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Angular momentum quantum backflow in the noncommutative plane
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We study the quantum backflow problem in the noncommutative plane. In particular, we have considered
a charged particle with and without an oscillator interaction with noncommuting momentum operators and
examined angular momentum backflow in each case and how they differ from each other. We also propose a
probability associated with the occurrence of angular momentum backflow and investigate whether or not the
probability depends on a physical parameter, namely, the magnetic field.
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I. INTRODUCTION

Quantum backflow is a striking but still relatively not well-
known quantum effect for which, given a state containing only
positive momentum components, the probability of observing
the particle to the right of a given reference point (x = 0 for
instance), may actually decrease over time. This amounts to
saying that there is a flow of the probability density in the
direction opposite to that of the momentum. In other words,
it means that a right-moving particle can actually move to the
left. The effect was first discovered by Allcock in his works on
arrival time, and it was noted that the probability current could
be negative for states consisting only of positive momenta
[1–3].

A detailed investigation of the problem was carried out
and an upper bound to the amount of probability that can
flow in a direction opposite to momentum was found [4].
This limit cbm has a numerically computed value of about
0.04 and the most surprising fact is that it is a dimensionless
value, independent of any physical parameter. Because of that
it has been considered as “a new quantum number.” This
may cause some problems in the naive classical limit h̄ → 0
as it has been observed how there are different systems for
which the maximum amount of backflow becomes dependent
on some physical parameters. However, it has been shown
[5], in a one-dimensional setting, that with a more realistic
approach introducing quasiprojectors1 θσ (x̂) of the position
operator smoothed, over a length scale σ , instead of the
ideal projector θ (x̂), the limit h̄ → 0 reproduces correctly the
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1The smoothed quasiprojector θσ (x̂) = ∫ ∞

0 dy δσ (x̂ − y) is defined
in terms of a smoothed (over a length scale σ ) Dirac δ : δσ (x̂ − y) =

1√
2πσ 2 exp [− (x̂−y)2

σ 2 ].

classical behavior, i.e., no backflow. On the other hand, in
the case of a Dirac particle backflow was found to depend
on some physical parameters [6,7] but not in a way that
explains the classical limit. See also [8,9] for a discussion of
the quantum backflow in the Dirac equation of spin- 1

2 free
particles.

There have been attempts to improve the value cbm

[10,11]. In particular, in [11] an operator associated with
the backflow problem was found and was used to improve
upon the value of cbm. However, although the problem
of finding the exact eigenstate corresponding to the upper
bound of cbm (maximum backflow) has still not been solved
analytically, there are plenty of constructions of backflowing
states.

In an interesting approach [12], the backflow problem
was studied using non-normalizable wave functions and it
was found that in relation to the superoscillations a con-
straint regarding spatial extension exists. By measuring the
fraction of the x axis subject to backflow, the probability
of finding the particle in one one these regions, and their
temporal evolution, was found. Interestingly, quantum back-
flow has also been studied in different contexts like decay
of metastable states [13], in multiparticle systems [14], ap-
pearance of classically forbidden probability flux [15], etc.
In another recent work [16] the author discusses the relation-
ship between quantum backflow and quantum reentry (QR),
the effect in which a wave packet evolving from a localized
spatial region partially returns to this region in the absence
of external forces, providing a unifying treatment of the two
effects.

It may be noted that in interacting systems, the backflow
problem can be studied in different ways. For example, quan-
tum backflow has been studied in the context of scattering
states in Ref. [17] where it has been shown that those features
of the probability operator in the quantum backflow in the case
of no interactions are also found when interactions are present.
The most important properties of the quantum backflow are
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stable against the introduction of interaction potentials, even
strong ones.

In another example [18,19], considering an electron in a
magnetic field, the backflow problem has been formulated in
terms of an effective angular momentum defined for states
given as a superposition of eigenstates and written out the
in phase-amplitude form. It was shown [18] that in certain
regions of space the effective angular momentum can be
directed in a direction opposite to that of the wave func-
tion’s components. These results are very interesting since
they show that while the usual momentum quantum backflow
is related to the uncertainty relation between the position
coordinate and the momentum [18], the angular momentum
backflow relates to the uncertainty relations between the polar
(azimuthal) coordinate and the z-component of the canonical
angular momentum operator (Lcan

z ). This could mean that sim-
ilar effects could be found for other models where additional
interactions are present.

During the past decade or so, studies on quantum gravity
and string theory indicate that space may be noncommuta-
tive in nature [20–22]. In order to test the effect of space
noncommutativity several quantum mechanical models, e.g.,
harmonic oscillator [23–25], central field problems [26,27],
hydrogen problem [28,29], etc., have been studied within the
framework of noncommutative quantum mechanics. In all
these cases attempts were made to determine the effect of non-
commutativity by finding the dependence of some observable
like energy on the parameter(s) of noncommutativity. In some
other cases the effect of noncommutativity on phenomena like
chirality phase transition [30], Hall effect in Dirac matter like
graphene [31–33], etc., have been studied. However, in view
of the fact that no conclusive evidence regarding noncommu-
tative nature of space or momenta has yet been conclusively
established, it is of interest to find new models where this
effect may eventually be detected. In this context, it may be
noted that in recent years experiments have been proposed to
detect quantum backflow in Bose-Einstein condensate [34] as
well as in the field of optics [35].

In this paper our objective is to study the quantum back-
flow problem on the the noncommutative plane. To be more
specific, we shall consider two models: (1) The first one is a
noncommutative analog of a charged particle in the presence
of a homogeneous magnetic field. (2) A noncommutative os-
cillator in a homogeneous magnetic field. In both the models
we shall study angular momentum backflow [18] and examine
to what extent the noncommuting nature of the momentum
operators affects quantum backflow. In this context it may
be noted that the second model is a more general one from
which the first one can be obtained by setting the oscillator
frequency equal to zero. Nevertheless, we have treated them
separately as the first one has a commutative analog [18] with
which we may compare our results and the second one has no
counterpart. Second, it also helps us to find out the difference
in backflow pattern when an additional interaction is present.
Finally, we shall also make an attempt to quantify angular mo-
mentum backflow by defining a suitable probability associated
with it. The organization of the paper is as follows: In Sec. II
we formulate the model(s) on the noncommutative plane and
obtain the solutions; in Sec. III we study angular momentum
backflow in a noncommutative setting; in Sec. IV we define a

probability associated with angular momentum backflow and
discuss some of its features; finally, Sec. V is devoted to the
conclusions.

II. NONCOMMUTATIVE CHARGED PARTICLE SUBJECT
TO AN OSCILLATOR IN A MAGNETIC FIELD

To begin with, we note that the Hamiltonian HNC for a
particle of charge q in the noncommutative plane in the pres-
ence of a homogeneous magnetic field subject to an oscillator
potential has the same functional form as the one in the com-
mutative plane. Thus, the Hamiltonian HNC is taken to be of
the form

HNC = 1

2μ

(
p̂ − q

c
Â

)2
+ 1

2
μω2(x̂2 + ŷ2), (1)

where c is the velocity of light, and μ is the particle’s mass.
We choose the vector potential to be analogous to the one in
the commutative plane producing a constant magnetic field
along the z axis as B = B k̂, k̂ being the z-axis unit vector:

Â = (−Bŷ/2, Bx̂/2). (2)

The commutation relations between the noncommuting coor-
dinates and momenta are given by [36]

[x̂, ŷ] = iθ, [ p̂x, p̂y] = iη,

[x̂i, p̂ j] = ih̄

(
1 + θη

4h̄2

)
δi j, θ, η ∈ R .

(3)

Then for an electron, charge q = −e, the above noncommuta-
tive Hamiltonian reads as

HNC = 1

2μ

(
p̂x − eB

2c
ŷ, p̂y + eB

2c
x̂

)2

+ 1

2
μω2(x̂2 + ŷ2). (4)

Using the commutation relations in Eq. (3) we obtain(
p̂x − eB

2c
ŷ

)2

= p̂2
x +

(
eB

2c

)2

ŷ2 − eB

c
ŷp̂x, (5)(

p̂y + eB

2c
x̂

)2

= p̂2
y +

(
eB

2c

)2

x̂2 + eB

c
x̂ p̂y. (6)

It is now necessary to express the noncommuting coordi-
nates and momenta in terms of commuting ones. This can be
achieved using the Seiberg-Witten map [37] and the transfor-
mations are given by

x̂ = x − θ

2h̄
py, p̂x = px + η

2h̄
y,

ŷ = y + θ

2h̄
px, p̂y = py − η

2h̄
x, (7)

where (x, y) and (px, py) denote commuting coordinates and
momenta. Now using the relations in Eq. (7) the Hamiltonian
in Eq. (4) can be written as

H = 1

2μ

[(
1 − eBθ

4ch̄

)
px +

( η

2h̄
− eB

2c

)
y

]2

+ 1

2μ

[(
1 − eBθ

4ch̄

)
py −

( η

2h̄
− eB

2c

)
x

]2

+1

2
μω2

[(
x − θ

2h̄
py

)2

+
(

y + θ

2h̄
px

)2]
. (8)
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The above expression can be more conveniently written in
terms of the following frequencies:

ω̃ = eB

2μc
, ωθ = 2 h̄

μθ
, ωη = η

2h̄μ
. (9)

Then, we find

HNC = α
p2

x + p2
y

2μ
+ 1

2
μβ(x2 + y2) + γ (xpy − ypx ), (10)

where the constants α, β, γ are given by

α =
(

1 − ω̃

ωθ

)2

+ ω2

ω2
θ

, (11a)

β = (ω̃ − ωη )2 + ω2, (11b)

γ = (ω̃ − ωη )

(
1 − ω̃

ωθ

)
− ω2

ωθ

. (11c)

Upon recognizing that the last term in Eq. (10) involves
the z component of the canonical angular momentum operator
Lcan

z = (r × p)z = xpy − ypx, the noncommutative Hamilto-
nian can be written in the following form:

HNC = √
α

{
p2

x + p2
y

2 μ√
α

+ 1

2

μ√
α

β(x2 + y2) + γ√
α

Lcan
z

}
,

(12)
and therefore defining

M = μ√
α

, (13a)

� =
√

β, (13b)

we can finally write

HNC = √
α

[
H2D

◦ + γ√
α

Lcan
z

]
, (14)

where

H2D
◦ = p2

x + p2
y

2M
+ 1

2
M�2(x2 + y2). (15)

We see therefore that the Hamiltonian in Eq. (10) can be
related to H2D

◦ , the Hamiltonian of a well-known and exactly
solvable nonrelativistic system, that of a two-dimensional
isotropic (or circular) harmonic oscillator (of frequency � and
mass M). The eigenfunctions and eigenvalues of this system
are well known [38] and can be readily used to solve the
noncommutative Hamiltonian of Eq. (14) since the angular
momentum operator Lcan

z commutes with H2D
◦ . Thus, the com-

plete set of eigenfunctions and the corresponding eigenvalues
for the NC Hamiltonian are identified by a radial quantum
number n = 0, 1, 2, . . . and the angular momentum quantum
number m = 0,±1,±2, . . . [38] and are given by

ψn,m(r, ϕ) = Cn,m r|m| e
− r2

4a2
B 1F1

(
− n, |m| + 1;

r2

2a2
B

)
eimϕ,

(16a)

εn,m = h̄�(|m| + 1 + 2n)
√

α + h̄mγ , (16b)

where aB =
√

h̄
2M�

and Cn,m are normalization constants that
can be easily computed as

Cn,m = a−(|m|+1)
B√
π2|m|+1

√
�(|m| + 1 + n)

�(|m| + 1)
√

�(n + 1)
. (17)

By setting ω = 0 we obtain the results for the noncommuta-
tive charged particle in a magnetic field, which we will discuss
as the commutative counterpart has already been studied [18].
At this point we digress a little to point out some features
of the spectrum. We note that the spectrum is nondegenerate
because of the presence of the last term on the right-hand side
of Eq. (16b). However, one may easily verify that the usual
degeneracy pattern is recovered when ω = 0, θ = 0. We shall
see later that nondegeneracy of the spectrum has interesting
consequences.

So far we have described the systems keeping both
space as well as momentum noncommutativity. It may be
noted that momentum noncommutativity (η �= 0) produces
a magnetic-field-like effect in the commutative plane while
space noncommutativity (θ �= 0), although it affects other
parameters like the mass, does not produce such a magnetic-
field-like effect on the commutative plane. Thus, we shall
henceforth consider only noncommuting momentum opera-
tors. Note that in this case the Hamiltonian can be written in
the form

H = 1

2μ
(p − A)2 + 1

2
μω2(x2 + y2), (18)

where A = 1
2 [(−B + cη

eh̄ )y, (B − cη
eh̄ )x]. In the case without the

oscillator part, a critical value is found for the magnetic field
Bcr for which the Hamiltonian becomes that of a free particle
of mass M given by (13). Imposing the condition � = 0 one
immediately gets the value of the critical field:

Bcr = ηc

h̄e
. (19)

On the other end it is easily seen that when the oscillator is
present (ω �= 0), then the equation � = 0 does not have (real)
solutions, implying that in this case there is no critical value
of the magnetic field.

III. ANGULAR MOMENTUM BACKFLOW ON THE
NONCOMMUTATIVE PLANE

Before studying angular momentum backflow, let us note
that the current density for a state described by the wave
function � is given by

j = h̄

2Mi
(�∗∇� − �∇�∗) − e

Mc
A�∗�.

= j1 − j2. (20)

It may be noted that in terms of cylindrical polar coordinates,
the vector potential can be written as

Ar = 0, Aϕ = 1

2

(
B − cη

eh̄

)
r. (21)
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Next, we discuss a very important concept, namely, that of ef-
fective angular momentum. The effective angular momentum
�eff = h̄ meff is defined through [18]

meff(r, ϕ) = ∂

∂ϕ
Arg �(r, ϕ) = Im

∂�(r, ϕ)/∂ϕ

�(r, ϕ)
(22a)

=
(μ r

h̄

) eϕ · j1(r, ϕ)

ρ
, (22b)

where �(r, ϕ) denotes the wave function in the amplitude-
phase form

�(r, ϕ) =
√

ρ(r, ϕ) exp

[
i
∫ ϕ

0
dϕ′meff(r, ϕ

′)
]
, (23)

eϕ · j1(r, ϕ) being the probability current along the azimuthal
direction and ρ = |�(r, ϕ)|2 is the probability density [38].

A. Model without oscillator interaction: ω = 0

Now we consider a specific example of a (normalized)
wave function which is a simple sum of three eigenfunctions,
as given by Eq. (16). We consider only the n = 0 states
with three different, nonpositive, magnetic quantum numbers
(−2,−1, 0). For the sake of comparison, this is analogous to
what has been done in [18] and allows to compute explicitly
the local effective magnetic quantum number meff(r, ϕ) in

a simple closed form. Using Eq. (16) we obtain the state
�0(r, ϕ) as

�0(r, ϕ) = 1√
3

2∑
m=0

cm(r) e−imϕ

= 1√
3

[c0(r) + c1(r)e−iϕ + c2(r)e−2iϕ], (24)

where the coefficients cm(r) are given by

cm(r) = C0,mr|m|e
− r2

4a2
B , (25)

and we note that C0,m = C0,−m = C0,|m| as given by Eq. (17).
Note that the state in Eq. (24) is a simple sum of three
eigenstates from Eq. (16a) with n = 0 and angular momentum
Lcan

z = −h̄(0, 1, 2), respectively.
It is important to note that, in the model without oscillator

interaction, an infinite degeneracy for fixed n and nonpositive
m is present, therefore, for our wave function, time depen-
dence occurs only in the form of an immaterial global phase.
Time dependence for the model with oscillator interaction will
be discussed in Sec. III B.

From Eq. (22a) we can determine the effective value of the
quantum number meff(r, ϕ) for the superposition in Eq. (24):

meff(r, ϕ) = − c2
1 + 2c2

2 + c0c1 cos ϕ + 3c1c2 cos ϕ + 2c0c2 cos 2ϕ

c2
0 + c2

1 + c2
2 + 2c0c1 cos ϕ + 2c1c2 cos ϕ + 2c0c2 cos 2ϕ

. (26)

In order to have meff > 0, we need to look for values of (r, ϕ) where meff passes through zero. This leads to

√
2r cos2 ϕ +

(
aB√

2
+ 3r2

4aB

)
cos ϕ + r3

4a2
B

+
(

1 − √
2

2

)
r = 0. (27)

In the noncommutative setting the form of Eq. (27) re-
mains the same for both models and the differences lie in
the different dependence of frequency and mass contained in
aB on the parameter η. To make an easy comparison with
different models, it is convenient to describe the system in
dimensionless units by using the parameter aB as a unit of
length, thus, in general, we will use the value aB as in the
commutative setting. It is important to note that, as the mag-
netic field changes, aB also changes, which means that the unit
of length will change as well. We recall that in some previous
works a bound on the parameter η was obtained by comparing
noncommutative predictions with measurements and is given
by [31,36]

√
η � 2.26

μeV

c
. (28)

Thus, we set η/m2
ec2 = 10−25, me being the electron mass

and it is consistent with (28). Next, choosing different values
of the magnetic field around the critical value Bcr, given in
Eq. (19), we determine the regions of quantum backflow and
the results are given in Fig. 1.

As expected from Eq. (27), the backflow area changes only
radially. To understand how the parameters contribute to the
value of aB we have to study Eq. (13) with ω = 0. Approach-

ing the value Bcr , backflow extends radially to infinity since �

tends to zero and thus aB tends to infinity, in the limit of small
magnetic field the dominant contribution to � is due to the
parameter η which is constant, in the limit of large magnetic
field we return to the commutative case. This is evident if we
look at Fig. 2 where the backflow area has been plotted as
a function of the magnetic field. The unit of area has been
chosen as a fixed value of a2

Bcr
where η = 10−25 m2

ec2 to be
able to make a comparison between areas at different values
of the magnetic field. The magnetic field is expressed in units
Bcr where η = 10−25m2

ec2.
Next, we consider a (normalized) superposition of eigen-

functions consisting of a larger number N , instead of just 3 as
in Eq. (24), of angular momentum eigenstates of the form

�0(r, ϕ) = 1√
N

N−1∑
m=0

cm(r)e−imϕ (29)

that is a linear combination of N components with nonposi-
tive angular momentum (Lcan

z = −h̄m � 0). The coefficients
cm(r) are defined as in Eq. (25). In the ω = 0 setting we get
the results shown in Fig. 3 by repeating the same steps we
already showed for the case of three eigenfunctions. We note
that the behavior of this system is exactly the same as in the
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FIG. 1. Plot of the region (shaded area) where meff > 0 in the
(r, ϕ) plane for the commutative case (blue) and the noncommutative
case with η/m2

e c2 = 10−25 (orange) with ω = 0. The values of the
magnetic field are B/Bcr = 0.1 (a), B/Bcr = 0.6 (b), B/Bcr = 0.9 (c),
B/Bcr = 10 (d). The radial distance r is in units of aB.

previous case, and thus we come to the conclusion that, for
n = 0, the equation that gives us the points (r, ϕ) for which
meff passes through zero, can always be written in the form
f (r/aB, ϕ) = 0, where f will be given by a function similar to
that given in Eq. (27) but with a larger number of terms since
we are here considering a state � with N = 11 components,
as in Eq. (29). Therefore, compared to the results in [18] (solid
line in Fig. 3), the shape of the region with backflow is similar
to the noncommutative case (dashed line) but with the radial

FIG. 2. Plot of the backflow area (in units of a2
Bcr

) as a function
of the magnetic field for a state with three components as in Eq. (24)
and for two values of the parameter η with ω = 0, η1 = 10−25m2

e c2

(dashed line), η2 = 3 × 10−25m2
e c2 (dotted-dashed line) compared to

the commutative result (solid line).

FIG. 3. Plot of the region (shaded area) where meff > 0 in the
(r, ϕ) plane for the commutative case (blue) and the noncommutative
case with η/m2

e c2 = 10−25 (orange) with ω = 0 for a state with N =
11 components as in Eq. (29). The values of the magnetic field are
(a) B/Bcr = 0.1, (b) B/Bcr = 0.6, (c) B/Bcr = 0.9, (d) B/Bcr = 10.
The radial distance r is in units of aB.

extension being mostly affected when changing the value of
the magnetic field.

B. Model with oscillator interaction: ω �= 0

In this section we shall analyze the effect of the oscillator
interaction on the angular momentum backflow. It may be
noted that when an oscillator interaction is present, a criti-
cal field can not be defined as before: at least in the sense
that there is no value of B that makes the Hamiltonian H
in Eq. (12) that of a free particle. The value Bcr in this case
simply minimizes the quantity β in Eq. (11c) and thus �. We
can therefore say that the field Bcr minimizes in this instance
the interaction.

Nonetheless, for the sake of convenience we shall make
our plots with respect to B/Bcr. First of all we note that
the infinite degeneracy for fixed n and nonpositive values
of m is no longer present when considering the oscillator
interaction. Indeed, from Eq. (16b) we see that, when θ = 0,
ωθ → ∞, α → 1, � = √

β → γ and so when m � 0 there
is degeneracy with respect to m. Clearly, such degeneracy is
lifted when the oscillator frequency ω �= 0 because in this
case � = √

β �= γ . This in turn introduces a time dependence
in the wave function of Eq. (24) because each component
will have now a different energy eigenvalue. This in turn
leads to a time dependence of the effective magnetic quantum
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number meff and leads to

meff(r, ϕ, t ) = − c2
1 + 2c2

2 + c0c1 cos
[
ϕ + (ε−1 − ε0) t

h̄

] + 3c1c2 cos
[
ϕ + (ε−2 − ε−1) t

h̄

] + 2c0c2 cos
[
2ϕ + (ε−2 − ε0) t

h̄

]
c2

0 + c2
1 + c2

2 + 2c0c1 cos
[
ϕ + (ε−1 − ε0) t

h̄

] + 2c1c2 cos
[
ϕ + (ε−2 − ε−1) t

h̄

] + 2c0c2 cos
[
2ϕ + (ε−2 − ε0) t

h̄

] ,

(30)

where εm = ε0,m. The time dependence reduces to a
translation of the angle in meff. This effect is shown explicitly
in Fig. 4, where we plot the backflow region in the (r, ϕ) plane
for two different time values (see caption of figure). We show
the region for t = 0 (delimited by the dashed curve) which
corresponds exactly to the time-independent case of Eq. (26)
while the solid curve delimits the ϕ shifted one corresponding
to Eq. (30). The area of the quantum backflow area will be
the same.

Next, we show in Fig. 5 the area of the quantum backflow
regions as function of the external magnetic field expressed in
units of the critical magnetic field Bcr given by Eq. (19). In
Fig. 5 the solid line is the value of the area of the quantum
backflow region when the oscillator interaction is absent. At
B = Bcr the system becomes free and the region where there
is backflow is infinite. On the contrary, when the oscillator
interaction is present the quantity β in Eq. (11b) does not
vanish and thus the system is always bounded and the back-
flow region is always finite. The larger the oscillator frequency
ω, the stronger this effect (smaller area) as we can see by
comparing in Fig. 5 the dashed line (ω = 0.3 ωη) and the
dotted-dashed line (ω = ωη).

IV. BACKFLOW PROBABILITY

In the previous sections we have essentially visualized
the amount of quantum backflow by showing the area in
the (r, ϕ) plane where the effective angular momentum be-
comes positive having considered a quantum state built out
of components with only nonpositive values of m. We have
also compared various scenarios by computing numerically
the backflow area. Nevertheless, it would be clearly interest-

FIG. 4. Plot of the region (shaded area) where meff > 0 for two
values of time (orange), compared to the result at t = 0 (blue), in
the (r, ϕ) plane. The values of time are ta = t2π

12 and tb = t2π

6 , where
t2π = 2π h̄

ε−1−ε0
is the time relative to a 2π shift, which depends on

the magnetic field. Here we consider the case with the oscillator (ω =
0.8 ωη with η/m2

e c2 = 10−25) for a single value of the magnetic field.
The radial distance r is in units of aB.

ing to have a quantitative estimate of the quantum backflow.
One of the ways to obtain this estimate is to introduce the
concept of probability associated with angular momentum
backflow. While in the case of one-dimensional problems the
issue of the backflow probability has been discussed at length
[5,12,39,40], it has not been studied within the context of a
two-dimensional interacting system. Perhaps this was due to
the difficulties stemming from the two-dimensional nature of
the problem.

A particularly useful approach for the computation of
the total backflow probability has been proposed in [12]. In
this approach, for a quantum state built with only positive
momenta the total backflow probability is related, for a one-
dimensional problem, to the fraction of the x axis where the
local wave number k(x) becomes negative. Here we extend
this concept to the case of an interacting two-dimensional
problem. Our state �(r, ϕ) defined in Eq. (24) is a linear
combination of eigenfunctions (16a) with nonpositive values
of the angular momentum (Lcan

z component) or nonpositive
values of the magnetic quantum number m (m � 0). In our
problem the analog of the local wave number k(x) of [12]
is the local angular momentum (Lcan

z component) �(r) =
h̄meff(r). For a system for which the positions r are distributed
according to a normalizable probability distribution |�(r)|2,
the probability distribution of the angular momentum is

P(�) =
∫∫

|�(r)|2 δ(�(r) − �) d2r. (31)

The above relation can be understood noting that P(�)d� is
the probability of having an angular momentum between �

and � + d�, and this can be estimated by averaging over the

FIG. 5. Plot of the backflow area (in units of a2
Bcr

), for a state
with three components as in Eq. (24) or as in Eq. (29) with N = 3, as
a function of the magnetic field (in Bcr units where η = 10−25m2

e c2),
for two values of the oscillator frequency [ω1 = 0.3 ωη (dashed line),
ω2 = ωη (dotted-dashed line)] compared to the result without oscil-
lator (solid line).
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positions r for which �(r) = � which are distributed according
to |�(r)|2.

It is convenient, in the following, to define a probability
density with respect to the angular momentum (magnetic)
quantum number m = �/h̄. This is easily done by extracting
the constant h̄ from the δ function and defining P(m) = h̄P(�):

P(m) =
∫∫

|�(r)|2 δ(meff(r) − m) d2r, (32)

so that the total backflow probability (probability of having a
positive m) is obtained as

Pbackflow =
∫ ∞

0
P(m) dm. (33)

Inserting Eq. (32) into Eq. (33) and making use of the fact
that the Dirac δ function is the derivative of the Heaviside θ

function we obtain

Pbackflow =
∫∫

|�(r)|2 d2r
∫ +∞

0

{
− ∂

∂m
θ (meff(r) − m)

}
dm

=
∫∫

|�(r)|2 d2r
[−θ (meff(r) − m)

]m=+∞
m=0

=
∫∫

|�(r)|2 θ (meff(r)) d2r. (34)

We may finally write the total angular momentum backflow
probability as

Pbackflow =
∫ ∞

0

∫ 2π

0
θ (meff(r, ϕ)) |�(r, ϕ)|2 r dr dϕ, (35)

where �(r, ϕ) is the normalized eigenfunction.
We have computed the total angular momentum back-

flow probability Pbackflow evaluating numerically the integral
in Eq. (35) first for an effective angular momentum defined
in Eq. (26) for the state as in Eq. (24) with a number of
components N = 3, and subsequently for states defined as in
Eq. (29) with increasing number of components up to N = 6.

We have also examined the variation of the probability
of quantum backflow with respect to different choices of the
associated weights cm with a given number of components N .
The results of the computations are given in Table I where
we see that Pbackflow varies somewhat as the number of com-
ponents of the state N is increased and, within a fixed N ,
as configurations with different weights cm are considered.
In some cases (N = 3, 5, 6) it appears that the configurations
with c0 the largest weight have a higher probability relative
to the configurations where weights other than c0 are largest
but we were unable to generalize it. For instance, this does
not happen for N = 4. This may be traced to the fact that the
region where meff > 0 is strongly dependent on the different
choices of the weights and also on the different values of N as
we have explicitly observed. Also, as N increases, the compu-
tation becomes increasingly challenging from the numerical
point of view. We have verified that, as expected, for any state
with given number of components N and any configurations
of the coefficients cm, the backflow probability is independent
of the magnetic field B computing Pbackflow for two different
values of the magnetic field. In retrospect, the independence
of the total angular momentum backflow probability from the
external magnetic field can be understood also from Eqs. (20)

TABLE I. Total backflow probability (Pbackflow) computed nu-
merically via Eq. (35) with an accuracy of one part in 103 for
N = 3, 4, 5, 6 and different choices of the coefficients cm for any
given number of components N . The states considered here are all
with the lowest value of the radial quantum number (n = 0) and no
oscillator interaction (ω = 0).

N (c0, c1, . . . , cN−1) Pbackflow

3
(

1√
3
, 1√

3
, 1√

3

)
0.049(

1√
2
, 1√

4
, 1√

4

)
0.103(

1√
4
, 1√

2
, 1√

4

)
0.023(

1√
4
, 1√

4
, 1√

2

)
0.032

4
(

1√
4
, 1√

4
, 1√

4
, 1√

4

)
0.052(

1√
2
, 1√

6
, 1√

6
, 1√

6

)
0.049(

1√
6
, 1√

2
, 1√

6
, 1√

6

)
0.016(

1√
6
, 1√

6
, 1√

2
, 1√

6

)
0.038(

1√
6
, 1√

6
, 1√

6
, 1√

2

)
0.031

5
(

1√
5
, 1√

5
, 1√

5
, 1√

5
, 1√

5

)
0.051(

1√
2
, 1√

8
, 1√

8
, 1√

8
, 1√

8

)
0.192(

1√
8
, 1√

2
, 1√

8
, 1√

8
, 1√

8

)
0.011(

1√
8
, 1√

8
, 1√

2
, 1√

8
, 1√

8

)
0.016(

1√
8
, 1√

8
, 1√

8
, 1√

2
, 1√

8

)
0.025(

1√
8
, 1√

8
, 1√

8
, 1√

8
, 1√

2

)
0.029

6
(

1√
6
, 1√

6
, 1√

6
, 1√

6
, 1√

6
, 1√

6

)
0.047(

1√
2
, 1√

10
, 1√

10
, 1√

10
, 1√

10
, 1√

10

)
0.218(

1√
10

, 1√
2
, 1√

10
, 1√

10
, 1√

10
, 1√

10

)
0.014(

1√
10

, 1√
10

, 1√
2
, 1√

10
, 1√

10
, 1√

10

)
0.011(

1√
10

, 1√
10

, 1√
10

, 1√
2
, 1√

10
, 1√

10

)
0.020(

1√
10

, 1√
10

, 1√
10

, 1√
10

, 1√
2
, 1√

10

)
0.023(

1√
10

, 1√
10

, 1√
10

, 1√
10

, 1√
10

, 1√
2

)
0.023

and (22). Indeed, we see that the term j2 in the total current,
which depends explicitly on the magnetic field (vector poten-
tial), does not contribute to meff. On the other hand, from the
explicit expression of the exact wave functions [cf. Eq. (16)]
the only other dependence on the magnetic field is through
the quantity aB. Given that the wave functions depend only on
(r/aB, ϕ) and that |�(r)|2 ∝ a−2

B f (r/aB, ϕ), it can be easily
shown from Eq. (35) that the total backflow probability is
independent of the magnetic field B. Let us also remark that
while the results in Table I have been computed for ω = 0,
choosing an oscillator interaction ω �= 0 simply changes the
value of aB but not Pbackflow since we have shown that the
probability is aB independent.

V. DISCUSSION AND CONCLUSIONS

In this article we have studied the noncommutative gener-
alization of the angular momentum backflow problem consid-
ered in [18]. Extending the exact solution of a free-charged
particle in a homogeneous magnetic field, we have also
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considered angular momentum backflow when an oscillator
interaction is present. Subsequently, we also included momen-
tum noncommutativity only so as to avoid gauge invariance
issues associated with noncommuting space coordinates [31].
It has been found that the area where angular momentum
backflow takes place changes with the magnetic field, which
in turn depends on the noncommutativity parameter.

Next, we have attempted to give a quantitative description
of the angular momentum backflow. We adopted the approach
developed in [12] where in a one-dimensional problem the
total probability of momentum backflow is related to the frac-
tion of the x axis where the local wave number k(x) is negative
(within a state consisting only of components with positive
wave numbers). We therefore extend the above approach [12]
to our two-dimensional problem of a charged Dirac particle
in a magnetic field. More precisely, in analogy with [18] we
considered a (normalized) physical state �(r) consisting of a
linear combination of eigenfunctions with nonpositive mag-
netic angular momentum values (m � 0) [cf. Eq. (24)] and
relate the probability of backflow to an average, over the prob-
ability density distribution |�(r)|2, of the area of the region of
the plane where meff � 0 [cf. Eqs. (33) and (35)]. It has been
found that total probability of angular momentum backflow
remains the same for different values of the magnetic field.
In other words, the backflow probability is independent of the
magnetic field.

It might be noticed that our study of the backflow regions
is based on the analysis of the quantity meff defined in Eqs.
(22a) and (22b) and as such it is not a gauge-invariant quantity
because only the total current j of Eq. (19) is gauge invariant
while j1 and j2 are gauge variant. So, quantities obtained as
averages over the effective local angular momentum meff(r, ϕ)
such as the expectation value of the canonical angular mo-
mentum 〈ψ |Lcan

z |ψ〉 = ∫
d2r meff(r, ϕ) |ψ |2 would be gauge

variant. This might worry the reader that our conclusions on
the angular momentum backflow depend on the gauge choice.
However, this is not the case as there is a well-known subtlety
concerning the gauge-invariant definition of the orbital angu-
lar momentum in the Landau problem [41–44]. Indeed, it has
been shown that a gauge-invariant orbital angular momentum
Lz can be defined in terms of the canonical angular momentum
Lcan

z = (r × p)z via Lz = Lcan
z + e

c rAϕ − e
2c Br2 [43]. How-

ever, it turns out that in the symmetric gauge, used throughout
this work, the additional contribution e

c rAϕ − e
2c Br2 vanishes

identically and the expectation values of Lcan
z , computed with

meff, coincide with the expectation values of the gauge invari-
ant Lz. Going to another gauge, for instance the Landau gauge,
the change in 〈Lcan

z 〉 will be compensated by the change in
〈( e

c rAϕ − e
2c Br2)〉 as to obtain the same result of the sym-

metric gauge. By the same token, other observable quantities
computed, in the symmetric gauge from meff such as, for
instance, the backflow probability, are gauge invariant.

We have also examined the dependence of the quantum
backflow probability with respect to the number of compo-
nents (N) in the wave packet as well as the associated weights
cm finding that it can reach values as high as Pbackflow ≈ 0.2.
More precisely, in this paper we have considered states of
the system which are either (i) only a simple sum of the N
eigenstates with a fixed value of the radial quantum number
(n = 0) or (ii) a sum of N components (again with n = 0)
with various choices of different weights cm. We have not
been able to identify a well-defined and general pattern of
Pbackflow when higher values of the number of components N
are considered, both in configurations with equal and different
weights cm. Other possibilities could of course be considered,
but they would go beyond the scope of this work. Here, we
were mainly interested in presenting a sensible definition of
the angular momentum backflow probability for the problem
of a charged particle in a constant homogeneous magnetic
field, with and without the oscillator interaction, along with
a complete and exact solution, of the same problem, also in
the presence of noncommutative coordinates. One interesting
feature that emerges from our analysis is that the angular mo-
menutm backflow probability in our two-dimensional system
reaches, in some cases, values (Pbackflow ≈ 0.2) that are larger
than the maximum allowed value found by Braken and Malloy
cbm ≈ 0.04 for a one-dimensional free system. This may be
quite important in view of upcoming experimental studies of
the quantum backflow.

In conclusion, in this paper we have been able to con-
firm the angular momentum backflow of a nonrelativistic
charged particle in a magnetic field even in the presence of
noncommutative coordinates. We also succeeded in defin-
ing and computing explicitly the angular momentum total
backflow probability Pbackflow, going beyond the results of
Ref. [18] by extending to a two-dimensional physical system
the approach developed in [12] for momentum backflow in a
one-dimensional system.

It is the authors’ opinion that these findings are of interest
for further developments in the subject of quantum backflow.
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