide variety
of initial states. The DDTWA shows a partial discrepancy with
the exact evolution of observables L̂(t ) that can detect two-
component superpositions of coherentlike states (Schrödinger

FIG. 5. Density plot of the Weyl symbols: (a) WS2
x
(�);

(b) W{Sz ,Sy}+ (�) and the Weyl symbols (c) W|π/2,0〉(�(t = π/2));
(d) W|π/2,3π/4〉(�(t = 2.08)), in the potential (3.6) represented by
black contour lines.
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FIG. 6. Evolution of 〈S2
x (t )〉 and 〈{Ŝz, Ŝy}+(t )〉 for the initial

Dicke state |S, 0〉 corresponding to the LMG dynamics (3.5), exact
evolution (black solid line), the DDTWA (blue dotted line), and the
standard TWA (red dotted-dashed line); S = 10.

cat states) generated in the course of quantum evolution,
which are unattainable from the independent trajectory-based
approach. Such observables are of even order on the spin op-
erators and are represented in phase space by two humps that
have a substantial overlap with the distribution representing
the initial state. The observables of the described form seem
to distinguish between quantum and classical deformations
of phase-space distributions. This is reflected in periodical
“flipping” of some peaks of mean values 〈L̂(t )〉. The low
odd-order moments of spin observables are always described
by our method.

In Fig. 4 we plot 〈Ŝ2
x (t )〉 and 〈{Ŝz, Ŝy}+(t )〉 for the initial

spin coherent states |π/2, 0〉 and |π/2, 3π/4〉 corresponding
to the LMG dynamics (3.5).

As one can observe, the “flips” occur for 〈Ŝ2
x (t )〉 at pre-

cisely the two-component cat time for the distribution located
at (θ = π/2, ϕ = 0), while a similar behavior is present
in 〈{Ŝz, Ŝy}+(t )〉 evolution for the distribution centered at
(θ = π/2, ϕ = 3π/4).

In Fig. 5 we plot the Weyl symbols of both observables at
t = 0 in the potential (3.6) compared with the evolved Wigner
function of the states |θ = π/2, ϕ = 0〉 and |θ = π/2, ϕ =
3π/4〉 at the times of the most pronounced flips t = π/2
and 2.08, respectively. The maxima of the symbol WS2

x
(�)

coincide with the positions of the maxima of the distribution
W|π/2,0〉(�|t ) at t = π/2.

The symbol of the operator {Ŝz, Ŝy}+ never has such a
strong overlap with two-component superpositions appear-
ing during the LMG evolution. The situation is reversed for
the initial state |θ = π/2, ϕ = 3π/4〉, where the operator
{Ŝz, Ŝy}+ is sensitive to the emerging of coherent superposi-

FIG. 7. (a) Evolution of 〈S2
x (t )〉 for the initial state |S, 0〉x =

e−i π
2 Ŝy |S, 0〉; (b) evolution of 〈(Ŝ · n)

3
(t )〉, n(θ = π/2, ϕ = 2.7) for

an initial coherent state generated by the Kerr Hamiltonian (3.1);
exact evolution (black solid line), the DDTWA (blue dotted line),
and the standard TWA (red dotted-dashed line); S = 10.

FIG. 8. (a) Evolution of 〈S2
x (t )〉 and (b) 〈{Sz, Sy}+(t )〉 for the

initial coherent state |π/2, 0〉 generated by the Hamiltonian (4.1),
exact evolution (black solid line), the DDTWA (blue dotted line),
and the standard TWA (red dotted-dashed line); S = 10.

tions through the overlap of W{Sz,Sy}+ (�) with W|π/2,3π/4〉(�|t ),
as can be appreciated from Figs. 5(b) and 5(d).

The dynamics of the same observables for the initial
Dicke state are well described. No pronounced superposi-
tions of coherentlike states are generated by (3.5) for such an
initial nonlocalized distribution. In Fig. 6 we plot 〈Ŝ2

x (t )〉 and
〈{Ŝz, Ŝy}+(t )〉 for the initial Dicke state |S, 0〉 .

Finally, we plot results of miscellaneous calculations cor-
responding to evolution of higher-order moments for different
states and Hamiltonians:

(a) Kerr dynamics, Fig. 7(a): 〈Ŝ2
x (t )〉 for the initial Dicke

state |S, 0〉x = e−i π
2 Ŝy |S, 0〉 in the x basis, Ŝx|S, 0〉x = 0;

Fig. 7(b): evolution of the third-order moment 〈(Ŝ · n)
3
(t )〉,

n(θ = π/2, ϕ = 2.7) for an initial coherent state |π/2, 0〉.
(b) The evolution of 〈Ŝ2

x (t )〉 and 〈{Ŝz, Ŝy}+(t )〉 for the
initial coherent state |π/2, 0〉 in case of mixed nonlinear dy-
namics generated by

Ĥ = λŜ2
z − 0.75iλ(Ŝ2

+ − Ŝ2
−), (4.1)

are plotted in Figs. 8(a) and 8(b).
(c) The evolution of 〈Ŝ2

x (t )〉 and 〈{Ŝz, Ŝy}+(t )〉 for the ini-
tial coherent state |π/2, 0〉 and nonlinear (Kerr dominated)
dynamics generated by

Ĥ = 10λŜ2
z − 0.75iλ(Ŝ2

+ − Ŝ2
−), (4.2)

are plotted in Figs. 9(a) and 9(b). A remarkable description
of a fast oscillating nonlinear evolution can be observed. The
appearance of some flips on the plots can be explained accord-
ing to the previous discussion: the dominant nonlinear term in
the Hamiltonian fixes the observable where the “flip failure” is
present for a given initial state. Observe that in both cases the
DDTWA present the first failure at times significantly longer
than the semiclassical times χtsem ∼ S−a, a > 0, where the
standard TWA is in general applicable.

Finally, we note that the dynamics of average values com-
puted exactly in terms of the evolved phase-space distributions
are perfectly described by the Majorana discretization method

〈 f̂ (t )〉 = λ
∑

j

W d
ρ (� j )W

d
f (� j |t ),

where

Wf (�|t ) = Tr( f̂ (t )ω̂(�))

is the Weyl symbol of the Heisenberg operator f̂ (t ).
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FIG. 9. (a) Evolution of 〈S2
x (t )〉 and (b) 〈{Sz, Sy}+(t )〉 for the initial coherent state |π/2, 0〉 generated by the the Hamiltonian (4.2), exact

evolution (black solid line), the DDTWA (blue dotted line), and the standard TWA (red dotted-dashed line); S = 10.
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APPENDIX: SHORT-TIME EVOLUTION OF THE
MAJORANA POINTS

1. Kerr dynamics

The evolution of the Majorana points for the Kerr Hamilto-
nian (3.1 ) is described by the following system of differential
equations [36] :

żk = 2i

⎡
⎣z2

k

2S∑
j �=k

1

zk − z j
− zk

(
S − 1

2

)⎤
⎦, (A1)

where zk (0) = 1 for the initial spin coherent state |π/2, 0〉 and
the derivative is taken over dimensionless time χt . Taking into
account the parametrization of the antipodal points

αk = − 1

z∗
k

= − tan
θk

2
eiφk , (A2)

θk (0) = π/2, φk (0) = 0, (A3)

we obtain the following equations for the angular variables:

θ̇k = 4 sin2 θk

2
Im

⎛
⎝eiφk

2S∑
j �=k

1

α j − αk

⎞
⎠,

φ̇k = 2 tan
θk

2
Re

⎛
⎝eiφk

2S∑
j �=k

1

α j − αk

⎞
⎠ − 2S + 1. (A4)

For the initial spin coherent states and short evolution
times χτ ∼ S−1 we should consider only a vicinity of the
initial point (A3), so that θk = π

2 + ξk and φk = ηk , where
ξk, ηk � 1. Expanding the denominator and the numerator in
Eq. (A4) to the second and first order on ξk and ηk , respec-
tively, we arrive at the following set of coupled equations for
μk = ξk + iηk:

μ̇k = 2i
∑
j �=k

1

μk − μ j
− i. (A5)

The substitution μk = 2νk
√

iχτ − iχτ leads to the algebraic
equation

νk =
∑
j �=k

1

νk − ν j
, (A6)

which defines zeros of the Hermite polynomials H2S (νk ) = 0.
Finally, the approximate solutions of Eq. (A4) in the vicinity
of θk (0) = π/2, φk (0) = 0 are

θk ≈ π

2
+

√
2χτνk, φk ≈ (

√
2νk − 1)χτ, (A7)

where only the roots |νk|/S � 1 of the Hermite polynomial
H2S (ν) are considered. In Fig. 2(c) we plot the distribution of
the antipodal Majorana points at the optimum time moment
χτ ∼ 0.021. The points inside the sampling area A(�), which
are 3σ of the spin fluctuations in the coherent state, are very
well described by Eq. (A7).

2. Lipkin-Meshkov-Glik dynamics

The evolution of the Majorana points for the Hamiltonian
(3.5) is described by

żk = i

4 + 8s

[
− 2h(2s + 1)

(
z2

k − 1
) − (2s − 1)

(
3zk + z3

k

)
λ + (

1 + 6z2
k + z4

k

)
λ

∑
j �=k

1

zk − z j

]
. (A8)

Following the same steps as in the case of the Kerr
Hamiltonian we arrive at the following set of equations for
μk = ξk + iηk:

μ̇k = −iβμk + 4iγ
∑
j �=k

1

μk − μ j
,

β = λ(2S − 1)

2(2S + 1)
− h, γ = λ

2(2S + 1)
.

The approximate solution of the above equation for hτ ∼ S−1,

μk ≈ e−iβτ 2
√

2iγ
√

τ − iβτ 2νk, (A9)
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where H2S (νk ) = 0, leads to

θk ≈ π

2
+ Re(e−iβτ 2

√
2iγ τ

√
1 − iβτνk ), (A10)

φk ≈ Re(e−iβτ 2
√

2iγ τ
√

1 − iβτνk ), (A11)

where only those zeros of the Hermite polynomial H2S (ν) that
satisfy |νk|

√
γ /S � 1 can be taken into account.

[1] M. V. Berry and K. E. Mount, Rep. Prog. Phys. 35, 315 (1972);
K. G. Kay, J. Chem. Phys. 100, 4377 (1994); M. V. Berry
and N. L. Balazs, J. Phys. A: Math. Gen. 12, 625 (1979);
R. G. Littlejohn, Phys. Rep. 138, 193 (1986); V. P. Maslov
and M. V. Fedoriuk, Semi-Classical Approximation in Quantum
Mechanics (Springer Science & Business Media, 2001); M.
C. Gutzwiller, Chaos in Classical and Quantum Mechanics
(Springer-Verlag, New York, 1990); A. Voros, Prog. Theor.
Phys. Suppl. 16, 17 (1994).

[2] E. J. Heller, J. Chem. Phys. 65, 1289 (1976); 67, 3339 (1977);
E. J. Heller, J. R. Remiers and J. Drolshangen, Phys. Rev. A
190, 2613 (1987); M. J. Davis and E. J. Heller, J. Chem. Phys.
80, 5036 (1984); P. Kinsler, M. Fernee, and P. D. Drummond,
Phys. Rev. A 48, 3310 (1993); V. G. Bagrov, V. V. Belov, and
I. M. Ternov, Teor. Mat. Fiz. 50, 390 (1982) [Theor. Mat. Phys.
50, 256 (1982)]; P. Kinsler and P. D. Drummond, Phys. Rev. A
44, 7848 (1991); G. Drobny and I. Jex, ibid. 46, 499 (1992).

[3] L. S. Schulman, Techniques and Applications of Path Integration
(Wiley, New York, 1981); M. S. Marinov, Phys. Lett. A 153, 5
(1991).

[4] F. Gottwald and S. D. Ivanov, Chem. Phys. 503, 77 (2018).
[5] W. H. Miller, J. Phys. Chem. A 105, 2942 (2001); Adv. Chem.

Phys. 25, 69 (1974); K. G. Kay, Annu. Rev. Phys. Chem. 56,
255 (2005).

[6] S. Garashchuk and V. A. Rassolov, Chem. Phys. Lett. 364, 562
(2002); C. L. Lopreore and R. E. Wyatt, Phys. Rev. Lett. 82,
5190 (1999); A. Donoso and C. C. Martens, ibid. 87, 223202
(2001); S. Koda, J. Chem. Phys. 143, 244110 (2015).

[7] E. Kluk, M. F. Herman, and H. L. Davis, J. Chem. Phys. 84, 326
(1986); W. H. Miller, Mol. Phys. 100, 397 (2002).

[8] M. Boiron and M. Lombardi, J. Chem Phys. 108, 3431 (1998);
H. Pal, M. Vyas, and S. Tomsovic, Phys. Rev. E 93, 012213
(2016); W. Koch and D. J. Tannor, Chem. Phys. Lett. 683, 306
(2017).

[9] F. Schroeck and E. Franklin, Quantum Mechanics on Phase
Space (Kluwer, Dordrecht, 1996); W.-P. Schleich, Quantum
Optics in Phase Space (Wiley, New York, 2001); C. K. Zachos,
D. B. Fairle, and T. L. Curtright, Quantum Mechanics in
Phase Space (World Scientific, Singapore, 2005); A. M. O. de
Almeida, Phys. Rep. 295, 265 (1998).

[10] J. E. Moyal, Proc. Cambridge Philos. Soc. 45, 99 (1949).
[11] M. V. Berry, Philos. Trans. R. Soc. London, Ser. A 287, 237

(1977).
[12] P. Ehrenfest, Z. Phys. 45, 455 (1927); G. M. Zaslavsky, Phys.

Rep. 80, 157 (1981); G. A. Hagedorn and A. Joye, Ann. Henri
Poincare 1, 837 (2000); P. G. Silvestrov and C. W. J. Beenakker,
Phys. Rev. E 65 035208(R) (2002); R. Schubert, O. Vallejos,
and F. Toscano, J. Phys. A: Math. Theor. 45, 215307 (2012).

[13] V. S. Filinov, M. Bonitz, A. Filinov, and V. O. Golubnychiy,
Lect. Notes Phys. 739, 41 (2008).

[14] G. Schubert, V. S. Filinov, K. Matyash, R. Schneider, and H.
Fehske, Int. J. Mod. Phys. C 20, 1155 (2009).

[15] A. Polkovnikov, Ann. Phys. 325, 1790 (2011).

[16] O. Steuernagel, D. Kakofengitis, and G. Ritter, Phys. Rev.
Lett. 110, 030401 (2013); M. Oliva, D. Kakofengitis, and O.
Steuernagel, Phys. A (Amsterdam) 502, 201 (2017); M. Oliva
and O. Steuernagel, Phys. Rev. A 99, 032104 (2019).

[17] T. Dittrich, C. Viviescas, and L. Sandoval, Phys. Rev. Lett. 96,
070403 (2006); T. Dittrich, E. A. Gómez, and L. A. Pachón,
J. Chem. Phys. 132, 214102 (2010); R. N. P. Maia, F. Nicacio,
R. O. Vallejos, and F. Toscano, Phys. Rev. Lett. 100, 184102
(2008); F. Toscano, R. O. Vallejos, and D. Wisniacki, Phys. Rev.
E 80, 046218 (2009); S. Tomsovic, P. Schlagheck, D. Ullmo, J.-
D. Urbina, and K. Richter, Phys. Rev. A 97, 061606(R) (2018);
G. M. Lando, R. O. Vallejos, G.-L. Ingold, and A. M. O. de
Almeida, ibid. 99, 042125 (2019).

[18] P. P. de M. Rios and A. M. Ozorio de Almeida, J. Phys. A: Math.
Gen. 35, 2609 (2002); A. M. Ozorio de Almeida and O. Brodier,
Ann. Phys. 321, 1790 (2006); A. M. Ozorio de Almeida, R. O.
Vallejos, and E. Zambrano, J. Phys. A: Math. Theor. 46, 135304
(2013).

[19] M. A. M. de Aguiar, S. A. Vitiello, and A. Grigolo, Chem. Phys.
370, 42 (2010); T. F. Viscondi and M. A. M. de Aguiar, J. Math.
Phys. 52, 052104 (2011).

[20] G. Drobny, A. Bandilla, and I. Jex, Phys. Rev. A 55, 78 (1997).
[21] J. P. Amiet and M. B. Ciblis, J. Phys. A: Math. Gen. 24,

1515 (1991); A. B. Klimov, J. Math. Phys. 43, 2202 (2002);
A. B. Klimov and P. Espinoza, J. Opt. B 7, 183 (2005); Y. P.
Kalmykov, W.T. Coffey, and S. V. Titov, Adv. Chem. Phys. 161,
41 (2016).

[22] A. B. Klimov, J. L. Romero, and H. de Guise, J. Phys. A: Math.
Theor. 50, 323001 (2017).

[23] A. B. Klimov, H. T. Dinani, Z. E. D. Medendorp, and H. de
Guise, New J. Phys. 13, 113033 (2012); H. Jeong, Y. D. Jho,
and C. J. Stanton, Phys. Rev. Lett. 114, 043603 (2015).

[24] K. Takahashi and A. Shudo, J. Phys. Soc. Jpn. 62, 2612 (1993).
[25] W. K. Wootters, Ann. Phys. 176, 1 (1987).
[26] J. Schachenmayer, A. Pikovski, and A. M. Rey, Phys. Rev.

X 5, 011022 (2015); New J. Phys. 17, 065009 (2015); O. L.
Acevedo, A. Safavi-Naini, J. Schachenmayer, M. L. Wall, R.
Nandkishore, and A. M. Rey, Phys. Rev. A 96, 033604 (2017);
A. Piñeiro Orioli, A. Safavi-Naini, M. L. Wall, and A. M. Rey,
ibid. 96, 033607 (2017).

[27] L. Pucci, A. Roy, and M. Kastner, Phys. Rev. B 93, 174302
(2016).

[28] B. Sundar, K. C. Wang, and K. R. A. Hazzard, Phys. Rev. A 99,
043627 (2019).

[29] E. Majorana, Nuovo Cimento 9, 43 (1932); H. Makela and H.
Messina, Phys. Scr. T 140, 014054 (2010); J. Crann, R. Pereira,
and D. W. Kribs, J. Phys. A: Math. Theor. 43, 255307 (2010);
P. Kolenderski, Open Syst. Inf. Dyn. 17, 107 (2010).

[30] R. L. Stratonovich, Zh. Eksp. Teor. Fiz. 31, 1012 (1956) [Sov.
Phys. JETP 4, 891 (1957)]; G. S. Agarwal, Phys. Rev. A 24,
2889 (1981); J. C. Várily and J. M. Garcia-Bondia, Ann. Phys.
190, 107 (1989).

[31] D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii,

062220-9

https://doi.org/10.1088/0034-4885/35/1/306
https://doi.org/10.1063/1.466320
https://doi.org/10.1088/0305-4470/12/5/012
https://doi.org/10.1016/0370-1573(86)90103-1
https://doi.org/10.1103/PhysRevA.36.2613
https://doi.org/10.1063/1.433238
https://doi.org/10.1063/1.435296
https://doi.org/10.1103/PhysRevA.190.2613
https://doi.org/10.1063/1.446571
https://doi.org/10.1103/PhysRevA.48.3310
https://doi.org/10.1007/BF01016454
https://doi.org/10.1103/PhysRevA.44.7848
https://doi.org/10.1103/PhysRevA.46.499
https://doi.org/10.1016/0375-9601(91)90352-9
https://doi.org/10.1016/j.chemphys.2018.02.009
https://doi.org/10.1021/jp003712k
https://doi.org/10.1146/annurev.physchem.56.092503.141257
https://doi.org/10.1016/S0009-2614(02)01378-7
https://doi.org/10.1103/PhysRevLett.82.5190
https://doi.org/10.1103/PhysRevLett.87.223202
https://doi.org/10.1063/1.4938235
https://doi.org/10.1063/1.450142
https://doi.org/10.1080/00268970110069029
https://doi.org/10.1063/1.475743
https://doi.org/10.1103/PhysRevE.93.012213
https://doi.org/10.1016/j.cplett.2017.02.020
https://doi.org/10.1016/S0370-1573(97)00070-7
https://doi.org/10.1017/S0305004100000487
https://doi.org/10.1098/rsta.1977.0145
https://doi.org/10.1007/BF01329203
https://doi.org/10.1016/0370-1573(81)90127-7
https://doi.org/10.1007/PL00001017
https://doi.org/10.1103/PhysRevE.65.035208
https://doi.org/10.1088/1751-8113/45/21/215307
https://doi.org/10.1007/978-3-540-74686-72
https://doi.org/10.1142/S0129183109014278
https://doi.org/10.1016/j.aop.2010.02.006
https://doi.org/10.1103/PhysRevLett.110.030401
https://doi.org/10.1016/j.physa.2017.10.047
https://doi.org/10.1103/PhysRevA.99.032104
https://doi.org/10.1103/PhysRevLett.96.070403
https://doi.org/10.1063/1.3425881
https://doi.org/10.1103/PhysRevLett.100.184102
https://doi.org/10.1103/PhysRevE.80.046218
https://doi.org/10.1103/PhysRevA.97.061606
https://doi.org/10.1103/PhysRevA.99.042125
https://doi.org/10.1088/0305-4470/35/11/307
https://doi.org/10.1016/j.aop.2006.03.007
https://doi.org/10.1088/1751-8113/46/13/135304
https://doi.org/10.1016/j.chemphys.2010.01.020
https://doi.org/10.1063/1.3583996
https://doi.org/10.1103/PhysRevA.55.78
https://doi.org/10.1088/0305-4470/24/7/023
https://doi.org/10.1063/1.1463711
https://doi.org/10.1088/1464-4266/7/6/004
https://doi.org/10.1088/1751-8121/50/32/323001
https://doi.org/10.1088/1367-2630/13/11/113033
https://doi.org/10.1103/PhysRevLett.114.043603
https://doi.org/10.1143/JPSJ.62.2612
https://doi.org/10.1016/0003-4916(87)90176-X
https://doi.org/10.1103/PhysRevX.5.011022
https://doi.org/10.1088/1367-2630/17/6/065009
https://doi.org/10.1103/PhysRevA.96.033604
https://doi.org/10.1103/PhysRevA.96.033607
https://doi.org/10.1103/PhysRevB.93.174302
https://doi.org/10.1103/PhysRevA.99.043627
https://doi.org/10.1007/BF02960953
https://doi.org/10.1088/0031-8949/2010/T140/014054
https://doi.org/10.1088/1751-8113/43/25/255307
https://doi.org/10.1142/S1230161210000084
https://doi.org/10.1103/PhysRevA.24.2889
https://doi.org/10.1016/0003-4916(89)90262-5


IVÁN F. VALTIERRA AND ANDREI B. KLIMOV PHYSICAL REVIEW A 102, 062220 (2020)

Quantum Theory of Angular Momentum (World Scientific, Sin-
gapore, 1988).

[32] X. Suna and Z. Chenb, J. Approx. Theor. 151, 186 (2008).
[33] J. Renes, R. Blume-Kohout, A. Scott, and C. Caves, J. Math.

Phys. 45, 2171 (2004); Handbook of Combinatorial Designs,
2nd ed., edited by C. J. Colbourn and J. H. Dinitz (CRC Press,
Boca Raton, FL, 2007); A. Ambainis and J. Emerson, Twenty-
Second Annual IEEE Conference on Computational Complexity
(IEEE, Piscataway, NJ, 2007), p. 129,

[34] I. F. Valtierra, J. L. Romero, and A. B. Klimov, Ann. Phys. 383,
620 (2017).

[35] P. Leboeuf and A. J. Voros, Phys. A: Math. Gen. 23, 1765
(1990); S. Nonnenmacher and A. Voros, J. Phys. A: Math. Gen.
30, 295 (1997); H. D. Liu and L. B. Fu, Phys. Rev. Lett. 113,
240403 (2014); M. B. Cibils, Y. Cuche, P. Leboeuf, and W. F.
Wreszinski, Phys. Rev. A 46, 4560 (1992).

[36] P. Leboeuf, J. Phys. A: Math. Gen. 24, 19 (1991).
[37] F. Yao, D. Li, H. Liu, L. Fu, and X. Wang, Sci. Rep. 7, 15558

(2017); P. Ribeiro, J. Vidal, and R. Mosseri, Phys. Rev. Lett. 99,
050402 (2007).

[38] M. Kitagawa and M. Ueda, Phys. Rev. A 47, 5138
(1993).

[39] G. S. Agarwal, R. R. Puri, and R. P. Singh, Phys. Rev. A 56,
2249 (1997).

[40] H. J. Lipkin, N. Meshkov, and A. J. Glick, Nucl. Phys. 62,
188 (1965); 62, 199 (1965); 62, 211 (1965); R. Botet, R.
Jullien, and P. Pfeuty, Phys. Rev. Lett. 49, 478 (1982); R. Botet
and R. Jullien, Phys. Rev. B 28, 3955 (1983); J. I. Cirac, M.
Lewenstein, K. Mølmer, and P. Zoller, Phys. Rev. A 57, 1208
(1998).

[41] L. Chotorlishvili and A. Ugulava, Phys. D (Amsterdam) 239,
103 (2010).

062220-10

https://doi.org/10.1016/j.jat.2007.09.009
https://doi.org/10.1063/1.1737053
https://doi.org/10.1016/j.aop.2017.06.006
https://doi.org/10.1088/0305-4470/23/10/017
https://doi.org/10.1088/0305-4470/30/1/021
https://doi.org/10.1103/PhysRevLett.113.240403
https://doi.org/10.1103/PhysRevA.46.4560
https://doi.org/10.1088/0305-4470/24/19/021
https://doi.org/10.1038/s41598-017-15776-w
https://doi.org/10.1103/PhysRevLett.99.050402
https://doi.org/10.1103/PhysRevA.47.5138
https://doi.org/10.1103/PhysRevA.56.2249
https://doi.org/10.1016/0029-5582(65)90862-X
https://doi.org/10.1016/0029-5582(65)90863-1
https://doi.org/10.1016/0029-5582(65)90864-3
https://doi.org/10.1103/PhysRevLett.49.478
https://doi.org/10.1103/PhysRevB.28.3955
https://doi.org/10.1103/PhysRevA.57.1208
https://doi.org/10.1016/j.physd.2009.08.017

