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Quantum dynamics under simultaneous and continuous measurement
of noncommutative observables
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We consider simultaneous and continuous measurement of two noncommutative observables of the system
whose commutator is not necessarily a c-number. We revisit the Arthurs-Kelly model and generalize it to describe
the simultaneous measurement of two arbitrary observables of the system. Using this generalized model, we
continuously measure the system by following the scheme proposed by Scott and Milburn [Scott and Milburn,
Phys. Rev. A 63, 042101 (2001)]. We find that the unconditioned master equation reduces to the Lindblad form
in the continuous limit. In addition, we find that the master equation does not contain a cross term of these two
measurements. Finally, we propose a scheme to prepare the state of a two-level system in an external field by
feedback control based on the simultaneous, continuous measurement of the two observables.
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I. INTRODUCTION

Quantum feedback control [1–8] is a widely employed
technique to drive a quantum system to a desired state [9–12].
Using measurement results to control system parameters, the
feedback control technique provides a robust way to prepare
the target state without fine tuning the protocol. The first ap-
plication of quantum feedback control dates back to a scheme
proposed by Yamamoto and his collaborators to produce an
amplitude-squeezed state [13,14]. In recent decades, the de-
velopment of cavity quantum electrodynamics (cavity QED)
[15–17] and circuit quantum electrodynamics (cQED) based
on superconducting qubits [18,19] has offered a promising
platform for quantum information and computation. As a
consequence, feedback control technology finds a broad ap-
plication in the new field, such as qubit resetting [20], state
stabilization [21], quantum error correction [22], entangle-
ment enhancement [23], etc.

In the standard protocol of feedback control of a quantum
system, continuous measurement [1,2,24–27] is performed
and the state of the system is manipulated in parallel according
to the measurement outcome. Continuous measurement can
be realized by coupling the system to an auxiliary system
working as a measurement apparatus. By continuously inter-
acting with the system, the state of the apparatus is influenced
by the system, and hence the information of the system can
be extracted continuously [1,2,28]. If the coupling is weak
enough and the apparatus does not have memory, i.e., the
so-called Born-Markov approximation, the master equation
of the system can be reduced to the celebrated Lindblad-
Gorini-Kossakowski-Sudarshan form (in short, Lindblad form
hereafter) [1,2,28–31].

Continuous measurement of a single observable has al-
ready been discussed in many works [32–41], and the
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feedback control theory based on the single-observable mea-
surement is well established [42,43]. On the other hand, as
for simultaneous and continuous measurement of multiple
observables, there is another fundamental issue when two
noncommutative observables are simultaneously measured.
Although several works have discussed the simultaneous, con-
tinuous measurement of two noncommutative observables,
they either consider two particular observables, such as canon-
ically conjugate variables [44–46] (i.e., the commutator of
them is a c-number) and qubit observables [47–49], or as-
sume that the system under the simultaneous and continuous
measurement evolves according to the Lindblad form mas-
ter equation without additional cross terms, which describe
the interplay effect of the two individual measurements,
even though the measured observables are not commuta-
tive [2,47,50]. In the present paper, instead of assuming,
we will derive the master equation of the system under
the simultaneous, continuous measurement of two arbitrary
noncommutative observables, whose commutator is not a
c-number but an operator. We will start from a concrete
measurement model, which can be used to describe the si-
multaneous and continuous measurement of two arbitrary
observables, and show that the master equation obtained for
simultaneous and continuous measurement of two observ-
ables whose commutator is a c-number [44] is still valid
regardless of the observables to be measured.

State preparation of qubits [51–54] has always been a
crucial issue in quantum information processing and quantum
computation. This issue becomes more practically important
in the current situation in which the recent development of
cavity QED and cQED has spurred the fabrication of quantum
computers. In addition, regarding our current problem, the
angular momentum operators in a two-level system (TLS) of
the qubit [i.e., spin-1/2 operators] are one of the simplest
but nontrivial examples of observables whose commutator
is not a c-number. Among various techniques, the feedback
control is a promising scheme that allows us to control the
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qubit state in a robust manner. Further, feedback control using
the measurement outcome of two observables instead of one
provides us with a more flexible way to control the system.
Therefore, preparation of a designated target state of a TLS
based on the simultaneous, continuous measurement of two
noncommutative observables is a challenging but important
task.

In this paper, we derive the unconditioned and condi-
tioned master equations of the system under the continuous
and simultaneous measurement, and we also provide a state
preparation scheme for a TLS using a static external field,
simultaneous and continuous measurement, and feedback
control as an application of our formalism. First, we gen-
eralize the Arthurs-Kelly measurement model [44,55,56] to
the simultaneous measurement of two arbitrary observables of
the system. We show that the measurement outcome deviates
from the true expectation value of the measured variables
unless the coupling strengths between the system and the two
detectors are sufficiently weak. This is a striking difference
from the case where the commutator of the two observables
is a c-number. Following the method by Scott and Milburn
[44], we use this generalized model to describe the continuous
measurement of two arbitrary observables and derive both
unconditioned and conditioned master equations. We find that
the former can be reduced to the Lindblad form in the contin-
uous limit, even if the coupling constant between the system
and the apparatus is not infinitesimally small. Finally, using
the obtained master equations, we discuss the state preparation
of a spin-1/2 system by the feedback control based on the
simultaneous, continuous measurement of different compo-
nents of the spin. In our scheme, a target state is obtained
as an asymptotic steady state of the time evolution. We find
that the effect of measurement and feedback together on the
resulting steady state is equivalent to a heat bath, which is
similar to the harmonic oscillator case [50], and we also derive
analytical expressions of the timescale required to reach the
steady state. Moreover, the static external magnetic field can
generate coherence between the ground state and the excited
state. Because of this property, the static external field together
with the measurement and feedback control can be utilized to
manipulate the state of a TLS in a versatile manner.

This paper is organized as follows. In Sec. II A, we gen-
eralize the Arthurs-Kelly measurement model [44,55,56] and
calculate the average and the variance of the measurement
readout. In Sec. II B, we simultaneously and continuously
measure the system based on this generalized model. The
unconditioned and the conditioned master equations are given
in this section. In Sec. III, we perform measurement and
feedback control on a TLS in an external magnetic field.
Focusing on an asymptotic steady state of the system, we
discuss effects of the external field, the measurement, and the
feedback control. The summary and conclusion are given in
Sec. IV.

II. MEASUREMENT MODEL

A. Generalization of Arthurs-Kelly measurement model

The Arthurs-Kelly model is a single-shot measurement
model which can be used to describe the simultaneous

measurement of the position and the momentum of a particle
in a one-dimensional quantum system [44,55,56]. It consists
of two detectors and the system to be measured. The point-
ers of the two detectors are prepared in the Gaussian initial
state, and, at an instance of time tr , the position x̂ and the
momentum p̂ of the particle are coupled with the pointers of
the two detectors, respectively, when the measurement starts.
After the coupling at tr , the positions of the two pointers are
influenced by the system; therefore, we can obtain measured
values of x̂ and p̂ from the readouts of the positions of the two
pointers by projective measurements of their positions. The
coupling between the system and the detectors is described by
the time-dependent Hamiltonian ĤI (t ), which is chosen in the
following form:

ĤI (t ) = (s1x̂ p̂1 + s2 p̂p̂2) δ(t − tr ), (1)

where p̂i (i = 1, 2) is the momentum of detector i’s pointer,
si is the coupling strength between the system and detector
i, and all the quantities here (i.e., ĤI , si, x̂, p̂, and p̂i) are
dimensionless.

We now consider simultaneous measurements of two ar-
bitrary observables Â and B̂ of the system. This generalized
measurement can be performed by the following analogical
interaction Hamiltonian between the system and two detec-
tors:

ĤI (t ) = (s1Âp̂1 + s2B̂p̂2) δ(t − tr ). (2)

Similarly, all the physical quantities discussed here such as
ĤI , si, and Â are also dimensionless. Moreover, h̄ is set to be
unity throughout the whole paper for simplicity [57]. Again,
detector i is still prepared in the Gaussian initial state |di〉,

〈xi|di〉 = (π�i)
−1/4 exp

(
− x2

i

2�i

)
, (3)

where |xi〉 is the position eigenstate of detector i’s pointer,
�i ≡ siσ

2 (with si > 0), and σ 2 is a parameter characterizing
the measurement accuracy.

Before the coupling at tr , the system and the two detectors
are assumed to be uncorrelated with each other. Therefore, the
density operator of the total system including the system and
the detectors initially takes the following form:

ρ̂T ≡ ρ̂s ⊗ |d1d2〉〈d1d2|, (4)

where ρ̂s is the partial density operator of the system and
|d1d2〉 ≡ |d1〉 ⊗ |d2〉 is the uncorrelated Gaussian initial state
of two detectors.

After the coupling between the system and the detectors,
the total system is in the state

ρ̂ ′
T = ÛI ρ̂T Û †

I , (5)

where

ÛI ≡ exp[−i(s1Âp̂1 + s2B̂p̂2)] (6)

is the evolution operator during the measurement. As a result,
the average of observable Â and the position of the pointer of
detector 1 after the coupling are given as

〈Â〉′ = Tr (Âρ̂ ′
T ) = Tr (Û †

I ÂÛI ρ̂T ) ≡ 〈Û †
I ÂÛI〉, (7)

〈x̂1〉′ = Tr (x̂1ρ̂
′
T ) = Tr (Û †

I x̂1ÛI ρ̂T ) ≡ 〈Û †
I x̂1ÛI〉. (8)

062216-2



QUANTUM DYNAMICS UNDER SIMULTANEOUS AND … PHYSICAL REVIEW A 102, 062216 (2020)

Applying the Baker-Campbell-Hausdorff relation to these two
equations, we get

〈Â〉′ = 〈Â〉 − s2

4σ 2
〈[B̂, [B̂, Â]]〉 + O

(
s2

i

σ 4

)
(9)

and

〈x̂1〉′ = s1

[
〈Â〉 − s2

12σ 2
〈[B̂, [B̂, Â]]〉 + O

(
s2

i

σ 4

)]
. (10)

Here, we only have evenfold commutators since 〈p̂2n+1
i 〉 = 0

for the Gaussian state for non-negative integer n. Following
the same procedure for B̂ and x̂2, we can obtain 〈B〉′ and 〈x2〉′,

〈B̂〉′ = 〈B̂〉 − s1

4σ 2
〈[Â, [Â, B̂]]〉 + O

(
s2

i

σ 4

)
(11)

and

〈x̂2〉′ = s2

[
〈B̂〉 − s1

12σ 2
〈[Â, [Â, B̂]]〉 + O

(
s2

i

σ 4

)]
. (12)

If [B̂, [B̂, Â]] = [Â, [Â, B̂]] = 0, for instance Â = x̂ and
B̂ = p̂, then all the multifold commutators vanish so that
we get 〈Â〉′ = s−1

1 〈x̂1〉′ and 〈B̂〉′ = s−1
2 〈x̂2〉′. However, for a

general case in which [B̂, [B̂, Â]] and [Â, [Â, B̂]] are nonzero,
all the higher-order terms remain and thus the measurement
result s−1

i 〈x̂i〉′ deviates from 〈Â〉′ and 〈B̂〉′. From Eqs. (9)–(12),
we see that the leading order of the deviations is si/σ

2, and
thus the deviations are negligible only when si/σ

2 � 1. To
discuss the deviations, it is convenient to introduce relative
deviations ε1 and ε2 defined as

ε1 ≡ 〈x̂1〉′ − s1〈Â〉′
s1〈Â〉′ , (13)

ε2 ≡ 〈x̂2〉′ − s2〈B̂〉′
s2〈B̂〉′ . (14)

For Â = L̂x and B̂ = L̂y as an example, where L̂x and L̂y are
x and y components of the angular momentum, respectively
[58], ε1 and ε2, with s−1

i 〈x̂i〉′, 〈Â〉′, and 〈B̂〉′ up to the second
order of si/σ

2, read

ε1 = s2

6σ 2

1 − (s1 + 3s2)/20σ 2

1 − s2/4σ 2 + s2(s1 + 3s2)/96σ 4
, (15)

ε2 = s1

6σ 2

1 − (s2 + 3s1)/20σ 2

1 − s1/4σ 2 + s1(s2 + 3s1)/96σ 4
. (16)

In Eqs. (15) and (16), ε1 and ε2 are independent of the
state of the system due to the closed algebra of the angular
momentum and the symmetry of the Gaussian state. Take ε1

for example: because of the closed algebra of the angular
momentum, the numerator and the denominator of ε1 can
be written as a linear combination of 〈L̂x〉, 〈L̂y〉, and 〈L̂z〉.
However, due to the symmetry of the Gaussian state, the
coefficients of 〈L̂y〉 and 〈L̂z〉, which are averages of odd pow-
ers of x̂i and p̂i, are zero. Therefore, the numerator and the
denominator of ε1 are proportional to 〈L̂x〉, which are canceled
with each other finally. The relative deviations ε1 and ε2 are
monotonically increasing with parameters s1/σ

2 and s2/σ
2.

When si/σ
2 � 0.5, the relative deviations ε1 and ε2 reach

around 10%, which are non-negligible. Consequently, si/σ
2

FIG. 1. Relative deviations (a) ε1 and (b) ε2 as functions of s1/σ
2

and s2/σ
2 for Â = L̂x and B̂ = L̂y. ε1 and ε2 are monotonically

increasing functions of si/σ
2.

must be much smaller than 1 in order to obtain an accurate
measurement outcome. Details are shown in Fig. 1.

We now go back to the arbitrary observables Â and B̂,
and consider the second moment of the positions of the two
pointers x̂1 and x̂2 after the coupling,

〈
x̂2

1

〉′ = s1σ
2

2

[
1 + 2s1

σ 2
〈Â2〉 − s1s2

12σ 4
(〈[B̂, [B̂, Â2]]〉

+ 〈Â [B̂, [B̂, Â]]〉 + 〈[B̂, Â [B̂, Â]]〉) + O

(
s3

i

σ 6

)]
(17)

and

〈
x̂2

2

〉′ = s2σ
2

2

[
1 + 2s2

σ 2
〈B̂2〉 − s1s2

12σ 4
(〈[Â, [Â, B̂2]]〉

+ 〈B̂ [Â, [Â, B̂]]〉 + 〈[Â, B̂ [Â, B̂]]〉) + O

(
s3

i

σ 6

)]
.

(18)

The leading term of the variance 〈x̂2
i 〉′ − (〈x̂i〉′)2 of the mea-

surement result depends on the parameter siσ
2. In order to

get a stable readout, i.e., the variances are small so that the
measurement results are less scattered, siσ

2 need to be set
as small as possible. There is a tradeoff between the stability
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characterized by siσ
2 and the accuracy characterized by si/σ

2

[see Eqs. (15) and (16)]. Therefore, σ 2 cannot be too large
for a given si, although σ 2 is intrinsically a large quantity in
the weak measurements, which is assumed to hold si/σ

2 � 1.
On the other hand, for a given σ 2, si should be sufficiently
small so that both siσ

2 and si/σ
2 are smaller than unity. From

this point of view, the generalized Arthurs-Kelly measurement
model is valid only for a weak measurement.

B. Continuous measurement

A continuous and simultaneous measurement of observ-
ables Â and B̂ can be realized by the following interaction
Hamiltonian [44]:

ĤI (t ) =
∞∑

n=1

(s1Âp̂1 + s2B̂p̂2) δ(t − nδt ), (19)

where δt is the time interval between two consecutive mea-
surements and will finally be set to be infinitesimal. After
each single-shot measurement, the readouts of x1 and x2 are
recorded, and then the total composite system is reset to the
decoupled initial state given by Eq. (4) based on the Born-
Markov assumption. The state of the system immediately
before and after the nth measurement is denoted by ρ̂s(nδt )
and ρ̂ ′

s(nδt ), respectively, which satisfy the following relation-
ship:

ρ̂ ′
s(nδt ) = Tr d [ÛI ρ̂s(nδt ) ⊗ |d1d2〉〈d1d2|Û †

I ], (20)

where Tr d means the trace over the degrees of freedom of the
two detectors.

We introduce the following measurement operator:

M̂(x1, x2) ≡ 〈x1x2|ÛI |d1d2〉

=
∫

d p1d p2 〈x1x2|ÛI |p1 p2〉〈p1 p2|d1d2〉

= (2π )−1
∫

d p1d p2 exp {i[(x1 − s1Â)p1

+ (x2 − s2B̂)p2]}〈p1 p2|d1d2〉, (21)

where |x1x2〉 ≡ |x1〉 ⊗ |x2〉, |p1 p2〉 ≡ |p1〉 ⊗ |p2〉, and |pi〉 is
the eigenstate of the momentum of detector i’s pointer. Equa-
tion (20) can be rewritten explicitly as

ρ̂ ′
s(nδt ) =

∫
dx1dx2 M̂(x1, x2) ρ̂s(nδt ) M̂†(x1, x2)

=
∫

d p1d p2 exp[−i(s1 p1Â + s2 p2B̂)] ρ̂s(nδt )

exp[i(s1 p1Â + s2 p2B̂)] |〈p1 p2|d1d2〉|2

= ρ̂s(nδt ) − s1

4σ 2
[Â, [Â, ρ̂s(nδt )]]

− s2

4σ 2
[B̂, [B̂, ρ̂s(nδt )]] + O

(
s2

i

σ 4

)
. (22)

Note that the right-hand side of the last equality of Eq. (22)
contains neither the terms [Â, [B̂, ρ̂s]] nor [B̂, [Â, ρ̂s]], which
describe the interplay effect between the measurements of
the two observables, because their coefficients are zero for
Gaussian states.

Taking the unitary evolution by the system Hamiltonian
Ĥs after each measurement into consideration, the state of the
system becomes

ρ̂s(nδt + δt ) = Ûs ρ̂ ′
s(nδt ) Û †

s , (23)

where

Ûs ≡ exp(−iĤsδt ) (24)

is the unitary evolution operator between two consecu-
tive measurements. After taking the continuous limit δt →
0 and σ → ∞ with ζ ≡ 1/(δt σ 2) = const, the uncondi-
tioned master equation of the system under the simultaneous
and continuous measurement reduces to the Lindblad form
[1,2,28–30]:

d ρ̂s

dt
= −i[Ĥs, ρ̂s] − γ1

8
[Â, [Â, ρ̂s]] − γ2

8
[B̂, [B̂, ρ̂s]]. (25)

Here, γi ≡ 2siζ is the measurement strength of Â (i = 1) or
B̂ (i = 2). In addition, we can obtain the master equation for
the measurement of a single observable Â or B̂ by setting s2 or
s1 to be zero, respectively. Note that even for noninfinitesimal
si, the master equation (25) for simultaneous and continuous
measurement is still valid in the continuous limit si/σ

2 → 0,
unlike the results for the single-shot measurement in the pre-
vious section.

The final master equation (25) of simultaneous measure-
ment does not contain terms of the interplay effect such as
[Â, [B̂, ρ̂s]] and [B̂, [Â, ρ̂s]], but just consists of a linear com-
bination of the two independent measurement effects. This
is because of the uncorrelated Gaussian initial state and the
Born-Markov approximation: Before each single-shot mea-
surement, the total composite system is reset to the decoupled
initial state given by Eq. (4). In addition, according to Eq. (22),
the single-shot measurement discussed in the previous section
does not introduce the terms of the interplay effect in the
master equation if the initial state of the system and the two
detectors are uncorrelated with each other and the detectors
are initially prepared in the Gaussian state. Therefore, the
terms of the interplay effects [Â, [B̂, ρ̂s]] and [B̂, [Â, ρ̂s]] are
absent in the final master equation. Note that for Â = x̂ and
B̂ = p̂ considered in Ref. [44], such terms of the interplay
effect have vanished, [x̂, [ p̂, ρ̂s]] − [ p̂, [x̂, ρ̂s]] = 0, because
of [x̂, p̂] = i. Thus, even though the master equation of the
simultaneous and continuous measurement of x̂ and p̂ does
not contain the terms of the interplay effect of the two mea-
surements [44], it is still open whether this equation still holds
for arbitrary observables Â and B̂. Here, we have shown that
the master equation indeed does not contain the terms of the
interplay effect, irrespective of the observables measured.

Moreover, we shall also derive the conditioned master
equation of simultaneous measurement. The nth measurement
outcome of detector i is denoted by xi(n) and the final master
equation is conditioned by a sequence of the outcome {xi(n)}.
The average and the variance of xi(n) can be obtained by
keeping the leading terms of Eqs. (10), (12), (17), and (18),

E [x1(n)] ≈ s1〈Â〉, (26)

E [x2(n)] ≈ s2〈B̂〉, (27)

V [xi(n)] = 〈
x̂2

i

〉′ − (〈x̂i〉′)2 ≈ si

2ζ δt
, (28)
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where E [·] represents the ensemble average over all the ex-
perimental realizations and V [·] represents the variance of the
measurement outcome. The correlation function of x̂1 and x̂2

after the coupling can also be obtained:

〈x̂1x̂2〉′ = Tr (x̂1x̂2ρ̂
′
T )

= s1s2

2
〈ÂB̂ + B̂Â〉. (29)

Comparing Eqs. (28) and (29), we find the covariance
C[x1(n), x2(n)] ≡ 〈x̂1x̂2〉′ − 〈x̂1〉′〈x̂2〉′ of x̂1 and x̂2 [which is
of the order of (δt )0] is much smaller than the variance of x̂1

and x̂2 (which is of the order of 1/δt) in the continuous limit
δt → 0. Therefore, the correlation between x̂1 and x̂2 can be
neglected within the current approximation where the terms
of order 1/δt are kept for the second moment of xi, and x1(n)
and x2(n) can be treated as two uncorrelated random variables
[59]. Then, approximating xi(n) as a Gaussian random vari-

able, xi(n) can be written as a summation of its average and
fluctuation,

x1(n) = s1〈Â〉 +
√

s1

2ζ
dξ1(n)(δt )−1

≡ s1〈Â〉 + λ1 dξ1(n)(δt )−1 (30)

and

x2(n) = s2〈B̂〉 +
√

s2

2ζ
dξ2(n)(δt )−1

≡ s2〈B̂〉 + λ2 dξ2(n)(δt )−1, (31)

where λi ≡ √
si/2ζ is the fluctuation of the measurement

outcome of observables Â (i = 1) and B̂ (i = 2), and dξi is
the Itô increment [60,61] which satisfies

E [dξi] = 0, (32)

E [dξi(m)dξi(n)] = δmnδt, (33)

E [dξ1(n)dξ2(n)] = 0. (34)

For notational simplicity, we will treat dξi to be equal to δt1/2 and omit the symbol E [·] in the following derivation. Then, the
measurement operator can be expanded as

M̂(x1(n), x2(n)) = (2π )−1
∫

d p1d p2 exp {i[x1(n)p1 + x2(n)p2]} exp[−i(s1 p1Â + s2 p2B̂)]
(�1�2)−1/4

π1/2
exp

(
−�1 p2

1 + �2 p2
2

2

)

∝
∫

d p1d p2 exp {−i(s1 p1Â + s2 p2B̂)} exp

⎡
⎣−�1

(
p1 − ix1(n)

�1

)2 + �2
(
p2 − ix2(n)

�2

)2

2

⎤
⎦

=
∫

d p1d p2

{ ∞∑
n=0

1

n!

[−i(s1 p1Â + s2 p2B̂)
]n

}
exp

⎡
⎣−�1

(
p1 − ix1(n)

�1

)2 + �2
(
p2 − ix2(n)

�2

)2

2

⎤
⎦

= 2π

(�1�2)1/2

[
1 + s1Â

�1
x1(n) + s2B̂

�2
x2(n) − s2

1Â2

2�1
+ s2

1Â2

2�2
1

x1(n)2 − s2
2B̂2

2�2
+ s2

2B̂2

2�2
2

x2(n)2

]
+ O(δt3/2)

∝ 1 + ζ δt

(
s1〈Â〉Â + s2〈B̂〉B̂ − s1Â2

4
− s2B̂2

4

)
+ λ1ζ Â dξ1 + λ2ζ B̂ dξ2 + O(δt3/2). (35)

The unnormalized state of the system after monitoring then becomes

ρ̂ ′
s(nδt ) = M̂ ρ̂s(nδt ) M̂†

= ρ̂s + ζ δt

[
s1〈Â〉(Âρ̂s + ρ̂sÂ) + s2〈B̂〉(B̂ρ̂s + ρ̂sB̂) − s1

4
(Â2ρ̂s + ρ̂sÂ

2) − s2

4
(B̂2ρ̂s + ρ̂sB̂

2)

]

+λ1 ζ (Âρ̂s + ρ̂sÂ) dξ1 + λ2 ζ (B̂ρ̂s + ρ̂sB̂) dξ2 + ζ 2 δt
(
λ2

1 Â ρ̂s Â + λ2
2 B̂ ρ̂s B̂

) + O(δt3/2). (36)

The normalization constant for the state after the measurement reads

Tr (M̂ ρ̂s M̂†) =1 + 2ζ δt (s1〈Â〉2 + s2〈B̂〉2) + 2λ1 ζ 〈Â〉 dξ1 + 2λ2 ζ 〈B̂〉 dξ2 + O(δt3/2). (37)

Applying (1 + x)−1 ≈ 1 − x + x2 and keeping terms up to the first order of δt , we obtain the normalized state after the
measurement,

ρ̂ ′
s(nδt ) = M̂ρ̂sM̂†

Tr (M̂ρ̂sM̂†)

≈ ρ̂s − s1ζ

4
(Â2ρ̂s + ρ̂sÂ

2 − 2Âρ̂sÂ) δt − s2ζ

4
(B̂2ρ̂s + ρ̂sB̂

2 − 2B̂ρ̂sB̂) δt
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+
√

2s1ζ

(
Âρ̂s + ρ̂sÂ

2
− 〈Â〉ρ̂s

)
dξ1 +

√
2s2ζ

(
B̂ρ̂s + ρ̂sB̂

2
− 〈B̂〉ρ̂s

)
dξ2

= ρ̂s − γ1

8
[Â, [Â, ρ̂s]] δt − γ2

8
[B̂, [B̂, ρ̂s]] δt + √

γ1 H [(Â − 〈Â〉) ρ̂s] dξ1 + √
γ2 H [(B̂ − 〈B̂〉) ρ̂s] dξ2. (38)

Here, the symbol H [Ô] is defined as the Hermitian part of
operator Ô,

H [Ô] ≡ 1
2 (Ô + Ô†). (39)

Including the unitary evolution between the two consecutive
measurements and taking the continuous limit, the condi-
tioned master equation reads

d ρ̂s = − i[Ĥs, ρ̂s] dt − γ1

8
[Â, [Â, ρ̂s]] dt − γ2

8
[B̂, [B̂, ρ̂s]] dt

+ √
γ1 H [(Â − 〈Â〉)ρ̂s] dξ1

+ √
γ2 H [(B̂ − 〈B̂〉)ρ̂s] dξ2. (40)

III. STATE PREPARATION BY THE FEEDBACK CONTROL

We now propose a scheme to manipulate the state of
a spin-1/2 system based on the generalized Arthurs-Kelly
measurement model obtained in the previous section. For
simultaneous and continuous measurement of the x and y
components of the spin Ŝ, i.e., Â = σ̂x/2 and B̂ = σ̂y/2 with
σ̂x and σ̂y being the Pauli matrices, the conditioned master
equation (40) can be written as

d ρ̂s = − i[Ĥs, ρ̂s]dt − �x

8
[σ̂x, [σ̂x, ρ̂s]]dt − �y

8
[σ̂y, [σ̂y, ρ̂s]]dt

+
√

�xH [(σ̂x − 〈σ̂x〉) ρ̂s] dξx

+ √
�yH [(σ̂y − 〈σ̂y〉) ρ̂s] dξy, (41)

where �x ≡ γ1/4 = s1ζ/2 and �y ≡ γ2/4 = s2ζ/2 are the
measurement strengths of the x and y components of the
spin, respectively. We assume that the system is in a static
external magnetic field; as a consequence, the Hamiltonian of
the system can be represented as

Ĥs = ωxσ̂x + ωyσ̂y + ωzσ̂z, (42)

where ωx, ωy, and ωz can be set by the magnitude and the
direction of the static external field.

The measurement signals σ̄x and σ̄y are defined as [50]

σ̄xdt = 〈σ̂x〉dt + dξx√
�x

, (43)

σ̄ydt = 〈σ̂y〉dt + dξy√
�y

, (44)

which will be fed back to the system without time delay
[54] to control an additional external magnetic field B by the
following feedback control Hamiltonian:

Ĥf dt = B · Ŝ dt

= (α1c̄ + α∗
1 c̄∗)σ̂x dt + (α2c̄ + α∗

2 c̄∗)σ̂y dt

+ (α3c̄ + α∗
3 c̄∗)σ̂z dt

= c̄dt (α1σ̂x + α2σ̂y + α3σ̂z ) + H.c., (45)

where αi (i = x, y, z) is an arbitrary complex number used
to control the i component of the additional magnetic field

B, c̄dt ≡ 1
2 (σ̄x − iσ̄y)dt is the complex measurement signal,

and H.c. is the Hermitian conjugate of the former term. Here,
we have set the Landé factor and the Bohr magneton to be
unity for simplicity. Equation (45) can be rewritten into an
equivalent, but more compact form,

Ĥf dt = −iκ f c̄ dt F̂ + H.c., (46)

where κ f is an arbitrary real positive parameter called feed-
back control strength, and F̂ is a linear combination of σ̂x,
σ̂y, and σ̂z, corresponding to F̂ = iκ−1

f (α1σ̂x + α2σ̂y + α3σ̂z )
in terms of αi in Eq. (45).

Suppose the system is in the state ρ̂s at time t ; the state of
the system at t + dt after the simultaneous, continuous mea-
surement and feedback control is given by exp(−iĤ f dt ) (ρ̂s +
d ρ̂s) exp(iĤ f dt ). Within the first order in dt , we need to keep
the following terms: ρ̂s + d ρ̂s, −i[Ĥf dt, ρ̂s], −i[Ĥf dt, d ρ̂s],
and −2−1[Ĥf dt, [Ĥf dt, ρ̂s]]. Note that the last one also has
the first order of dt due to the Itô rule. By inserting Eqs. (43)
and (44) into these terms, we obtain the ensemble-averaged
master equation of the system under the simultaneous, contin-
uous measurement and the feedback control,

d ρ̂s

dt
= − i[Ĥs, ρ̂s] + �y

2
D[ĉ]ρ̂s + �y

2
D[ĉ†]ρ̂s

+ �x − �y

4
D[ĉ + ĉ†]ρ̂s + κ2

f

4�x
D[i(F̂ − F̂ †)]ρ̂s

+ κ2
f

4�y
D[F̂ + F̂ †]ρ̂s − κ f

2
([F̂ , ĉρ̂s] − [F̂ †, ρ̂sĉ

†]

+ [F̂ , ρ̂sĉ] − [F̂ †, ĉ†ρ̂s]), (47)

where ĉ ≡ 1
2 (σ̂x − iσ̂y) is the lowering operator, and the su-

peroperator D[Ô] is defined for an arbitrary operator Ô by

D[Ô] ρ̂s ≡ Ôρ̂sÔ
† − 1

2 (Ô†Ôρ̂s + ρ̂sÔ
†Ô). (48)

Equation (47) provides the general form of the evolution
of the system. The form of the operator F̂ is to be chosen
according to the target state. Note that for F̂ = ĉ† [i.e., α1 =
−iκ f /2, α2 = κ f /2, and α3 = 0 in Eq. (45)], Eq. (47) can be
written in the Lindblad form,

d ρ̂s

dt
= −i[Ĥs, ρ̂s] + k1D[ĉ]ρ̂s + k2D[ĉ†]ρ̂s + k3D[ĉ + ĉ†]ρ̂s,

(49)

with

k1 ≡ �y

2
+ κ2

f

2�x
+ κ f , (50)

k2 ≡ �y

2
+ κ2

f

2�x
− κ f , (51)

k3 ≡ �x − �y

4
− κ2

f

4�x
+ κ2

f

4�y
. (52)
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The first term in the right-hand side of Eq. (49) represents the
unitary evolution governed by the static external field, while
the latter three terms represent the effect of the simultaneous
measurement and the feedback control.

For the spin-1/2 system, it is more convenient to discuss
the problem in the Bloch coordinate system and represent ρ̂s

with the basis σ̂x, σ̂y, σ̂z, and the unit operator Î ,

ρ̂s = 1
2 (xσ̂x + yσ̂y + zσ̂z + Î ), (53)

where (x, y, z) ∈ R3 is the Bloch vector satisfying√
x2 + y2 + z2 � 1. By inserting Eq. (53) into Eq. (49)

and using Tr (σ̂ j ρ̂s) = j (with j = x, y, z), we obtain

ẋ = 2(ωyz − ωzy) − k1 + k2

2
x, (54)

ẏ = 2(ωzx − ωxz) − k1 + k2 + 4k3

2
y, (55)

ż = 2(ωxy − ωyx) − (k1 + k2 + 2k3)z + k2 − k1. (56)

The steady solution of these master equations is obtained by
setting ẋ = ẏ = ż = 0 in Eqs. (54)–(56) [62],

xs = 4η−1(k2 − k1)[ωy(k1 + k2 + 4k3) + 4ωxωz], (57)

ys = 4η−1(k1 − k2)[ωx(k1 + k2) − 4ωyωz], (58)

zs = η−1(k2 − k1)
[
(k1 + k2)(k1 + k2 + 4k3) + 16ω2

z

]
, (59)

with

η ≡ (k1 + k2)(k1 + k2 + 2k3)(k1 + k2 + 4k3) + 8ω2
x (k1 + k2)

+ 8ω2
y (k1 + k2 + 4k3) + 16ω2

z (k1 + k2 + 2k3). (60)

Equations (57)–(60) provide a guideline to realize the
steady state of the system by the static external field, the
simultaneous and continuous measurement, and the feedback
control. One of the most important cases is the one in which
the direction of the external magnetic field is along the z
axis, where the Hamiltonian of the system Ĥs is diagonal
with ωx = ωy = 0 and ωz �= 0. Then, the steady state given
by Eqs. (57)–(59) becomes

xs = 0, (61)

ys = 0, (62)

zs = k2 − k1

k1 + k2 + 2k3
, (63)

which is diagonal in the energy basis so that it can be identified
as a thermal state with some effective temperature. This means
that the simultaneous measurement and feedback control in-
troduced above effectively serve as a heat bath [50]. When we
perform both the measurement and the feedback control on
the system for a sufficiently long time, the system eventually
reaches a thermal state. Since zs is independent of the sign
of ωz as seen in Eqs. (59) and (60), we can assume ωz > 0
without loss of generality, and the effective temperature Teff

can be obtained as

Teff = 2ωz

kB

(
ln

k1 + k3

k2 + k3

)−1

, (64)

where kB is the Boltzmann constant. Since (k1 + k3)/(k2 +
k3) is always larger than 1, the effective temperature Teff is

FIG. 2. Contours of effective temperature Teff with respect to �x

and �y for ωx = ωy = 0. Here, we have set κ f = ωz = kB = 1 for
simplicity. Teff takes the minimum, Teff = 0, at �x = �y = 1.

a monotonically increasing function of ωz, and Teff satisfies
0 � Teff < ∞. Thus, we can prepare the system in a diagonal
steady state with an arbitrary positive effective temperature by
setting proper k1, k2, k3, and ωz under ωx = ωy = 0. In order
to see the dependence of Teff on parameters �x, �y, and κ f , we
substitute Eqs. (50)–(52) into Eq. (63) and obtain

zs = −4

(
�x

κ f
+ κ f

�x
+ �y

κ f
+ κ f

�y

)−1

. (65)

Here, zs first decreases when �x/κ f and �y/κ f increase from 0
to 1, and then increases when �x/κ f and �y/κ f increase from
1 to infinity. zs takes the minimum at �x/κ f = �y/κ f = 1.
According to Eq. (53), the probabilities in the excited state
and the ground state are proportional to (1 + zs) and (1 − zs),
respectively. When zs decreases, the probability of the system
in the excited state becomes smaller, which means that the
effective temperature Teff is lower. Therefore, Teff first de-
creases and then increases when �x/κ f and �y/κ f increase
from 0 to infinity, and Teff takes the minimum value of zero at
�x/κ f = �y/κ f = 1. Figure 2 shows the contours of Teff with
respect to �x and �y for ωx = ωy = 0.

Besides the final effective temperature, the timescale for
relaxation to the asymptotic steady state is another important
quantity. We first consider z(t ), which can be easily obtained
from Eq. (56) with ωx = ωy = 0:

z(t ) = k2 − k1

k1 + k2 + 2k3
+ C1e−(k1+k2+2k3 )t , (66)

where C1 is a constant determined by the initial condition
z(t = 0). From Eq. (66), the relaxation time τz of the spin-z
component can be defined as

τz ≡ (k1 + k2 + 2k3)−1 = 2

(
�x + �y + κ2

f

�x
+ κ2

f

�y

)−1

. (67)

When �i � 1 or �i � κ2
f (with i = x or y), the relaxation time

τz is very short, which means the system can reach the steady
state very quickly.
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Next, we discuss x(t ) and y(t ). Equations (54) and (55)
with ωx = ωy = 0 can be written as

ẍ = −(k1 + k2 + 2k3)ẋ − η

4(k1 + k2 + 2k3)
x, (68)

y = − 1

2ωz

(
ẋ + k1 + k2

2
x

)
. (69)

The corresponding characteristic equation for Eq. (68) is

μ2 − (k1 + k2 + 2k3)μ + η

4(k1 + k2 + 2k3)
= 0, (70)

and the solution of Eq. (70) is

μ± = 1
2 [(k1 + k2 + 2k3) ±

√
�], (71)

with

� ≡ (k1 + k2 + 2k3)2 − η

k1 + k2 + 2k3

= 4k2
3 − 16ω2

z . (72)

The solutions of Eqs. (68) and (69) are

x(t ) = (C2 + C3t )e− k1+k2+2k3
2 t , (73)

y(t ) = − 1

2ωz
[−k3C2 + (1 − k3t )C3]e− k1+k2+2k3

2 t , (74)

for � = 0, and

x(t ) = C′
2e−μ+t + C′

3e−μ−t , (75)

y(t ) = − 1

2ωz

[
C′

2

(
k1 + k2

2
− μ+

)
e−μ+t

+C′
3

(
k1 + k2

2
− μ−

)
e−μ−t

]
, (76)

for � �= 0, where C2, C3, C′
2, and C′

3 are constants determined
by the initial condition x(t = 0) and y(t = 0). When � � 0,
both x(t ) and y(t ) decay as exp (− k1+k2+2k3

2 t ). Thus, the relax-
ation time τx and τy of the x and y components of the spin can
be defined as

τx = τy ≡ 2(k1 + k2 + 2k3)−1

= 2τz. (77)

According to the previous discussion, the system reaches the
steady state very quickly if �i � 1 or �i � κ2

f . When � >

0, the decay rates of x(t ) and y(t ) are mainly determined by
the term with exp (−μ−t ) since μ− < μ+. Consequently, the
definition of the relaxation time τx and τy is

τx = τy ≡ μ−1
−

= 2(k1 + k2 + 2k3 −
√

�)−1

� 2
(
k1 + k2 + 2k3 −

√
4k2

3

)−1

= 2(k1 + k2 + 2k3 − 2|k3|)−1. (78)

When k3 � 0, Eq. (78) reads

τx = τy �2(k1 + k2)−1 = 2

(
�y + κ2

f

�x

)−1

. (79)

The relaxation time is very short if �y � 1 or �x � κ2
f . When

k3 < 0, on the other hand, Eq. (78) reads

τx = τy � 2(k1 + k2 + 4k3)−1 = 2

(
�x + κ2

f

�y

)−1

, (80)

and the relaxation time is very short if �x � 1 or �y � κ2
f . In

summary, the relaxation time of the system is controllable by
the strengths of the measurement and the feedback control,
and the system can reach the steady state very quickly if
�x, �y � 1 or �x, �y � κ2

f .
Let us now discuss more general cases where the direction

of the static external magnetic field is arbitrary, i.e., ωx, ωy,
and ωz are nonzero in general. In such cases, the Hamiltonian
Ĥs contains off-diagonal terms and these off-diagonal terms
generate coherence between the ground state and the excited
state of the operator σ̂z, which leads to the situation in which
the steady state is no longer a thermal state. To get a better
understanding of the effect of the off-diagonal terms, we set
ωz = 0 and keep ωx and ωy to be nonzero. Then xs and ys,
which characterize the effects of the off-diagonal terms on the
steady state, become

xs = 4η−1ωy(k2 − k1)(k1 + k2 + 4k3), (81)

ys = 4η−1ωx(k1 − k2)(k1 + k2). (82)

From Eqs. (81) and (82), we can clearly see that xs is more
sensitive to ωy than ωx, while ys is more sensitive to ωx than
ωy. Let us focus on xs as an example. Figure 3 shows xs

as a function of �x and �y for different values of (ωx, ωy):
(0.1, 0.1) [Fig. 3(a)], (0.5, 0.1) [Fig. 3(b)], and (0.1, 0.5)
[Fig. 3(c)]. One can clearly see that by comparing Figs. 3(a)
and 3(b), the contours change only a little by changing ωx with
ωy fixed, while by comparing Figs. 3(a) and 3(c), the contours
drastically change by changing ωy with ωx fixed. Therefore,
to control xs over a wide range, we should tune ωy instead of
ωx; on the other hand, to control xs accurately, we should first
choose an appropriate value of ωy and then tune ωx with ωy

fixed.
Figure 3 also implies that the range of the accessible values

of xs and ys by varying �x and �y depends on ωx and ωy. To
get a better understanding of this dependence, we show the
region of possible values of (xs, ys) for several different values
of (ωx, ωy) in Fig. 4. Figure 4(a) shows the boundaries of this
region for different values of ωy = −0.1, −0.5, and −1, with
ωx fixed at 0.5. Note that these boundaries are straight lines
within the numerical accuracy. With increasing the absolute
value of ωy from zero, the range of the possible values of
xs first increases and becomes maximum at |ωy| = 0.5, then
decreases, while the range of the possible values of ys is un-
changed from 0 � ys � 1. On the other hand, Fig. 4(b) shows
the boundaries for different values of ωx = 0.1, 0.5, and 1,
with ωy fixed at −0.5. The result is similar to that of Fig. 4(a),
but xs and ys are switched: As ωx increases from zero, the
range of the possible values of ys first increases and becomes
maximum at ωx = 0.5, then decreases, while the range of the
possible values of xs is unchanged from 0 � xs � 1. These
results are consistent with the discussion in the last paragraph,
and they also highlight the importance of choosing parameters
ωx and ωy properly in preparing the state of the system. A
given target steady state with some xs and ys is realizable only
for parameters (ωx, ωy) in some region.
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FIG. 3. Contours of xs with respect to �x and �y at (a) (ωx, ωy ) =
(0.1, 0.1), (b) (ωx, ωy ) = (0.5, 0.1), and (c) (ωx, ωy ) = (0.1, 0.5).
Here we set ωz = 0 and κ f = 1.

IV. CONCLUSION

In summary, we have generalized the Arthurs-Kelly mea-
surement model for a single-shot, simultaneous measurement
to two arbitrary observables of the system whose commuta-
tor is not necessarily a c-number. We have found that this
generalized measurement model is valid only when the cou-
pling between the system and the detectors is sufficiently
weak. By applying this generalized model to the continuous
measurement of two arbitrary observables, we have derived
both unconditioned and conditioned master equations. We

FIG. 4. Boundaries of the region of possible (xs, ys ) for dif-
ferent values of (ωx, ωy ). Values of (xs, ys ) below the dashed line
are realizable for each (ωx, ωy ). (a) ωx = 0.5 and ωy = −0.1 (blue
dashed line), −0.5 (red dashed line), and −1 (green dashed line). (b)
ωy = −0.5 and ωx = 0.1 (blue dashed line), 0.5 (red dashed line),
and 1 (green dashed line). Here, we set κ f = 1, and negative values
of ωy to get positive xs.

have shown that the unconditioned master equation takes the
Lindblad form in the continuous limit, even if the coupling is
not infinitesimally small. Moreover, we have found that there
is no effect of the interplay of the two measurements in the
continuous limit, even if the two observables are noncommu-
tative and their commutator is not a c-number. Finally, taking
a spin-1/2 system as an example, we have illustrated that we
can prepare a designated state as an asymptotic steady state of
the time evolution by a static external field, the simultaneous,
continuous measurement, and the feedback control based on
the formalism derived in this work. We have obtained analyt-
ical expressions of the steady state and the timescale of the
relaxation to the steady state, which offer a guiding principle
for controlling the system. We have demonstrated that by
appropriately setting the static external field and the strengths
of the measurement and the feedback, we can control both the
populations of the ground and the excited states and the co-
herence between them. Our results show that feedback control
based on simultaneous, continuous measurement of multiple
observables is one of the promising techniques which allows
us to control the quantum state in a versatile manner.

062216-9



CHAO JIANG AND GENTARO WATANABE PHYSICAL REVIEW A 102, 062216 (2020)

ACKNOWLEDGMENTS

We thank Luis Pedro García-Pintos and Peter Talkner
for helpful discussions and comments. This work was sup-
ported by NSF of China (Grants No. 11975199 and No.

11674283), the Zhejiang Provincial Natural Science Founda-
tion Key Project (Grant No. LZ 19A050001), the Fundamental
Research Funds for the Central Universities (Grants No.
2017QNA3005 and No. 2018QNA3004), and by the Zhejiang
University 100 Plan.

[1] H. M. Wiseman and G. J. Milburn, Quantum Measurement and
Control (Cambridge University Press, Cambridge, 2014).

[2] K. Jacobs, Quantum Measurement Theory and its Applications
(Cambridge University Press, Cambridge, 2014).

[3] H. M. Wiseman and G. J. Milburn, Phys. Rev. Lett. 70, 548
(1993).

[4] L. Diosi and N. Gisin, Phys. Rev. Lett. 72, 4053 (1994).
[5] S. Lloyd, Phys. Rev. A 62, 022108 (2000).
[6] D. A. Steck, K. Jacobs, H. Mabuchi, S. Habib, and T.

Bhattacharya, Phys. Rev. A 74, 012322 (2006).
[7] T. Sagawa and M. Ueda, Phys. Rev. Lett. 100, 080403 (2008).
[8] C. Brif, R. Chakrabarti, and H. Rabitz, New J. Phys. 12, 075008

(2010).
[9] P. Bushev, D. Rotter, A. Wilson, F. Dubin, C. Becher, J.

Eschner, R. Blatt, V. Steixner, P. Rabl, and P. Zoller, Phys. Rev.
Lett. 96, 043003 (2006).

[10] I. Dotsenko, M. Mirrahimi, M. Brune, S. Haroche, J.-M.
Raimond, and P. Rouchon, Phys. Rev. A 80, 013805 (2009).

[11] G. G. Gillett, R. B. Dalton, B. P. Lanyon, M. P. Almeida, M.
Barbieri, G. J. Pryde, J. L. O’Brien, K. J. Resch, S. D. Bartlett,
and A. G. White, Phys. Rev. Lett. 104, 080503 (2010).

[12] R. Vijay, C. Macklin, D. H. Slichter, S. J. Weber, K. W. Murch,
R. Naik, A. N. Korotkov, and I. Siddiqi, Nature (London) 490,
77 (2012).

[13] Y. Yamamoto, N. Imoto, and S. Machida, Phys. Rev. A 33, 3243
(1986).

[14] H. A. Haus and Y. Yamamoto, Phys. Rev. A 34, 270 (1986).
[15] J. M. Raimond, M. Brune, and S. Haroche, Rev. Mod. Phys. 73,

565 (2001).
[16] H. Mabuchi and A. C. Doherty, Science 298, 1372 (2002).
[17] A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J.

Schoelkopf, Phys. Rev. A 69, 062320 (2004).
[18] A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang,

J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, Nature
(London) 431, 162 (2004).

[19] J. Clarke and F. K. Wilhelm, Nature (London) 453, 1031 (2008).
[20] D. Ristè, C. C. Bultink, K. W. Lehnert, and L. DiCarlo, Phys.

Rev. Lett. 109, 240502 (2012).
[21] C. Sayrin, I. Dotsenko, X.-x. Zhou, B. Peaudecerf, T.

Rybarczyk, S. Gleyzes, P. Rouchon, M. Mirrahimi, H. Amini,
M. Brune, J.-M. Raimond, and S. Haroche, Nature (London)
477, 73 (2011).

[22] J. Cramer, N. Kalb, M. A. Rol, B. Hensen, M. S. Blok, M.
Markham, D. J. Twitchen, R. Hanson, and T. H. Taminiau, Nat.
Commun. 7, 11526 (2016).

[23] D. Ristè, M. Dukalski, C. A. Watson, G. de Lange, M. J.
Tiggelman, Ya. M. Blanter, K. W. Lehnert, R. N. Schouten, and
L. DiCarlo, Nature (London) 502, 350 (2013).

[24] V. B. Braginsky and F. Y. Khalili, Quantum Measurement (Cam-
bridge University Press, Cambridge, 1992).

[25] T. A. Brun, Am. J. Phys. 70, 719 (2002).

[26] K. Jacobs and D. A. Steck, Contemp. Phys. 47, 279 (2006).
[27] A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and

R. J. Schoelkopf, Rev. Mod. Phys. 82, 1155 (2010).
[28] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum

Systems (Oxford University Press, Oxford, 2010).
[29] G. Lindblad, Commun. Math. Phys. 48, 119 (1976).
[30] V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, J. Math.

Phys. 17, 821 (1976).
[31] H. J. Carmichael, Statistical Methods in Quantum Optics

1: Master Equations and Fokker-Plank Equations (Springer-
Verlag, Berlin, 1999).

[32] A. Barchielle, L. Lanz, and G. M. Prosperi, Nuovo Cimento B
72, 79 (1982).

[33] N. Gisin, Phys. Rev. Lett. 52, 1657 (1984).
[34] C. M. Caves and G. J. Milburn, Phys. Rev. A 36, 5543 (1987).
[35] L. Diósi, Phys. Lett. A 129, 419 (1988).
[36] C. Presilla, R. Onofrio, and U. Tambini, Ann. Phys. 248, 95

(1996).
[37] D. A. Steck, K. Jacobs, H. Mabuchi, T. Bhattacharya, and S.

Habib, Phys. Rev. Lett. 92, 223004 (2004).
[38] J. Combes and K. Jacobs, Phys. Rev. Lett. 96, 010504 (2006).
[39] T. Konrad, A. Rothe, F. Petruccione, and L. Diósi, New J. Phys.

12, 043038 (2010).
[40] C. Laflamme, D. Yang, and P. Zoller, Phys. Rev. A 95, 043843

(2017).
[41] D. Yang, C. Laflamme, D. V. Vasilyev, M. A. Baranov, and P.

Zoller, Phys. Rev. Lett. 120, 133601 (2018).
[42] A. C. Doherty and K. Jacobs, Phys. Rev. A 60, 2700 (1999).
[43] A. C. Doherty, S. Habib, K. Jacobs, H. Mabuchi, and S. M. Tan,

Phys. Rev. A 62, 012105 (2000).
[44] A. J. Scott and G. J. Milburn, Phys. Rev. A 63, 042101

(2001).
[45] J. Gough and A. Sobolev, Phys. Rev. A 69, 032107 (2004).
[46] M. A. Ochoa, W. Belzig, and A. Nitzan, Sci. Rep. 8, 15781

(2018).
[47] A. Chantasri, J. Atalaya, S. Hacohen-Gourgy, L. S. Martin, I.

Siddiqi, and A. N. Jordan, Phys. Rev. A 97, 012118 (2018).
[48] L. P. García-Pintos and J. Dressel, Phys. Rev. A 94, 062119

(2016).
[49] S. Hacohen-Gourgy, L. S. Martin, E. Flurin, V. V. Ramasesh,

K. B. Whaley, and I. Siddiqi, Nature (London) 538, 491
(2016).

[50] A. Levy, L. Diósi, and R. Kosloff, Phys. Rev. A 93, 052119
(2016).

[51] L. DiCarlo, M. D. Reed, L. Sun, B. R. Johnson, J. M. Chow,
J. M. Gambetta, L. Frunzio, S. M. Girvin, M. H. Devoret, and
R. J. Schoelkopf, Nature (London) 467, 574 (2010).

[52] C. Song, K. Xu, W. Liu, C.-p. Yang, S.-B. Zheng, H. Deng, Q.
Xie, K. Huang, Q. Guo, L. Zhang, P. Zhang, D. Xu, D. Zheng,
X. Zhu, H. Wang, Y.-A. Chen, C.-Y. Lu, S. Han, and J.-W. Pan,
Phys. Rev. Lett. 119, 180511 (2017).

062216-10

https://doi.org/10.1103/PhysRevLett.70.548
https://doi.org/10.1103/PhysRevLett.72.4053
https://doi.org/10.1103/PhysRevA.62.022108
https://doi.org/10.1103/PhysRevA.74.012322
https://doi.org/10.1103/PhysRevLett.100.080403
https://doi.org/10.1088/1367-2630/12/7/075008
https://doi.org/10.1103/PhysRevLett.96.043003
https://doi.org/10.1103/PhysRevA.80.013805
https://doi.org/10.1103/PhysRevLett.104.080503
https://doi.org/10.1038/nature11505
https://doi.org/10.1103/PhysRevA.33.3243
https://doi.org/10.1103/PhysRevA.34.270
https://doi.org/10.1103/RevModPhys.73.565
https://doi.org/10.1126/science.1078446
https://doi.org/10.1103/PhysRevA.69.062320
https://doi.org/10.1038/nature02851
https://doi.org/10.1038/nature07128
https://doi.org/10.1103/PhysRevLett.109.240502
https://doi.org/10.1038/nature10376
https://doi.org/10.1038/ncomms11526
https://doi.org/10.1038/nature12513
https://doi.org/10.1119/1.1475328
https://doi.org/10.1080/00107510601101934
https://doi.org/10.1103/RevModPhys.82.1155
https://doi.org/10.1007/BF01608499
https://doi.org/10.1063/1.522979
https://doi.org/10.1007/BF02894935
https://doi.org/10.1103/PhysRevLett.52.1657
https://doi.org/10.1103/PhysRevA.36.5543
https://doi.org/10.1016/0375-9601(88)90309-X
https://doi.org/10.1006/aphy.1996.0052
https://doi.org/10.1103/PhysRevLett.92.223004
https://doi.org/10.1103/PhysRevLett.96.010504
https://doi.org/10.1088/1367-2630/12/4/043038
https://doi.org/10.1103/PhysRevA.95.043843
https://doi.org/10.1103/PhysRevLett.120.133601
https://doi.org/10.1103/PhysRevA.60.2700
https://doi.org/10.1103/PhysRevA.62.012105
https://doi.org/10.1103/PhysRevA.63.042101
https://doi.org/10.1103/PhysRevA.69.032107
https://doi.org/10.1038/s41598-018-33562-0
https://doi.org/10.1103/PhysRevA.97.012118
https://doi.org/10.1103/PhysRevA.94.062119
https://doi.org/10.1038/nature19762
https://doi.org/10.1103/PhysRevA.93.052119
https://doi.org/10.1038/nature09416
https://doi.org/10.1103/PhysRevLett.119.180511


QUANTUM DYNAMICS UNDER SIMULTANEOUS AND … PHYSICAL REVIEW A 102, 062216 (2020)

[53] N. Friis, O. Marty, C. Maier, C. Hempel, M. Holzäpfel, P.
Jurcevic, M. B. Plenio, M. Huber, C. Roos, R. Blatt, and B.
Lanyon, Phys. Rev. X 8, 021012 (2018).

[54] T. L. Patti, A. Chantasri, L. P. García-Pintos, A. N. Jordan, and
J. Dressel, Phys. Rev. A 96, 022311 (2017).

[55] E. Arthurs and J. L. Kelly, Bell Syst. Tech. 44, 725 (1965).
[56] S. L. Braunstein, C. M. Caves, and G. J. Milburn, Phys. Rev. A

43, 1153 (1991).
[57] Depending on the choice of the quantities for Â and B̂, an
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