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Entanglement-preserving limit cycles from sequential quantum measurements and feedback
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Entanglement generation and preservation is a key task in quantum information processing, and a variety
of protocols exist to entangle remote qubits via measurement of their spontaneous emission. We here propose
feedback methods, based on monitoring the fluorescence of two qubits and using only local π pulses for control,
to increase the yield and/or lifetime of entangled two-qubit states. Specifically, we describe a protocol based on
photodetection of spontaneous emission (i.e., using quantum jump trajectories) which allows for entanglement
preservation via measurement undoing, creating a limit cycle around Bell states. We then demonstrate that a
similar modification can be made to a recent feedback scheme based on homodyne measurement (i.e., using
diffusive quantum trajectories) [L. S. Martin and K. B. Whaley, arXiv:1912.00067] in order to increase the
lifetime of the entanglement it creates. Our schemes are most effective for high measurement efficiencies, and
the impact of less-than-ideal measurement efficiency is quantified. Our method provides a pathway towards
generating and protecting entangled states, complementing others in the literature with similar aims, such that
two-qubit entanglement may be used in various applications on demand.

DOI: 10.1103/PhysRevA.102.062219

I. INTRODUCTION

Entanglement is one of the key features of quantum
systems which allow for potential information-processing ad-
vantages over those possible in purely classical systems. An
unmonitored spontaneous emission process leads to deco-
herence and loss of entanglement [1]. On the other hand,
measurement of such decay channels via photodetection has
been proven to be an effective means of generating entan-
glement [2–15]. Such processes can be realized with more
general time-continuous measurements [5,16–25], in which
the entanglement generation is tracked by the same process
that creates it.

Advances in continuous quantum measurement (stochastic
quantum trajectories) in general [26–34] have been consis-
tently connected to the development of Hamiltonian feedback
protocols, conditioned on the real-time measurement record,
which aim to implement useful quantum control tasks
[25,35–55]. This pattern can be seen in the work most di-
rectly related to ours: Study of the quantum trajectories from
monitoring a single qubit’s spontaneous emission has led from
theory [23,56,57] to experiments without [58–62] and then
with [63,64] feedback. Theory without [18,22,24] and with
[5,19,25] feedback has been developed in the two-qubit case
that the present work adds to.

Our proposal here involves supplementing existing mea-
surement and feedback schemes [24,25], based on monitoring
two qubits via their natural decay channel, with fast π pulses.
We show that this allows us to trap the two-qubit state in
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limit cycles close to a Bell state. It is worth noting that we
consider “continuous” measurement that relies on finite time
steps �t (i.e., finite detector integration time leading the mea-
surement record at each step), such that fast operations can be
interjected so as to effectively take place “between” measure-
ments. While this is a reasonable regime to consider on real
devices, it marks a mathematical departure from approaches
to continuous measurements and feedback that are defined
strictly in the time-continuum limit (where �t becomes an
infinitesimal dt). We also point out that most existing schemes
which address the task of interest rely on additional resources,
such as ancillary qubits or additional transitions for storing
quantum information. While there are potential advantages
to such approaches, ours requires only the two qubits and
feedback based on local operations and classical communica-
tion (LOCC). The use of LOCC for feedback implies that the
measurements are the only nonlocal element in our scheme
and must therefore be entirely responsible for entanglement
generation; operations local to each qubit cannot increase the
concurrence of the two-qubit state at all [65,66]. The role
of the feedback is to allow measurements to better gener-
ate entanglement or prevent subsequent measurements from
decreasing the entanglement; our scheme leads to significant
gains in entanglement yield and lifetime.

The functioning of our control scheme brings to mind
some other topics in the quantum measurement and control
literature. First, the use of fast π pulses to effectively reverse
decoherence processes has its roots in spin-echo techniques
[67]; more recently this has been generalized into “bang-
bang” (BB) type control schemes (which may themselves
be viewed as a subset of dynamical decoupling proto-
cols) [68–85]. While there has been work which combines
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dynamical decoupling or BB control with other quantum error
correction methods [72,74,76] or with measurement via the
quantum Zeno effect [77,78], few past works interject fast BB-
like controls in between steps of measurement and/or other
types of controls [86–88]. Second, we will see that the way
we use our BB-like feedback, especially in conjunction with
photodetection, is effectively equivalent to a measurement
reversal procedure [88–95].

We will proceed as follows: We first consider jump trajec-
tories from ideal photodetection measurements in Sec. II. We
demonstrate a simple feedback procedure based on fast π–
pulses, which allows us to preserve virtually all concurrence
generated by our measurements for arbitrarily long times.
Next we develop the corresponding procedure in the homo-
dyne case [18,24], building on the recent scheme by Martin
and Whaley [25] (which is, in turn, connected to our recent
works [23,24]). The existing scheme implements local unitary
feedback operations and allows for deterministic generation of
a Bell state based on ideal operation in the time-continuum
limit. We exit the time-continuum assumption and add π -
pulse based BB-like control atop the local feedback rotations
derived in Ref. [25]. This is shown to again lead to a stable
limit cycle about a Bell state, which may preserve the entan-
glement generated by the Hamiltonian control indefinitely. In
Sec. IV, we reconsider each of the above schemes, assuming
that we have inefficient measurements (but still an otherwise
ideal setup). We perform a numerical analysis to quantify how
the performance of our schemes degrade when state purity is
gradually lost due to accumulated inefficient measurements.
Conclusions and outlook are presented in Sec. V.

II. PHOTODETECTION-BASED FEEDBACK:
CONCURRENCE PRESERVATION VIA MEASUREMENT

UNDOING

We begin with the case of jump trajectories, obtained from
photodetection of two qubits’ spontaneous emission, as per
the device illustrated in Fig. 1(a). It will be helpful to reca-
pitulate a few of our previous results [24], which will prove
key to the scheme we now construct. First, with the two-qubit
state initialized in |ee〉, two clicks are expected over the course
of an experiment, absent any re-excitation of either qubit after
it decays; the first click heralds the generation of a Bell state
|�±〉 = (|eg〉 ± |ge〉)/

√
2 between the emitters, while the sec-

ond click eliminates the entanglement, generating the state
|gg〉. Second, Bell states of the form |�±〉 = (|ee〉 ± |gg〉)/

√
2

hold their entanglement longer on average than the states
|�±〉 under fluorescence and photodetection; this is because
one click heralds complete disentanglement for a state |�±〉,
whereas a state |�±〉 requires either two clicks or a long
(compared to T1) wait time to asymptotically disentangle
the qubits.

While these even- and odd-parity Bell states behave dif-
ferently, a π rotation on a single qubit is all that is required to
change from one type to the other. Mathematically, we say that
flipping qubit A and leaving qubit B alone can be represented
by the unitary operation F̂A = iσ̂ A

y ⊗ 1B, such that F̂A|�±〉 ∝
|�∓〉 up to a global phase factor. A feedback scheme for
entanglement creation is thus easily identified: Starting from
|ee〉, we wait for a click which heralds the creation of a state

FIG. 1. We illustrate an apparatus for creating and preserving
entanglement between qubits A and B, using measurements of
spontaneous emission and feedback based on those measurements.
Panel (a) shows a device based on photocounting measurements,
whereas panel (b) shows a corresponding device based on homodyne
detection. In either case, cavities and transmission lines capture spon-
taneous emission and route it to measurement devices. The emitted
signals from each qubit are mixed on a 50:50 beam splitter and then
monitored continuously, with a measurement result acquired every
integration interval �t . We suppose that �t � T1. Feedback control
is exerted by fast π pulses (fast compared to both T1 and �t), which
quickly flip qubit A (F̂A) and/or qubit B (F̂B). These flips may or may
not be implemented at the end of each detector integration time step,
conditioned on the measurement outcome. Additional qubit rotations
ÛA and ÛB are used in the homodyne case (b). The cavities must
be engineered such that the photons implementing the π pulses, or
rotations, do not couple to the output modes which lead to the mea-
surement devices. The purple beam splitters model photon losses,
where the incoming signal scatters according to the transformation
â†

i → √
ηi â

†
i,s + √

1 − ηi â
†
i,�; there is a probability ηi that the signal

is transmitted but a probability 1 − ηi that it is reflected into the lost
mode corresponding to a†

i,�. Perfect measurement efficiency (ηi = 1)
corresponds to lossless transmission from qubits to detectors. For a
more comprehensive treatment of the measurements in this scheme,
see Ref. [24].

|�±〉; when that happens, we immediately flip one of the two
qubits (e.g., by the operation F̂A) to obtain the more robust
|�∓〉 state instead. If we measure a single photon emission
after obtaining a state of the type |�±〉, this subsequent click
just takes us back to |�±〉 (which can again be immediately
reset to |�∓〉 by flipping one qubit).

Between two clicks, the evolution of the two-qubit system
still degrades entanglement, such that additional pulses are
needed to fully preserve state |�±〉. Consider evolution of a
state of form ζ |ee〉 + υ|gg〉 under measurement dynamics for
a step of duration �t , in which neither detector receives a pho-
ton (the result of the majority of the individual measurements,
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for �t � T1). The Kraus operator implementing the resulting
state update [24] is

M̂00 =

⎛
⎜⎜⎝

1 − ε 0 0 0
0

√
1 − ε 0 0

0 0
√

1 − ε 0
0 0 0 1

⎞
⎟⎟⎠, (1)

where ε ≡ γ �t , and ε should be assumed to be small (i.e.,
measurements are performed on a timescale which is fast
compared to T1). Repeated evolution of this type gradually
causes the concurrence to decay, as the amplitude in |gg〉
grows relative to that in |ee〉 (with every step �t in which no
photons are received, our supposed probability of ultimately
getting the outcome |gg〉 instead of |ee〉 increases). Suppose,
however, that upon receiving a no-click result, we flip both
qubits, according to the operation

F̂AB = (
iσ̂ A

y ⊗ 1B
)(

i1A ⊗ σ̂ B
y

) = F̂AF̂B. (2)

We find that after a second step of measurement without a
click at the detectors, the two-qubit state is unchanged; i.e.,
we find

M̂00F̂ABM̂00|�±〉
|M̂00F̂ABM̂00|�±〉| ∝ |�±〉 (3)

up to a global phase factor. Effectively, if we flip the slightly
larger amplitude from |gg〉 back to |ee〉, the next step of no-
click evolution will simply undo the previous one [88–95];
thus we can effectively “recycle” the |�±〉 states indefinitely
during a stretch of no-click measurement outcomes by quickly
flipping both qubits after every other such measurement. The
utility of flipping operations for reversing entanglement decay
due to a damping channel has been noted before, by Sun et al.
[88]. The measurement reversal succeeds most of the time,
because the outcome corresponding to M̂00 occurs with prob-
ability O(1), whereas results involving one or two clicks occur
with probabilities O(ε) or O(ε2), respectively [24]. Only the
double click, which is the rarest of these options, disentangles
the qubits. The recycling operation we have described actually
works on any state, because applying the total scheme twice,
as per

M̂00F̂ABM̂00M̂00F̂ABM̂00 ∝ 1, (4)

amounts to an identity operation. Therefore, the procedure can
be seen as a general measurement reversal, analogous to the
superconducting phase experimental results of Ref. [94]. Our
procedure can effectively freeze the state evolution between
click events into a small limit cycle (of size ∼ �t) around
any desired state; the application of primary interest here is
stabilization of the Bell states |�±〉, but one could imagine
other uses as well. A flowchart in Fig. 2 represents the entire
feedback process we have just described (including the cor-
rection of jumps due to a single emission), and the behavior
of the concurrence, obtained from numerical simulation of
trajectories under the measurement and feedback protocol, is
shown in Fig. 3.

We may more formally frame the state evolution of the
recycling scheme between clicks as an iterative map, such that

|ψk+1〉 = M̂00F̂ABM̂00|ψk〉
|M̂00F̂ABM̂00|ψk〉|

. (5)

FIG. 2. We lay out a flowchart (a) describing our feedback pro-
cedure. We begin with the separable state |ee〉 and see a rapid rise in
average concurrence as the first clicks (either at port 3 or 4, denoted
by C3 or C4, respectively) put our qubits in the |�±〉 Bell states. As
described in the main text and in our previous work [24], the |�±〉
Bell states are more robust against disentanglement, however; we
consequently flip qubit A with a π pulse (F̂A) immediately after the
first click heralds entanglement, such that we take |�±〉 → |�∓〉 (ne-
glecting any global phase factors). Single clicks then send us back to
the |�±〉 Bell states, rather than to the separable state |gg〉. When no
detector click is received, the dynamics from states |�±〉 gradually
reduce concurrence as amplitude shifts from |ee〉 to |gg〉. By flipping
both qubits between these no-click measurements (F̂AB), we imple-
ment a state-recycling scheme, however. This may be understood as
introducing limit cycle in the concurrence C, using the fast π pulses
F̂AB, as illustrated in panel (b). It can also be understood in terms
of a measurement reversal: If the effect of the null measurement
is described by M̂00|�±〉 → |ψ↓〉, then flipping both qubits leads
to a state |ψ↑〉 (i.e., F̂AB|ψ↓〉 → |ψ↑〉), which is the same as |ψ↓〉
except that the amplitudes on |ee〉 and |gg〉 are swapped. This change
is substantial, because the next no-click measurement then undoes
the first, i.e., M̂00|ψ↑〉 → |�±〉, thereby resetting the state in a way
that traps the concurrence in a cycle near C = 1. The net effect of
this scheme is that once we are in the cycle about the |�±〉 state,
only a double-click C2, in which both qubits emit in the same time
step, can completely disentangle them. In the event of such a rare
double-click, we simply flip both qubits (F̂AB), and thereby restart
the whole scheme from |ee〉. The concurrence yield of this scheme is
shown in Fig. 3.

It is then straightforward to verify that to O(�t ), the con-
currence C is unchanged over one step step of the recycling
(which covers a total evolution time of 2�t), i.e.,

Ċ ≈ Ck+1 − Ck

2�t
= 0. (6)

This implies that all states are at a fixed point in this it-
erative mapping of the concurrence and that therefore the
preservation sits at the border between stability and instability
[96,97]; in other words, any errors which may occur as the
scheme progresses are simply preserved, without being either
suppressed or amplified.
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FIG. 3. We show the concurrence C as a function of time, ob-
tained via the feedback scheme described in Fig. 2 and the main
text. The concurrence of individual jump trajectories is shown (back-
ground, multiple colors), as is the average concurrence over an
ensemble of trajectories (dark blue, surrounded by a pale envelope
of ± one standard deviation). Idealizations implicit in this simula-
tion include (1) capture and detection efficiency are perfect, (2) no
environmental channels apart from the decay channel we measure
exist, and that our π pulses are (3) free of errors and (4) implemented
instantaneously after a time step completes and the measurement
result is acquired. We see that within 2–3 T1, we are able to drive the
average concurrence to C � 0.99 and maintain it there indefinitely
with our protocol. We approach C ≈ 1 asymptotically, and the evolu-
tion in individual trajectories is stochastic (since the timing of jumps
is random). The dotted red curve shows the average concurrence
from the measurement alone, without feedback.

III. ADAPTING THE RECYCLING SCHEME TO
HOMODYNE-BASED FEEDBACK

There has been considerable work on the entangling
properties of continuous homodyne measurements as well
[17,18,20,24]. Martin and Whaley recently derived a feedback
scheme based on such measurements which deterministically
generates a Bell state in a finite time [25]. We will summarize
their scheme using the notation of our previous works [24] and
then show that the same principles used above can be applied
to this case too, i.e., we will demonstrate that adding fast π

pulses into the continuous measurement [24] and Hamiltonian
feedback protocol [25] will allow us to stabilize the entangled
state once it is created, instead of having it decay away.

Homodyne detection of fluorescence monitoring quadra-
tures 90◦ out of phase, instead of photodetection [see
Fig. 1(b)], generates diffusive quantum trajectories and entan-
gles the emitting qubits to the same degree as photodetection,
on average [18,20,24]. The Kraus operator representing a
measurement of the quadrature φ = 0 at port 3 and ϕ = 90◦
at port 4 may be written M̂hom ∝

⎛
⎜⎜⎝

1 − ε 0 0 0√
ε(1 − ε)(X − iY )

√
1 − ε 0 0√

ε(1 − ε)(X + iY ) 0
√

1 − ε 0
ε(X 2 + Y 2 − 1)

√
ε(X + iY )

√
ε(X − iY ) 1

⎞
⎟⎟⎠, (7)

where X = r3
√

�t/2 is the outcome of the measurement at
port 3, Y = r4

√
�t/2 is the outcome of the measurement

at port 4, and ε = γ �t [23,24]. Martin and Whaley [25]
have recently shown that immediately applying the local and
separable unitary feedback operation

Û = exp

[
i �t

√
γ

2

ζ
(
r3

(
σ̂ A

y + σ̂ B
y

) + r4
(
σ̂ B

x − σ̂ A
x

))
ζ +

√
1 − ζ 2

]
, (8)

in response to the homodyne measurement results, to a state
of the type

|ψ〉 = ζ |ee〉 − sgn(ζ )
√

1 − ζ 2|gg〉 (9)

(for real ζ ) completely cancels the measurement noise. The
resulting dynamics are deterministic and optimal [within con-
tinuously applied Hamiltonian protocols using LOCC and
restricted to states of the type (9)] for driving the system
toward an entangled state |�−〉.

Note that for the choice φ = 0 and ϕ = 90◦, the measure-
ment records may be written in terms of a signal and the noise
term modeled with a Wiener increment dW , according to

r3 =
√

γ

2

〈
σ̂ A

x + σ̂ B
x

〉 + dW3

dt
, (10a)

r4 =
√

γ

2

〈
σ̂ A

y − σ̂ B
y

〉 + dW4

dt
. (10b)

For a state of the type (9), we find that 〈σ̂ A
x + σ̂ B

x 〉 = 0 =
〈σ̂ A

y − σ̂ B
y 〉, such that the measurements are effectively of the

“no-knowledge” type, which are generally useful for can-
celing noise [47]. The utility of feedback preserving such a
condition in the process of entanglement generation, which
is related to the concept of a decoherence-free subspace, has
been demonstrated for different types of measurements [42]
(e.g., dispersive measurements). These points have several
useful implications with regards to our current context: First,
the feedback protocol (ideally executed) ensures that r3 and r4

are pure noise, which is closely related to the feedback ensur-
ing the state remains of the form (9). Second, the readouts r
scale like dW/dt in the time-continuum limit. An equation
of motion can then be obtained by writing |ψ (t + �t )〉 =
ÛM̂hom|ψ (t )〉/|ÛM̂hom|ψ (t )〉| for |ψ〉 as in (9) and expand-
ing the right-hand side (written in terms of r3 and r4) to O(�t ),
applying Itô’s lemma r2

3,4 → 1/�t .
The result can be written as an iterative update

ζk+1 = ζk − ε
ζk sgn(ζk )

√
1 − ζ 2

k

ζk + sgn(ζk )
√

1 − ζ 2
k

, or (11)

ζk+1 = ζk + ε
ζkυk

ζk − υk
, υk+1 = υk − ε

ζ 2
k

ζk − υk
(12)

[where the latter uses −sgn(ζk )
√

1 − ζk → υk]. In the time-
continuum limit, these can be written instead as differential
equations

ζ̇ = −γ
ζ sgn(ζ )

√
1 − ζ 2

ζ + sgn(ζ )
√

1 − ζ 2
or (13)

ζ̇ = γ
ζ υ

ζ − υ
, υ̇ = −γ

ζ 2

ζ − υ
. (14)
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The expression (13) or (14) is entirely equivalent to the
equation derived in Ref. [25], there written instead in terms
of the concurrence C, according to

Ċ =
{
γ (1 − C + √

1 − C2) for |ζ | > |υ|
γ (1 − C − √

1 − C2) for |ζ | < |υ|
. (15)

The solution for the case |ζ | > |υ| leads to a concurrence
which rises to C = 1 (the state is |�−〉, with ζ = 1/

√
2 =

−υ), which then switches over to the decaying solution as-
sociated with the case |ζ | < |υ|, as amplitude continues to
shift from |ee〉 over to |gg〉 [see the green dash-dotted curve
in Fig. 4(b)].

We are now in a position to formally consider our proposed
modification, where we again interject fast flips F̂AB of both
qubits in between the measurements and Hamiltonian feed-
back just described. In the photodetection case, we saw that
the addition of operations F̂AB allowed us to turn decay of
the concurrence into a limit cycle in which successive mea-
surements undid each other. The idea now is similar: In order
to stabilize the concurrence, we wish to trap the system in a
limit cycle which alternates between the solution of growing
concurrence and that of decaying concurrence (15), instead of
having the |ζ | < |υ| solution take over and eat away at the
entanglement the moment we have generated a Bell state.

Interjecting a flipping operation between every detector
time step [including the measurement and the immediate feed-
back (8)] may be described by the state update

|ψ (t + �t )〉 = F̂ABÛM̂hom|ψ (t )〉
|F̂ABÛM̂hom|ψ (t )〉| , (16)

and we will assume |ψ〉 is of the form ζ |ee〉 + υ|gg〉, where
ζ and υ are assumed to be real and to have opposite signs (as
above). The addition of F̂AB interchanges the amplitudes on
|ee〉 and |gg〉, such that we may make a slight modification to
(12), which now reads

ζk+1 = υk − ε
ζ 2

k

ζk − υk
, υk+1 = ζk + ε

ζkυk

ζk − υk
. (17)

Equivalently, the flips result in alternation between the cases
|ζ | > |υ| or |ζ | < |υ| every �t , such that the concurrence will
rise in one step and then fall the next. The concurrence is
defined as Ck = −2ζkυk . Concatenating two steps of evolution
in the concurrence allows us to quantify the net effect of our
scheme. We find that to O(ε), we have

Ck+1 = −2ζk+1υk+1 = Ck (1 − ε) + 2 ε ζ 2
k , (18)

which may be repeated to find

Ck+2 = Ck − 2 ε Ck + 2 ε. (19)

The aggregate evolution across two cycles of this process is
well described by

Ċ ≈ Ck+2 − Ck

2�t
→ Ċ = γ (1 − C), (20)

which should be understood as the average evolution across
a rising and falling step. As the feedback here ensures near
deterministic dynamics for small ε, this average evolution can
be taken as representative of the behavior of all trajectories.

FIG. 4. We apply the homodyne feedback scheme of Ref. [25],
using the initial state |ee〉, and add π pulses between every other
cycle of measurement and feedback. In panel (a), we apply our π -
pulse modification over the entire time evolution; while this is not as
effective as the ideal case shown in panel (b), it serves to demonstrate
the stability of our modified scheme. In panel (b), we only add the π

pulses after the time te = (π/4 + ln
√

2)T1 ≈ 1.13T1 at which maxi-
mum entanglement is achieved by the scheme of Ref. [25] alone. We
see that as in the photocounting case, this procedure again creates an
entanglement-preserving limit cycle. The above simulation assumes
that the F̂AB are applied instantaneously and uses �t = 0.01T1 for
the measurement and feedback. The approach to C = 1 occurs about
twice as fast in this homodyne case, as compared with the average
concurrence yield in the photodetection case (compare to Fig. 3).
The analytic solution from Ref. [25], without the additional flipping
operations, is plotted in dash-dotted green for reference. Deviations
from perfectly deterministic dynamics are due to the effects of finite
�t ; we see that these nonidealities have virtually no impact on our
ability to preserve concurrence. Up to the jagged “teeth” from the
finite �t , the average concurrence in panel (a) is in good agreement
with the analytical solution (21), shown in dashed magenta.

The solution to the continuous version of this equation, e.g.,
for the least favorable case C0 = 0 (no initial concurrence), is

C(t ) = 1 − e−γ t . (21)

The actual process matches this idealized solution up to small
“teeth,” reflecting the individual steps of alternating growth
and decay for finite �t . This is illustrated Fig. 4(a); note that
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FIG. 5. We generate cobweb plots for the mapping (16), expressed as one-dimensional mappings either in terms of the coefficient on |ee〉,
i.e., ζk+1 = f (ζk ) [see panels (a) and (c), where f (ζk ) is from (17)] or in terms of the concurrence, i.e., Ck+1 = g(Ck ) [see panels (b) and (d),
where g(Ck ) is (18)]. All of the plots shown are initialized at ζ0 = 1 (and therefore C0 = 0). We use ε = 0.1 in plots (a) and (b); this is about the
largest ε can get before our approximations to O(ε) fall apart entirely; they are included here because it is easier to visualize how the mapping
works when simplified to this coarse-grained level. We reduce ε to 0.02 in plots (c) and (d), in order to show how the plots scale into the regime
where our scheme is actually intended to operate, and our approximations are more appropriate. The dotted green box in plots (a) and (c) show
the Bell state to which the scheme converges, where ζ and υ simply alternate between 1/

√
2 and −1/

√
2 (the state there is always |�−〉, up to

a global sign).

in simulation to generate this figure, we use the operator F̂AB

after every other application of ÛM̂hom, rather than between
every cycle of measurement and Hamiltonian feedback. Using
the flips half as often doubles the size of the “teeth,” but
they remain bound about the idealized solution we have just
derived.1 We have done our homodyne derivations above with
the flips every cycle for mathematical simplicity.

Many of the properties of (20) are highly desirable. First,
we see that the mapping of interest has a single stable fixed
point at C = 1; this arises because solutions to (15) grow faster
(when |ζ | > |υ|) than they decay (when |υ| > |ζ |) for C < 1,
such that the mapping (19) always yields a net gain in entan-
glement. That net gain is greater when the entanglement is
smaller. Ideally, one does not begin to interject joint π -pulses

1Strictly speaking, the flips can be spaced many more steps apart;
this comes at the cost of increasing the size of the limit cycle about
the Bell state, but with little other change to how our system func-
tions. The effect of decreasing or increasing the frequency of flips in
the photodetection case is similar.

F̂AB while |ζ | > |υ| but rather waits for the Bell state to be
created by the scheme of [25] alone, and only then turns on
the extra controls [see Fig. 4(b)]. While the stability of our
flipping scheme never allows a net decrease in concurrence
and can be used to generate entanglement, it truly excels at
preserving concurrence after the Hamiltonian feedback has
operated on its own to generate it. The use of a finite time step
means that the Hamiltonian portion of the feedback (8) from
Ref. [25] does not operate perfectly and small deviations from
deterministic dynamics occur; however, the scheme is still
stable, as evidenced by the numerical simulations in Fig. 4.
All of the properties of the discrete mappings incorporating
our flipping operations can be visualized in the cobweb plots
of Fig. 5. These require that we recast our equations into one-
dimensional mappings, which can be obtained from (17) and
(18) using the substitutions υk → −sgn(ζk )

√
1 − ζ 2

k , or ζ 2
k →

1
2 ± 1

2

√
1 − C2

k , respectively; the operation F̂AB in each cycle
causes the sign in the latter expression to alternate with every
iteration, which is effectively averaged over in obtaining (19).

It is possible to recast the derivation above in terms of
a different parametrization of the two-qubit state. Let us
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define (ζ , υ ) = (cos θ,− sin θ ), with θ ∈ [0, π/2]. In the case
of continuous feedback only, we find the equation for θ is
given by

θ̇ = γ
cos θ

cos θ + sin θ
. (22)

Starting at θ = 0, this equation has a solution of

e−θ cos θ = e−γ t , (23)

which is transcendental. In the case of adding the fast π

pulses, we find the equation for θ is given by

θ̇ = γ
cos θ − sin θ

cos θ + sin θ
. (24)

This equation has a solution

cos θ − sin θ = e−γ t/2, (25)

which can equivalently be expressed by

cos2 θ = 1
2 + 1

2

√
1 − (1 − e−γ t )2, (26)

with sin2 θ = 1 − cos2 θ , and is consistent with the statement
a2

k → 1
2 ± 1

2

√
1 − C2

k in conjunction with the solution (21).
We may then briefly summarize what has been presented

so far: We have demonstrated that feedback based on qubit
flips and utilized in conjunction with measurements of qubits’
spontaneous emission is able to protect the qubits’ concur-
rence against the monitored T1 decay processes. The regime
in which we operate is one where the measurement intervals
(detector integration intervals) are much shorter (perhaps 2
orders of magnitude smaller) than the T1 time of the qubits,
and the qubit flips are executed at least one order of magni-
tude faster than that. For example, in superconducting qubits,
T1 ≈ 50 μs, �t can be as short as 20 ns, while tπ ≈ 5 ns.
We have shown that fast π pulses form the basis of a good
control strategy for entanglement preservation in such sce-
narios, either in conjunction with photodetection, or as a
supplement to existing Hamiltonian feedback [25] based on
homodyne detection instead; in either case, the addition of fast
BB-like π pulses allows us to trap the two-qubit dynamics in
an arbitrarily small limit cycle about a fixed point at a Bell
state.

IV. IMPACT OF MEASUREMENT INEFFICIENCY

Our discussion so far has focused on establishing the utility
and dynamical properties of our proposed scheme with an
ideal apparatus. Several of the assumptions implicit in the
idealized analysis are, however, never fully achieved in prac-
tice. For example, it is difficult to make measurements with
near-unit efficiency, to implement feedback operations with-
out some processing delay time, and to implement feedback
operations with perfect fidelity. Any of these factors should be
expected to degrade the performance of any feedback control
protocol relative to the ideal case. We will here focus on
analyzing the impact of measurement inefficiency. Includ-
ing finite detector efficiency generically introduces mixed
states as some of the signal is lost, increasing the complex-
ity of the equations describing the state evolution. As such,
our program now is to study the inefficient case, for both
the photodetection- and homodyne-based schemes discussed

above, using numerical simulation. Our aim here is not to find
the best possible modification to our feedback scheme for the
more realistic case of inefficient measurements, but simply to
quantify the effect of inefficiency on the simple π -pulse-based
strategies we have proposed above.

Measurement inefficiency may be modeled by using an
ideal detector, but with a lossy channel in front of it. In other
words, it is possible to model measurement inefficiency by
introducing some finite probability that photons arriving at
the ideal detector are instead diverted into some lost channel.
This is illustrated in Fig. 1 by the unbalanced (purple) beam
splitters in channels 3 and 4, which allow photons to trans-
mit to the detector with probability η3 or η4, but otherwise
reflect them into a channel in which they are irretrievably lost.
We briefly review the formal model of such a situation to
Appendix B and discuss it in much greater detail in Ref. [24].
The ideal case we treated above is that for which η3 = 1 = η4,
and we are now generalizing to the case where we allow
η3 < 1 and η4 < 1.

A. Inefficient photodetection

We begin with inefficient photodetection; simulations of
our feedback scheme with symmetric (η3 = η = η4) and less
than ideal η < 1 photon counting measurements, and subse-
quent feedback, are shown in Fig. 6. We find that, without
additional modifications to our feedback scheme, the addition
of measurement inefficiency leads to substantial degradation
of the preserved concurrence. This is not especially sur-
prising, since the maximum concurrence achievable by the
bare measurement before feedback is bounded by a decaying
solution [24]

Cη
max(t ) = 1

(1 − η)eγ t + η
, (27)

where η3 = η = η4. In the long time limit, our modified
scheme does still achieve some steady-state concurrence,
which is better than without feedback. We have not ruled
out that a more complex feedback protocol may be able to
further mitigate the undesirable effects of measurement inef-
ficiency, but ultimately, if too much information is lost to the
environment without being measured, other schemes which
demand additional resources (e.g., extra long-lived energy
levels) for storing entanglement [5,22,25] are likely to be
more successful. As our scheme does not use, e.g., additional
transitions to effectively turn off the decay interaction with the
environment after it has allowed us to generate entanglement,
it is most effective when that lone transition is monitored
efficiently.

B. Inefficient homodyne detection

We may perform the comparable test for the homodyne-
based variant on the scheme of [25]. The only modification
we make to the operator (8), which was optimal in the ideal
case, is to scale the readouts by a factor

√
η, such that Ûη =

exp

[
i �t

√
γ

2

√
ρζζ

(√
η3r3

(
σ̂ A

y + σ̂ B
y

) + √
η4r4

(
σ̂ B

x − σ̂ A
x

))
√

ρζζ + √
ρυυ

]
.

(28)
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FIG. 6. We plot the evolution of the concurrence C for trajec-
tories arising from inefficient photodetection and including BB-like
feedback and measurement reversal as described in the main text;
these plots should be compared with Fig. 3, which illustrates the
corresponding process under ideal circumstances. We here use sym-
metric (η3 = η = η4) measurement efficiencies η = 0.98 (a), η =
0.90 (b), and η = 0.50 (c). We see that for measurement efficien-
cies close to the ideal, e.g., as in panels (a) and (b), the average
concurrence with feedback always exceeds that without (well ap-
proximated by C̄(t ) = 2ηe−γ t (1 − e−γ t ) [24], shown in dotted red).
Even in panel (c), where this is no longer true, the ability to maintain
any concurrence at long times is still advantageous compared with
doing nothing. The upper bound (27) on the concurrence derived in
Ref. [24] and shown in dashed black, for the case without feedback,
illustrates the extent to which degradation in the measurement effi-
ciency affects the ability to generate entanglement to begin with, and
provides another useful reference against which our feedback may
be compared.

We have shown elsewhere [24] that the homodyne measure-
ment under consideration (without feedback) is unable to
generate entanglement for η � 50%. Since local unitary op-
erations cannot change the concurrence of the two-qubit state,
it not possible for any local feedback protocol to remedy this.
In Fig. 7, we simulate the effect of measurement and feedback
(28) for efficiencies (with η3 = η = η4) η = 98%, η = 95%,
and η = 75%, both without and then with the interjection of
qubit flips, as in previous sections. We use �t = 0.01T1 in all
instances there. In broad strokes, we see that the quasideter-
ministic nature of the dynamics we had in the ideal case is
eroded by the measurement inefficiency. The average entan-
glement yield suffers from this as expected (consistent with
Martin and Whaley’s results [25]). The stability of the scheme,
at the level of individual trajectories, is quite adversely af-
fected by the measurement inefficiency and the return of some
stochasticity to the dynamics. We do see, however, that the net
effect of our qubit flips on the concurrence is still a net positive
at longer times, allowing us to stabilize a large fraction of the
entanglement generated by the measurement, on average.

V. DISCUSSION

We have proposed a pair of feedback protocols which
involve interjecting π pulses between measurements (or sup-
plementing an existing feedback control protocol [25] with
such operations). Our schemes are based on the devices illus-
trated in Fig. 1, with which we obtain quantum trajectories
from continuously measuring the spontaneous emission of
two qubits and then implement local control operations in
response to the real-time measurement outcomes. The devices
we consider are set up such that the joint measurements of the
qubits may generate entanglement between them [24], and the
aim of our feedback protocols is to increase the yield and/or
lifetime of the entanglement generated by the device. We
have shown that π -pulse-based control, in conjunction with
continuous photodetection, allows us to implement a mea-
surement reversal procedure, which can protect any two-qubit
state against the T1 decay dynamics. Combining the same
methods with a Hamiltonian control protocol [25], for the case
of homodyne detection and diffusive quantum trajectories,
allows us to create a stable limit cycle about a Bell state, again
protecting concurrence from erosion via the qubits’ natural
decay channel. Although both schemes are negatively affected
by measurement inefficiency, we are able to demonstrate that
carrying them out still results in some net gain in entangle-
ment yield and/or lifetime, compared with not carrying them
out, across a wide variety of situations. The schemes we have
considered are grounded in existing experimental protocols;
quantum trajectories obtained from measurements of sponta-
neous emission have been realized on single superconducting
qubits [58–64] and could be implemented on other quantum
information platforms, and single-qubit unitary operations can
generally be performed with high fidelity.

Entanglement is an important part of many emerging ap-
plications drawing broad scientific interest, such as quantum
computing or quantum communication, and is also of foun-
dational interest (e.g., in connection with Bell tests [14]).
Decay due to (unmonitored) spontaneous emission is, in
many quantum-information systems, one of the important
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FIG. 7. We simulate inefficient homodyne measurements with the feedback process (28), both alone [(a), (c) , (e)] and with added π pulses
on both qubits every �t [(b), (d), (f)]. We use �t = 0.01T1 in all cases. The measurement inefficiencies are symmetric (η3 = η = η4) and are
η = 98% [(a), (b)], η = 95% [(c), (d)], and η = 75% [(e), (f)]. The ability of this homodyne measurement to generate any entanglement at all
is contingent on having η > 50% [24,25]. Below η = 50%, no feedback based on LOCC can remedy the fact that measurement is incapable
of generating entanglement. We see the pronounced degrading effect of the measurement inefficiency on both feedback schemes, and that
the quasideterministic dynamics of the ideal case (see Fig. 4) are lost. The curves for the ideal case without π pulses (dash-dotted green)
and with flips (dashed magenta) are shown for reference. We additionally show curves representing the average concurrence from the case
without any feedback in dotted red (which follow C̄(t ) = 2(2η − 1)e−γ t (1 − e−γ t ), [24]). By comparing the average concurrence from the
present simulation (solid blue) to these other references, we see that our modified scheme outperforms both the no-feedback average for the
comparable efficiency (dotted red) and the ideal Hamiltonian feedback without the extra flips we have introduced (dash-dotted green), after
longer evolution times t � 3T1.
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sources of errors. Protecting entanglement against such errors
is consequently of great practical interest. The protocols we
describe above offer a different approach to this task, based
on tools which are realistic extensions of existing devices
and experiments. Moreover, the combination of continuous
measurement and feedback with BB-like controls to achieve
a measurement reversal suggests an alternative approach for
correcting a wide range of errors on quantum systems that
occur through a measureable channel to the environment.
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APPENDIX A: ADDITIONAL PLOTS

We include some additional figures which further support
some of the secondary claims we make in the main text. In
Fig. 8, we essentially reproduce the simulation of Fig. 4, but
this time with a smaller time step. While spacing π pulses so
closely (every T1/1000) may be less realistic in practice, Fig. 8
serves to confirm that as we approach the time-continuum
limit ε → 0, we recover the deterministic dynamics described
by Martin and Whaley [25]; we see that deviations from
deterministic dynamics are suppressed in Fig. 8 as compared
with the more realistic Fig. 4. Together, these two figures
illustrate that (first) there is a tradeoff between the practical
necessity of having a modest �t and achieving exact deter-
ministic evolution from (8) promised in the continuum limit,
but (second) that this tradeoff is not a limiting factor for the
overall effectiveness of our scheme.

In Fig. 9, we plot the density of stochastic trajectories in
the simulated ensemble of Fig. 4, represented with selected
elements of the density matrix. We notate our density matrix
elements according to

ρ =

⎛
⎜⎜⎝

ρζζ ρζμ ρζν ρζυ

ρ∗
ζμ ρμμ ρμν ρμυ

ρ∗
ζν ρ∗

μν ρνν ρνυ

ρ∗
ζυ ρ∗

μυ ρ∗
νυ ρυυ

⎞
⎟⎟⎠ (A1)

where the full basis, used here and elsewhere in the paper,
assumes pure states notated according to

|ψ〉 =

⎛
⎜⎝

ζ

μ

ν

υ

⎞
⎟⎠ ∼

⎧⎪⎨
⎪⎩

|ee〉
|eg〉
|ge〉
|gg〉

⎫⎪⎬
⎪⎭. (A2)

APPENDIX B: SUMMARY OF FLUORESCENCE
MEASUREMENT FORMALISM

We review our Kraus operators, used throughout the main
text, for completeness. Everything included in this section

FIG. 8. We repeat Fig. 4 with �t one order of magnitude smaller
(ε = 10−3 here). While interjecting π pulses that fast may no longer
be realistic, by comparing to Fig. 4 we see that deviations from
deterministic dynamics are suppressed as we take a step toward the
time-continuum limit. As in Fig. 4, we begin adding π pulses after
maximal concurrence is generated at te = 1.13T1 in panel (a), while
in panel (b) we see that we asymptotically approach maximal con-
currence if we run the π pulses over the entire duration; this serves
to confirm that the coarser time step of Fig. 4 was adequate to capture
the main features of the dynamics, despite the more pronounced
stochasticity we had there, on account of operating further from the
time-continuum limit.

in brief is explained in far greater detail in Ref. [23] (the
one-qubit case) and Ref. [24] (the two-qubit case). Refer to
Fig. 1 for a sketch of the relevant apparatus. We begin with
the matrix

M =

⎛
⎜⎜⎜⎝

1 − ε 0 0 0√
ε(1 − ε)â†

2

√
1 − ε 0 0√

ε(1 − ε)â†
1 0

√
1 − ε 0

εâ†
1â†

2

√
εâ†

1

√
εâ†

2 1

⎞
⎟⎟⎟⎠, (B1)

which may be used to update the joint state of the qubits
and optical modes 1 and 2 they emit into, over a short time
�t � T1 (equivalently, ε = γ �t � 1). We assume that both
qubit-cavity systems have the same emission rate γ = 1/T1

for simplicity. The operators â†
1 and â†

2 are creation opera-
tors for photons in ports (modes) 1 and 2, respectively. The
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FIG. 9. We show an element of the two-qubit density matrix in each panel; within each we plot the density of an ensemble of stochastic
trajectories. In row (a), we plot elements corresponding to the case of Fig. 4(b), wherein we add our π -pulse modification to the scheme of
Ref. [25] only after entanglement is already established, whereas in row (b) we plot elements corresponding to the case of Fig. 4(a), wherein
the π -pulse modification is present over the entire evolution.

effect of the beam splitter may be modeled by the unitary
transformation

â†
1 = 1√

2
(â†

3eiφ + â†
4eiϕ ), â†

2 = 1√
2
(â†

3eiφ − â†
4eiϕ ), (B2)

which mixes the modes 1 and 2 in order to obtain the measured
modes 3 and 4. This 50:50 beam splitter plays an important
role in concealing information about which qubit emitted a
signal; erasure of this which-path information is a key condi-
tion in allowing subsequent measurements to be entangling.

In order to obtain a Kraus operator which acts on the qubits
alone, it is necessary to select the initial and final states of the
optical modes. We will assume that the modes are in vacuum
at the start of each measurement interval �t , such that the
initial state of modes 3 and 4 is |0304〉 (which implies the same
for 1 and 2). The final state of the output modes is determined
by the type of measurement that is performed. For example,
photodetection at outputs 3 and 4 leads to outcomes in the
Fock basis and a Kraus operator

M̂n3,n4 = 〈n3n4|M|0304〉. (B3)

This generates a set of five operators, one for each of the
five outcomes {n3, n4} = {0, 0}, {1, 0}, {0, 1}, {2, 0}, {0, 2} al-
lowed in any step �t [which form a complete set of
positive operator valued measure (POVM) elements]. Like-
wise, homodyne detection at both outputs leads to pro-
jection onto eigenstates of a quadrature operator, i.e.,
for |X 〉 an eigenstate of X̂ = (â†

3 + â3)/
√

2 and |Y 〉 an

eigenstate of Ŷ = (â†
4 + â4)/

√
2, the Kraus operator is

obtained from

M̂XY = 〈XY |M|0304〉, (B4)

which reduces to (7) for the phase choices φ = 0 and ϕ = 90◦.
Measurement inefficiency is most straightforwardly mod-

eled with an additional set of unbalanced beam splitters, as
shown in Fig. 1. The effect of these is to split modes 3 and 4
into a “signal portion,” which goes to the relevant (otherwise
still ideal) detector with probability η, and a “lost portion.”
Algebraically, this is expressed the transformations

â†
3 → √

η3 â†
3s +

√
1 − η3 â†

3� and

â†
4 → √

η4 â†
4s +

√
1 − η4 â†

4�,
(B5)

which can be carried out inside of M to obtain Mη. While
this could be used to model a situation in which four measure-
ments are made, our interest is to use measurement outcomes
at the signal ports only, while tracing out all of the possible
(but unknown) outcomes which could have occurred in the
lost ports. For example, for inefficient photodetection with
the outcome {0, 0} at the signal ports, we would have a four-
output Kraus operator

M̂00n�
3n�

4
= 〈

0s
30s

4n�
3n�

4

∣∣Mη|0000〉 (B6)

(assuming that the paired extra input modes, required by the
unitarity of the transformation, are in vacuum), and the state
update equation

ρ(t + �t ) = M̂0000ρ(t )M̂†
0000 + M̂0010ρ(t )M̂†

0010 + M̂0001ρ(t )M̂†
0001 + M̂0020ρ(t )M̂†

0020 + M̂0002ρ(t )M̂†
0002

tr(M̂0000ρ(t )M̂†
0000 + M̂0010ρ(t )M̂†

0010 + M̂0001ρ(t )M̂†
0001 + M̂0020ρ(t )M̂†

0020 + M̂0002ρ(t )M̂†
0002)

, (B7)

which includes the trace over all possible lost-mode states that are consistent with having received the outcome {0, 0}. For such
an update with finite measurement efficiency, the basis in which we do the trace over the outcomes in the lost mode does not
matter, as long as it represents a complete set of outcomes. By that token, inefficient homodyne detection is best modeled by
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an operator

M̂XY n�
3n�

4
= 〈

XY n�
3n�

4

∣∣Mη|0000〉, (B8)

which can be used with the state update

ρ ′ = M̂XY 00ρM̂†
XY 00 + M̂XY 10ρM̂†

XY 10 + M̂XY 01ρM̂†
XY 01 + M̂XY 20ρM̂†

XY 20 + M̂XY 02ρM̂†
XY 02

tr(M̂XY 00ρM̂†
XY 00 + M̂XY 10ρM̂†

XY 10 + M̂XY 01ρM̂†
XY 01 + M̂XY 20ρM̂†

XY 20 + M̂XY 02ρM̂†
XY 02)

, (B9)

for ρ ′ = ρ(t + �t ) and ρ = ρ(t ); summing over the lost modes in the discrete Fock basis is computationally simpler than
integrating out another pair of continuous-valued homodyne (quadrature basis) outcomes, although the latter would give an
equivalent state update.
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