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In a standard interferometry experiment, one measures the phase difference between two paths by recombining
the two wave packets on a beam splitter. However, it has been recognized that the phase can also be estimated
via local measurements by using an ancillary particle in a known superposition state. In this work, we review
and further explicate these protocols for different types of particles (bosons or fermions, charged or uncharged),
with a particular emphasis on the subtleties that arise when the phase is due to the coupling to an Abelian
gauge field. In that case, we show that the measurable quantities are space-time loop integrals of the four-vector
potential, enclosed by two identical particles or by a particle-antiparticle pair. Furthermore, we generalize our
considerations to scenarios involving an arbitrary number of parties performing local measurements on a general
charged fermionic state. Finally, as a concrete application, we analyze a recent proposal involving the time-
dependent Aharonov-Bohm effect [C. Marletto and V. Vedral, Phys. Rev. Lett. 125, 040401 (2020)].
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I. INTRODUCTION

One ubiquitous feature that distinguishes quantum and
classical theory is the superposition principle. To detect the
presence of a quantum superposition (coherence), one has to
perform measurements of at least two incompatible observ-
ables and, in fact, it is sufficient to measure the relative phase
between the two (or more) states supposedly in superposition,
in addition to the absolute value of the amplitudes. This can,
for example, be achieved by an interferometric experiment,
whose simplest implementation is the Mach-Zehnder interfer-
ometer. There, a single particle is prepared in superposition of
two spatially separated paths (by sending it through a beam
splitter). The phase difference between the paths can be mea-
sured by recombining the paths at a second beam splitter and
by collecting the statistics of detectors placed at the output
ports. A celebrated variant of this interferometric experiment
allows us to detect a phase that is due to the interaction
between a charged quantum particle (e.g., an electron) and
the electromagnetic potential, known as the Aharonov-Bohm
(AB) effect [1–3]. In particular, this experiment features a
Mach-Zehnder interferometer that encircles a solenoid such
that, despite the electromagnetic field being zero everywhere
on the paths visited by the electron, there is a measurable
phase that is directly proportional to the magnetic flux through
the surface crossed by the solenoid. It thus seems that a
relative quantum phase can only be measured indirectly by
recombining the two paths in a closed interferometer, and ar-
guably this limitation looks even more dramatic in the case of
Aharonov-Bohm-like phases, since they depend on the value
of the total electromagnetic flux contained in a closed region.
Despite these indications, a number of works have proposed

protocols to detect quantum superpositions without needing to
re-interfere the beams, i.e., by using only local operations and
classical communication (LOCC) [4–9].

In this work, we review and further explicate these proto-
cols, characterizing their domain of applicability to different
types of particles (bosons or fermions, charged or uncharged)
and emphasize the constraints imposed by superselection
rules and gauge symmetries in determining which observables
are measurable (as discussed before in, e.g., Refs. [10–13]).
After a brief analysis of uncharged bosons, we focus on
uncharged fermions for which the parity superselection rule
forbids certain measurements. Nevertheless, one can circum-
vent this limitation by using an ancillary system as a resource;
indeed, we show that an arbitrary number of parties sharing
a generic fermionic pure state can perform full state tomog-
raphy by means of a known delocalized ancillary state and
LOCC.

We then proceed with the case of electromagnetically
charged particles and explain issues arising from gauge cou-
pling and gauge invariance. Contrarily to what the authors of
Ref. [6] have recently proposed, we show that, in protocols
involving an ancillary system and local measurements, the
measured phase corresponds always to the net phase picked
up around a closed loop in space-time. Thus, even if it is
true that one can extract information about the surrounding
electromagnetic field by means of only LOCC conducted at
distant locations (i.e., without recombining the paths in an
interferometer) and an ancillary system, its value is still equal
to the electromagnetic flux through a hypersurface enclosed
by the paths traveled by the particle(s) in space-time. We then
generalize the latter result to an arbitrary number of sources
and parties and show that all information about the gauge field
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that the parties can gather from LOCC can be reconstructed
from bipartite loop integrals for all pairs of sources and
parties.

In Sec. IV, we explicitly apply our considerations to the
scenario proposed in Refs. [6,8], which deals with the time-
dependent Aharonov-Bohm effect. We thus show that, even
if it is true that the Aharonov-Bohm phase is detectable
by means of only LOCC conducted at distant locations
(i.e., without recombining the paths in an interferometer),
its measurable value is still equal to the (gauge-independent)
electromagnetic flux through the hypersurface enclosed by the
paths traveled by the particle(s) in space-time and as such it is
not acquired locally.1

The paper is structured as follows: In Sec. II we review
and generalize various protocols that enable local phase esti-
mation in interferometric experiments. In Sec. III we proceed
with the discussion of the viability of the latter protocols
in scenarios involving charged particles coupled to a gauge
field and explain several subtleties arising in this context. In
Sec. IV, we apply our considerations to the time-dependent
Aharonov-Bohm (AB) effect and show that the AB phase can-
not be interpreted as locally generated, as previously claimed
in Refs. [6,8]. Finally, in Sec. V, we summarize the main
results of our work and provide a brief outlook on possible
future directions.

II. LOCAL MEASUREMENTS OF THE
INTERFEROMETRIC RELATIVE PHASE

In this section we review some protocols allowing us to
measure locally the relative phase acquired along two arms of
an interferometer, without having to recombine the two paths.
The setup we consider is illustrated in Fig. 1 and is similar
to the settings studied in Refs. [6–8]. Two experimenters,
Alice and Bob, reside at two distant locations and a quantum
particle is sent in an equal-weighted superposition of the two
paths towards the parties. Most of the following applies to
any particle type (boson or fermion, charged or uncharged);
when specificities arise we will point them out explicitly. We
assume that the situation can be described as a superposition
over classical paths, γA and γB, leading to Alice and Bob. In
this case, the phase acquired along a path is simply related
to the Lagrangian action S of the corresponding classical
trajectory. More precisely, let the phase difference be defined

1The term “nonlocality” has several meanings in quantum theory
(see, e.g., [4] for a concise overview). Indeed, it most customarily
refers to the impossibility of explaining the statistical correlations
of quantum measurements conducted at distant locations by means
of local hidden variables. Yet, in the context of the Aharonov-
Bohm effect—and thus throughout this paper—nonlocality refers to
a “topological” property of quantum theory. Namely, the fact that a
measurable quantum phase in the presence of a gauge coupling is
not acquired by summing up physically meaningful gauge-invariant
quantities in a point-by-point (i.e., local) fashion along the path
traveled by the particle. Rather, the phase due the gauge coupling
can only be attributed to closed paths in space-time, and it can be
expressed as the net electromagnetic flux through a hypersurface
enclosing that path.

FIG. 1. A particle is sent through a 50/50 beam splitter, along
two paths γA and γB. For simplicity, we model the phase difference
as arising due to a phase shifter placed along one of the paths. The
goal of Alice and Bob is to measure the phase �ϕ using LOCC.

as (we are using units where h̄ = 1)

�ϕ = [S(γB) − S(γA)] =
∫ t f

ti

dt[L(γB(t )) − L(γA(t ))], (1)

where ti is the time when the particle is emitted from the beam
splitter and t f is the time when the parties receive the particle.
The shared state between the two parties at the final time t f is
then

|ψ〉 = 1√
2
(|A〉 + ei�ϕ |B〉), (2)

where |A〉 and |B〉 correspond to states where the particle
is localized at Alice’s or Bob’s position, respectively. When
dealing with interferometric experiments it is convenient to
adopt a second-quantized notation:

|ψ〉 = 1√
2
(a†

A + ei�ϕa†
B) |0〉 , (3)

where a†
A and a†

B represent creation operators (either bosonic
or fermionic), creating one particle at Alice’s and Bob’ loca-
tion, respectively, and |0〉 is the vacuum state.

The task consists in estimating the phase difference �ϕ,
using only LOCC. This would be straightforward if Alice and
Bob were able to implement local projective measurements
that involve the preparation of superpositions of different
number states, i.e., of the form �± = |±〉 〈±|, where

|±〉A/B = 1√
2
(1 ± a†

A/B) |0〉 . (4)

This, however, is only possible for uncharged bosons, be-
cause otherwise this measurement is forbidden by the parity
and/or charge superselection rules.2 For photons, these mea-
surements can be carried out by making each local mode

2Superselection rules (SSRs) restrict the set of physically allowed
states to a subspace of the total Hilbert space of the system. The
most common ones are the charge and parity SSRs which imply re-
spectively the impossibility of preparing a system in a superposition
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interact with another system such as an atom, and then locally
measuring the two atoms in an appropriate basis [4,19–21],
or by measuring local interference with a coherent state [4].
However, for general species of particles, the measurement of
Eq. (4) is fundamentally forbidden (by specific superselection
rules) and the determination of the relative phase is apparently
impossible.

A general method for local phase measurements

Despite the above-mentioned issues, a possible solution to
the apparent impossibility of locally measuring phase differ-
ences of fermions has been proposed in Refs. [4,6]. The idea is
to bypass the superselection rule by using an ancillary particle
in a known superposition state as a resource which enables
the phase measurement. The protocol proceeds as follows:
Let us assume that Alice and Bob already possess an ancillary
particle in spatial superposition of their locations and that the
phase difference between the two components of the wave
function is null.3 After some time, the second particle is sent
in spatial superposition of the two paths, of which we want
to measure the relative phase difference. Upon reaching Alice
and Bob, the total state of the two-particle system is

|ψ〉 = 1
2

(
a†

A1
+ a†

B1

)(
a†

A2
+ ei�ϕa†

B2

) |0〉 , (5)

where the mode corresponding to the ancillary particle is indi-
cated by subscript 1 and the mode corresponding to the second
one—whose relative phase needs to be estimated—by sub-
script 2. Both Alice and Bob now possess two “wave packets,”
one arising from each particle. Furthermore, suppose they
possess local beam splitters allowing them to locally interfere
their wave packets and detectors allowing them to measure the
outcome statistics at the output ports of the beam-splitters. In
order for the parties to be able to perform the measurements,
the particles must have the same parity and charge because
of the associated superselection rules. We thus choose the
particles to be identical. Now, suppose that Alice and Bob
perform their measurements and discard the results if they
detect either zero or two particles: the postselected quantum
state of interest is then (prior to the interference through the
beam-splitter)

|ψ〉PS = 1√
2

(
a†

B1
a†

A2
+ ei�ϕa†

A1
a†

B2

) |0〉 . (6)

The beam-splitters, followed by measurements at the output
ports, implement local projective measurements of the form
�± = |±〉 〈±| acting on |ψ〉PS , where

|±〉A/B = 1√
2

(
a†

A1/B1
± a†

A2/B2

) |0〉 . (7)

of states with different charges or with different parities (e.g., a
superposition of the vacuum-state and a one-electron-state is not
“physical”). For more information about the origin and the necessity
of SSRs, see Refs. [14–18].

3As we discuss in detail in Sec. III, for charged particles this
assumption is not as innocent as it may look, for it corresponds to
fixing a gauge.

Using the Born rule, we compute the probabilities of obtaining
each of the four measurement outcomes:

P(+,+) = P(−,−) = 1
4 [1 + cos (�ϕ)],

P(+,−) = P(−,+) = 1
4 [1 − cos (�ϕ)]. (8)

Note that the outcome probabilities do not depend on whether
the particles are fermions or bosons, because we are only
concerned with the subset of events in which a single particle
is found at each of the two locations. The outcome statistics
in Eq. (8) enables Alice and Bob to reconstruct the phase
shifter’s phase �ϕ using only LOCC despite issues caused
by the parity superselection rule.

The latter considerations were concerned with the case of
two parties sharing one particle. In Appendix A, we provide
a generalization to a scenario involving N parties sharing a
general fermionic uncharged state, which can now involve
an arbitrary number of excitations. Notice that the parity su-
perselection rule allows the state to be in a superposition of
states with different numbers of fermions (albeit with equal
parity). We show that, analogously to the single-particle case,
the parties can fully reconstruct an arbitrary fermionic pure
state using LOCC and a common global state as a resource.
The protocol essentially involves the usage of an auxiliary
reference state prepared by an external party and local beam-
splitter operations performed by the N parties. Even though
the parties’ measurements are local, the overall process in-
volves the preparation of a global (entangled) state which
cannot be generated by local means; this is in accord with the
results of Refs. [22,23].

III. CHARGED PARTICLES AND THE
GAUGE-DEPENDENCE OF RELATIVE PHASES

Let us now turn to charged particles, for which we already
pointed out that measurements of the type in expression (4)
are prohibited by the charge superselection rule. Furthermore,
in the general protocol of Sec. II, we had to assume, in Eq. (5),
that it is possible to prepare the ancillary particle in a known
state. As we will emphasize in this section, since the phase
acquired along a path is gauge-dependent, the condition of
Eq. (5), namely that the ancillary state has zero relative phase,
is not a gauge-independent property. In the following we show
how the protocol can nevertheless be used to provide local
measurements of gauge-invariant phases, i.e., phases that are
acquired by integrating along a closed loop in space-time.
Hereinafter, we focus on charged fermions, and, as a matter
of simplicity, we consider the particular case of electrons.
Consider once again the setup of Fig. 1. The phase difference
is given by Eq. (1), with Lagrangian

L = 1

2m
�̇x2 − e�̇x · �A + eV (�x). (9)

We emphasize that setting the gauge potential to zero, even in
the absence of external electric and magnetic fields, amounts
to fixing a gauge. Hence, the accumulated phase on the two
paths now necessarily depends also on the electromagnetic
potential:

|ψ〉 = 1√
2

(
eie

∫
γA

Aμdxμ |A〉 + eie
∫
γB

Aμdxμeiβ |B〉), (10)
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where β is the gauge-invariant “mechanical” phase differ-
ence, i.e., due to the kinetic term 1

2m
�̇x2 in the Lagrangian;

whereas Aμ is the four-vector potential, i.e., (in the units
where c = 1) Aμ = (V, �A), and we use a metric with signature
(+,−,−,−). Therefore, the phase difference between the
two paths now reads

�ϕ = β + e
∫

(γB−γA )
Aμdxμ, (11)

which is an explicitly gauge-dependent quantity. We thus see
why it is necessary to introduce the charge superselection rule
which forbids us to implement the projectors of Eq. (4): if
this rule did not exist we would be able to measure physically
meaningless gauge-dependent quantities!4 This argument has
two main consequences: (i) the principle of gauge invariance
implies the charge superselection rule and prohibits this type
of local tomographic protocols for a delocalized electron.
Furthermore, (ii) the acquired phase difference between the
two paths is not an observable since it is a gauge-dependent
quantity: it might be equal to the mechanical phase shift β

only in a specific gauge.
On the other hand, note that if the electron’s wave packets

are re-interfered on a beam splitter as it happens in a standard
Aharonov-Bohm experiment, the phase difference between
the two paths connecting the two beam-splitters reduces to

�ϕ = β + e
∮

Aμdxμ, (12)

where the loop integral is performed around the whole inter-
ferometer. The phase is now a gauge-independent quantity and
it depends on the distribution of electromagnetic currents in
space-time. A specific case is a regular Mach-Zehnder inter-
ferometer, where, since there are no currents, the loop integral
vanishes and, as expected, the total phase difference is equal
to the mechanical phase shift β only.

A. Measuring phase differences at a distance

We now show how, as in the protocol of Sec. II, we can
exploit an auxiliary identical particle (another electron) in
order to circumvent the limitation imposed by the charge su-
perselection rule and gauge invariance. The crucial difference
with respect to the previous case is that, as already empha-
sized, there is an inevitable coupling to the gauge potential
regardless of the surrounding electromagnetic sources, which
implies that even the ancillary particle necessarily acquires a
gauge-dependent phase difference which may be null only in
a specific gauge (i.e., we cannot assume that Alice and Bob
can prepare the ancillary particle in a known state without
fixing a gauge). After the particles are sent to the parties, the
two-particle state is

|ψ〉 = 1
2

(
e

ie
∫
γA1

Aμdxμ
a†

A1
+ e

ie
∫
γB1

Aμdxμ
eiβ1 a†

B1

)
×(

e
ie

∫
γA2

Aμdxμ
a†

A2
+ e

ie
∫
γB2

Aμdxμ
eiβ2 a†

B2

) |0〉 , (13)

4A similar argument has already been invoked, for example, in
Ref. [24]; for a more formal treatment of the relationship between
the charge superselection rules and gauge invariance, see Ref. [18].

FIG. 2. Space-time diagram of the protocol described in
Sec. III A. Two identical particles are prepared at locations S1 (S2)
in an equal superposition of paths γA1 and γB1 (γA2 , γB2 ). The parties
perform local measurements which allow them to reconstruct the
phase �ϕ of Eq. (15), which is a gauge-invariant space-time loop
integral around the shown path (the arrows are drawn in the direction
of integration of the loop integral).

where the mode corresponding to the first particle is indicated
by subscript 1 and the second one by subscript 2, the paths γA1 ,
γA2 , γB1 , and γB2 are defined in Fig. 2, and βi is the mechanical
phase difference between paths γBi and γAi . Alice and Bob
again perform measurements with local beam-splitters and
postselect on the one-particle subsector:

|ψ〉PS = 1√
2

(
a†

A2
a†

B1
+ ei�ϕa†

A1
a†

B2

) |0〉 , (14)

where the cumulative phase difference is now given by

�ϕ = β2 − β1 + ϕA1 + ϕB2 − ϕA2 − ϕB1 , (15)

with

ϕAi ≡ e
∫

γAi

Aμdxμ, (16)

where i ∈ {1, 2} labels the paths on Alice’s side, and with an
analogous expression for ϕBi . As in Sec. II, the quantity �ϕ

can be inferred from the statistics of the detection clicks at the
two beam splitters, respectively situated at Alice’s and Bob’s
locations.

In Fig. 2 we portray the paths of the two particles in a
space-time diagram and show that they enclose a closed path.
Therefore, the additional phase accumulated because of the
interaction with the electromagnetic potential is gauge invari-
ant. If there are no surrounding currents or fields, the loop
integral vanishes and only the mechanical phase shift remains.
On the contrary, if the particles are surrounded by an arbitrary
distribution of currents, the loop integral does not generally
vanish and can depend explicitly on the trajectory traveled by
the ancillary particle (even if it is not acted on by classical
forces).
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Had the two particles different charges e1 and e2, the total
phase �ϕ would involve the sum of two paths which do not
compose into a space-time loop integral as in Eq. (15) and
would thus not be a gauge-invariant quantity. However, in
that case, the required measurement would not be possible
since nonidentical particles do not interfere with each other.
Therefore, we see a consistency between gauge invariance,
superselection rules, and the operational attainability of the
required local measurements.

In Appendix B, we analyze a variation of the above ex-
periment introduced by Aharonov and Vaidman in Ref. [4],
which instead of two identical particles (e.g., two electrons)
involves a particle-antiparticle pair (e.g., an electron and a
positron). We show that the same quantity �ϕ from Eq. (15)
can be estimated by measuring photons resulting from the
annihilation of the electron with the positron.

From these considerations we draw the following
conclusions:

(i) Loops (in space-time) can be closed by states involving
two identical particles or by a particle-antiparticle pair, i.e.,
by two different excitations of the same quantum field (con-
trary to the standard Aharonov-Bohm effect where the loop is
closed by a single electron).

(ii) The paths traced by the two particles can be “glued”
together via local (interference) measurements, or via particle-
antiparticle annihilation.

(iii) In the presence of gauge coupling, the distinction
between “primary” particle (whose phase we are trying to esti-
mate) and “ancillary” particle (which serves to circumvent the
superselection rule) is not well defined and can be manifested
only in a specific gauge; the measured quantity is a collective
property of the two excitations, namely the space-time loop
integral.

B. General case

In Sec. II and in Appendix A we saw the possibility of per-
forming state tomography of an arbitrary uncharged fermionic
state using LOCC and an ancillary system. Now we want to
analyze a similar scenario in the case of charged particles.
However, since the concepts of “primary” and “ancillary” sys-
tems are not well defined in the presence of gauge coupling,
here we ask a different question. Suppose that an arbitrary
number of parties perform local measurements on an arbitrary
state of multiple charged particles: what are the space-time
loop integrals that the outcome probabilities depend on? Can
all probabilities be reconstructed from loops similar to the one
depicted in Fig. 2? In Appendix C we show that this is indeed
the case. More precisely, suppose that we have d sources
emitting single identical charged fermions at d space-time
points. Each source prepares a single particle in an arbitrary
superposition of spatial trajectories. Moreover, suppose that
there are N parties who perform local number-preserving (lin-
ear) operations and measurements at N spacelike separated
points located on a hypersurface which lies in the future
of the d sources. We show that the joint probability of the
local measurement outcomes can be fully reconstructed from
loop integrals as in Fig. 2 for all pairs of sources and all
pairs of parties. This result shows that all information about
the gauge field that is acquirable via local measurements on

single-particle excitations can be reduced to simple experi-
ments involving two parties and two sources as in Fig. 2.

IV. NONLOCAL GENERATION OF
THE AHARONOV-BOHM PHASE

The traditional interpretation of the Aharonov-Bohm effect
[1–3] is that the electric and magnetic fields are in general
not sufficient for describing the physics of certain (quantum)
scenarios and that the gauge-theoretic electromagnetic po-
tential is in fact indispensable. Going against the received
view, Vaidman has argued that the Aharonov-Bohm phase
can be explained without the introduction of potentials if one
takes into account the quantum nature of the solenoid [5].
A weakness in his treatment is that it relies on an instan-
taneous interaction between the solenoid and the electron.
Marletto and Vedral [6]—followed by further developments
by Saldanha [8]—have recently addressed this problem, con-
cluding that the Aharonov-Bohm phase is acquired locally.
In this section we follow up on these recent developments
by applying the analysis from the previous section to the
specific case where the only source of electromagnetic fields
is a solenoid with a time-dependent current. We show that
that the Aharonov-Bohm phase is not acquired locally, in the
sense that the only measurable quantities involved in this type
of experiment correspond to the integral of the four-vector
potential around whole space-time loops. The phase acquired
along smaller portions of the particle’s path is not measurable.

The scenario studied in Ref. [6] is a special case of the
general situation in Fig. 2. During the journey of the ancillary
particle towards the parties, the flux through the coil is set
to zero. After the two wave packets of the ancillary particle
arrive at the location of the parties, they are trapped by using
some external field. The current (and thus the flux) in the coil
is then increased slowly until it reaches a stationary state, fol-
lowing which the second particle is sent to the parties and the
local measurements of Eq. (7) are performed. The detection
probabilities depend on �ϕ as defined in Eq. (15), where (in
the Coulomb gauge) the vector potential in the region outside
the coil is given by

�A(�r, t ) = �(t )

2π (x2 + y2)
�r × ẑ, (17)

where �(t ) is the magnetic flux through the solenoid at time
t , and �r is the position vector of the particle (with the origin of
the coordinates centered in the solenoid). Note that the electric
field is not zero outside the solenoid at all times, because of
the time dependence of the current in the solenoid. Since the
charge density is zero everywhere and at all time, we have
that the scalar potential is zero in the Coulomb gauge, and
thus the phase that the ancillary particle accumulates due to
the solenoid during the time when it is trapped in Fig. 2 is
zero (in this gauge). Furthermore, when the ancillary electron
is moving, there is no current in the coil and consequently
no four-vector potential is interacting with the charge, so the
contribution of the solenoid to the phase accumulated along
γA1/B1 is zero. Hence, we are left with the phase acquired by
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FIG. 3. Spatial representation of the scenario of Fig. 2, for the
special case studied in Ref. [6], where the source of Aμ is a solenoid
with a time-dependent current. At time t = 0 the flux through the
solenoid is zero, and a particle is prepared at S1 in an equal su-
perposition of paths γA1 and γB1 . Later, this particle is trapped at
locations A and B, following which the flux is increased up to � f .
Finally, the second particle is sent at S2 and each party performs a
local measurement on their “wave packets.”

the second particle

�ϕ = e
∫

ξ

�A · d�l, (18)

where ξ is the path shown in Fig. 3. Using the expression
(17) for the vector potential and switching to polar coordinates
yields

�ϕ =
∫ θ

0

� f

2π
dθ ′ = � f

2π
θ, (19)

where � f is the final flux through the solenoid and θ is the
angle defined in Fig. 3. The probabilities for the measurement
described in Sec. III A depend on �ϕ and thus the outcome
statistics allows us to estimate �ϕ using LOCC.

It is tempting to interpret the calculation that we have
just done, in particular Eq. (18), as showing that the phase
is locally accumulated along the path ξ . However, this ap-
parent localization of the phase accumulation is merely a
consequence of our (arbitrary) choice to work in the Coulomb
gauge. In other gauges, the phase accumulated by the ancillary
particle is not necessarily zero: only the full loop integral
is gauge independent. Notice that, even though the particles
seemingly enclose a spatial region with no electromagnetic
fields, the measured quantity �ϕ corresponds to the space-
time loop integral which is nonzero due to the induced electric
field (which arises due to the time dependence of the current)
piercing through the hypersurface enclosed by the space-time
loop.

V. CONCLUSIONS AND OUTLOOK

We have studied a general protocol allowing us to locally
measure the relative phases of the state of a particle that
is prepared by using a beam splitter in a superposition of
different spatial locations. To perform this protocol, the lo-
calized parties must share a known superposition state of an
ancillary particle. We have shown how, by using this known
state as a resource, one can estimate the relative phase by

performing only local measurements, despite the restrictions
imposed by the parity superselection rule. Moreover, we ex-
tended the protocol to general fermionic systems shared by
an arbitrary number of parties and we showed how the par-
ties can perform full state tomography using LOCC and a
global state as a resource. We proceeded by addressing the
case of electromagnetically charged particles, where the un-
avoidable coupling to the gauge field makes it impossible
to control the relative phase of the ancillary state without
fixing the gauge. We have shown that the protocol never-
theless measures a gauge-independent quantity, namely, a
space-time loop integral of the four-vector potential. The
protocol requires the two particles to possess equal charges
in order to obtain gauge-invariant quantities; however, the
required measurements would be physically impossible on
two different charges due to the charge superselection rule.
Alternatively, one can employ a slightly modified protocol
that involves particles with opposite charges (e.g., electron
and positron) which can annihilate into a pair of uncharged
particles (photons): the obtained measurement results yield
the same gauge-invariant phase as in the former protocol.
The latter discussion shows the tight relation between charge
conservation, gauge invariance, and superselection rules. We
then proceeded with the general scenario involving many
sources and many parties performing LOCC and showed that
all probabilities arising from such experiments can be reduced
to simple combinations of bipartite loop integrals involving
two sources and two parties. Finally, we have applied the
protocol to the case of local measurements of phases in the
time-dependent Aharonov-Bohm effect, and, in particular, we
have demonstrated its application to the setups of Refs. [6,8].
Since all probabilities obtained in these experiments depend
on loop integrals which are explicitly nonlocal quantities, the
interpretation that the phase is acquired locally is not viable
and is apparently manifested only in a specific gauge.

In this paper we focused on scenarios which involve quan-
tum particles coupled to Abelian gauge fields; it would be
interesting to see to what extent our analysis can be extended
to the non-Abelian case, where the probabilities would depend
on gauge-invariant functionals of Wilson loop operators. In
particular, one should inspect whether the result of Sec. III B
holds in any gauge theory or only in the Abelian ones.
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APPENDIX A: LOCAL MEASUREMENTS ON GENERIC
FERMIONIC UNCHARGED SYSTEMS

Let us start by considering a simple generalization of
Fig. 1 to N parties. The particle goes through a beam split-
ter with N output ports, and along each arm it acquires an
unknown phase ϕi, so that the state received by the observers
is 1√

N

∑N
i=1 eiϕi c†

i |0〉, where c†
i is an operator that creates a

particle at the location of observer i. We would like to per-
form a procedure for estimating the phases ϕi that uses only
local operations and classical communication. This can be

achieved if the parties share a second particle in a known state
1√
N

∑N
i=1 c†

i |0〉. Let each party apply a beam-splitter locally
and measure at the click at the output ports, and postselect
on cases where the two particles are found at different loca-
tions; this happens with probability 1 − 1

N . Supposing that the
particles are found at positions i and j, the probabilities for
each of the four possible outcomes are the same as in the
case of Fig. 1, so the above protocol allows us to give an
estimate for ϕi − ϕ j . After performing many rounds it will be
possible to reconstruct all the phases ϕk with a good accuracy.
An interesting feature of this protocol is that the postselection
probability goes to one as the number of parties becomes
large, which means that, in this limit, almost all rounds of
the experiment yield useful information (in contrast with the
two-arm case, where half of the rounds have to be discarded).

Turning now to the general case, the most general
fermionic state shared by N parties is

|ψ〉 =
{ ∑

�x1,...,�xN

λ(�x1, . . . , �xN )eiϕ(�x1,...,�xN )
∏

j1

(
c(1)†

j1

)x1 j1
∏

j2

(
c(2)†

j2

)x2 j2 · · ·
∏

jN

(
c(N )†

jN

)xN jN

}
|0〉 . (A1)

In the latter expression the sum ranges over all bit strings,
the length of which depends on the maximal number of local
modes available to each of the parties (the bit string notation
automatically implements the fact that there can be no more
than one excitation per mode). λ(�x1, . . . , �xN ) are real ampli-
tudes, ϕ(�x1, . . . , �xN ) are the mechanical phases that we want
to estimate, and c(k)†

jk
denote fermionic creation operators that

create one fermion in the jkth mode of the kth party.
To measure the weights λ(�x1, . . . , �xN ), each party performs

a local projective measurement on their local modes, yielding
the desired information via

λ(�x1, . . . , �xN ) =
∣∣∣∣∣
〈
ψ

∣∣∣∣∣
∏

j1

(
c(1)†

j1

)x1 j1 · · ·
∏

jN

(
c(N )†

jN

)xN jN

∣∣∣∣∣0
〉∣∣∣∣∣.
(A2)

The parties communicate their local results to an external
party who estimates the amplitudes λ(�x1, . . . , �xN ), prepares a
uniform superposition over states with nonzero amplitude and

sends it towards the N parties, who store it in separate modes
from those occupied by the original state. The “copied” state
is thus

|ψ̃〉 = 1√
M

{ ∑
�x1,...,�xN

∏
j1

(
c̃(1)†

j1

)x1 j1 · · ·
∏

jN

(
c̃(N )†

jN

)xN jN

}
|0〉 ,

(A3)
where c̃(k)†

jk
≡ c(k)†

nk+ jk
, with nk being the maximum number of

modes present at the kth party’s location and M is the total
number of nonzero components in the original state (A1).

Next, each party interferes each of the original modes with
the corresponding copied modes on local beam splitters, i.e.,
∀ k = 1, . . . , N and ∀ jk = 1, . . . , nk ,

c(k)†
jk

→ 1√
2

(
c(k)†

jk
+ c̃(k)†

jk

)
,

c̃(k)†
jk

→ 1√
2

(
c(k)†

jk
− c̃(k)†

jk

)
. (A4)

The final joint state, after undergoing the beam-splitter opera-
tions, is thus

|ψ ′〉 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1√
M

∑
�x1,...,�xN

�x′
1,...,�x′

N

2− 1
2 [

∑
n j (xn j+x′

n j )]λxeiϕx

N∏
k=1

[
nk∏

jk=1

(
c(k)†

jk
+ c̃(k)†

jk

)xk jk

]
N∏

k′=1

⎡
⎣ n′

k∏
j′k=1

(
c(k′ )†

j′k
− c̃(k′ )†

j′k

)x′
k′ j′k

⎤
⎦

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

|0〉 , (A5)

where λx and ϕx stand for λ(�x1, . . . , �xN ) and ϕ(�x1, . . . , �xN ).
Finally, the parties perform local projective measurements

of their modes in the occupation number basis; the outcome
probabilities depend explicitly on the required phases:

Pxy = 1

M2[
∑

n,m (xnm+ynm )]
|λx + (−1)sxy ei(ϕy−ϕx )λy|2, (A6)

where x = (�x1, . . . , �xN ) and y = (�y1, . . . , �yN ) are two differ-
ent bit strings, Pxy is the probability of projecting on state

{∏N
k=1[

∏nk
jk=1(c(k)†

jk
)xk jk ]

∏N
k′=1[

∏n′
k

j′k=1(c̃(k′ )†
j′k

)
yk′ j′k ]} |0〉, and sxy

is an integer that arises due to fermionic anticommutation
relations. The parties can thus estimate all the unknown phases
ϕ(�x1, . . . , �xN ) using LOCC and a shared global ancillary state.
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APPENDIX B: THE PROTOCOL INVOLVING
A PARTICLE-ANTIPARTICLE PAIR

Instead of two identical particles, one can choose the
two particles used in the bipartite protocol of Sec. III to be
a particle-antiparticle pair, for instance, an electron and a
positron (this possibility was discussed already in Ref. [4]).
In this case, Alice and Bob can annihilate their wave packets
into photon pairs and measure the phase difference between
the two components by performing local tomography on the
resulting photons in a similar fashion as in Sec. III A. More
precisely, the state of the two particles before the annihilation
process is the same as in a protocol involving two identical
particles, up to a minus sign in the phases acquired by the
antiparticle (the “ancillary” system is now a positron with
charge −e):

|ψ〉 = 1
2

(
e
−ie

∫
γA1

Aμdxμ
b†

A + e
−ie

∫
γB1

Aμdxμ
b†

B

)
⊗ (

e
ie

∫
γA2

Aμdxμ
c†

A + e
ie

∫
γB2

Aμdxμ
eiβc†

B

) |0〉 , (B1)

where b† and c† are, respectively, positron and electron cre-
ation operators.

Next, Alice and Bob let the particles interact and they
postselect exclusively on processes which give rise to pho-
tons, thereby discarding the one-particle sector and those
processes in which the pairs scatter without annihilating (e.g.,
the Bhabba scattering). The annihilation processes give rise to
photon pairs of different momenta �k and �k′:

b†
i c†

i → a†
i,�ka†

i, �k′ , (B2)

where a†
i,�k denotes a (suitably smeared) creation operator for a

photon of momentum �k produced at location i. The quantum
state after the interaction and postselection is thus

|ψ〉 = 1√
2

(
a†

A, �kA
a†

A, �k′
A

+ ei�ϕ′
a†

B, �kB
a†

B, �k′
B

) |0〉 , (B3)

where the phase difference is now

�ϕ′ = β + ϕ′
B1

+ ϕ′
B2

− ϕ′
A2

− ϕ′
A1

, ϕ′
i j

≡ e j

∫
γi j

Aμdxμ.

(B4)
Since the electric charges of the two particles are e1 = −e and
e2 = e, the phase difference acquired due to the interaction
with the gauge potential is given by a space-time loop integral
of the gauge potential and is equal to Eq. (15). Once Alice and
Bob possess their photons, they can estimate the phase from
measurement results of local projections on states

|±〉i = 1√
2

(
1 ± a†

�ki
a†

�k′
i

) |0〉 . (B5)

Therefore, we found a different procedure which yields the
same gauge-invariant phase as the one obtained in the protocol
involving two identical particles.

APPENDIX C: LOCAL MEASUREMENTS ON A GENERAL
CHARGED FERMIONIC STATE

Before tackling the fully general case, let us first ana-
lyze the following simpler case: Suppose that the scenario
involves three sources which emit three electrons in spatial

superposition towards three parties labeled as A, B, and C.
Upon receiving the particles, the parties perform local unitary
transformations on their pertaining wave packets, detect the
particles and postselect on the cases in which each party
detects one excitation. The postselected state of interest (prior
to the local transformations) is thus

|ψ〉PS = 1√
6

3∑
i, j, k = 1

i �= j �= k �= i

eiφi jk c†
Ai

c†
Bj

c†
Ck

|0〉 , (C1)

where c† are fermionic creation operators (for example c†
Ai

creates the ith particle at A’s location). The phase φi jk arises
due to the coupling to the gauge potential Aμ (for simplicity
we omit the mechanical phases):

φi jk = e

(∫
γAi

Aμdxμ +
∫

γB j

Aμdxμ +
∫

γCk

Aμdxμ

)
, (C2)

where e.g., γAi is the trajectory traced by the first particle
towards A’s location. The parties apply local unitary transfor-
mations

c†
Pi

→
3∑

j=1

U (P)
i j c†

Pj
, P = A, B,C, (C3)

where U (P)
i j are matrix elements of the transformations.

The final state before the measurement is thus

|ψ〉PS = 1√
6

∑
lmn

3∑
i, j, k = 1

i �= j �= k �= i

eiφi jkU (A)
il U (B)

jm U (C)
kn

× c†
Al

c†
Bm

c†
Cn

|0〉 . (C4)

Finally, the parties perform local projective measurements; the
probability of measuring the state c†

Al
c†

Bm
c†

Cn
|0〉 is

P(Al BmCn) = 1

6

∣∣∣∣∣∣∣∣
3∑

i, j, k = 1
i �= j �= k �= i

eiφi jkU (A)
il U (B)

jm U (C)
kn

∣∣∣∣∣∣∣∣

2

. (C5)

One of the phase differences that appear in Eq. (C5) is, for
instance, φ123 − φ312, which can be expressed as a sum of
two bipartite loop integrals, as shown in Fig. 4. The analogous
holds for all other outcome probabilities, i.e., all information
that one can gather from local measurements can be recon-
structed from bipartite loop integrals.

Let us now turn to the general case and prove that an
analogous decomposition to the one in Fig. 4 can be made
for experiments involving any number of sources and any
number of parties. Suppose that d sources emit single identical
charged fermions (with charge e) in arbitrary superpositions
of spatial trajectories towards N parties. Adopting the same
notation as in Appendix A, the state shared by the parties upon
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FIG. 4. The loop integral on the left-hand side corresponds to the quantity φ123 − φ312 which can be estimated from one of the outcome
probabilities arising in the experiment involving three sources and three parties. The right-hand side shows that the latter integral can be
decomposed as a sum of two bipartite integrals similar to those from Fig. 2.

receiving the particles is thus

|ψ0〉 =
∑

�x1, . . . , �xN∑
n xn j = 1, ∀ j

λxei
∑

n, j xn jϕ(n, j)

×
N∏

k=1

[
d∏

j=1

(
c(k)†

j

)xk j

]
|0〉 , ϕ(n, j) ≡ e

∫
γn j

Aμdxμ.

(C6)

The bit strings {�x1, . . . , �xN } automatically implement the fact
that each state can be occupied by at most one fermion; c† are
fermionic creation operators (i.e., c(k)†

j creates one fermion
in the jth mode of kth party), and γn j indicates the path
connecting the jth source to the nth party. Each phase ϕ(n, j)
corresponds to the phase picked up by the particle traveling
from the jth source towards the nth party. As before, λx denote
normalized real amplitudes.

Next, the parties perform local linear operations:

c(k)†
i →

∑
j

T (k)
i j c(k)†

j , (C7)

where T (k)
i j are arbitrary coefficients (e.g., elements of a uni-

tary matrix). The transformed state is thus

|ψ f 〉 =
∑

�x1, . . . , �xN∑
n xn j = 1, ∀ j

λxei
∑

n, j xn jϕ(n, j)

×
N∏

k=1

[
d∏

i=1

(∑
j

T (k)
i j c(k)†

j

)xk j
]

|0〉 . (C8)

Finally, the parties perform local projective measurements
giving rise to the following probability distribution:

P(y) =
∣∣∣∣∣〈ψ f |

N∏
k=1

[
d∏

j=1

(
c(k)†

j

)yk j

]
|0〉

∣∣∣∣∣
2

. (C9)

After some inspection, one sees that the probabilities in-
volve only interference terms of components with same local

particle numbers, i.e., we can write them as

P(y) =
∑
x,x′

λ̃xλ̃
∗
x′ei

∑
n, j (xn j−x′

n j )ϕ(n, j),

∑
j

xn j =
∑

j

x′
n j =

∑
j

yn j, ∀ n, (C10)

where λ̃x are coefficients, the exact form of which we leave
unspecified. The probabilities thus depend on the following
phases:

�ϕ(x, x′) =
∑
n, j

(xn j − x′
n j )ϕ(n, j),

∑
j

(xn j − x′
n j ) = 0.

(C11)
Now we want to show that any such phase can be written as a
combination of bipartite loop integrals like the one shown in
Fig. 2. More precisely, we want to prove that the phases can
be cast in the following form:∑

n,n′, j, j′
[ϕ(n, j) − ϕ(n, j′) + ϕ(n′, j′) − ϕ(n′, j)], (C12)

where each square bracket in the sum represents one such
bipartite loop integral.

Let us start by introducing the functions n j , such that xk j =
δk,n j (this can be done because each source emits one particle
which can then be found at most at one party’s location). Then,
there exists a permutation π , such that the phase can be written
in the following concise form:

�ϕ(x, x′) =
∑

j

[ϕ(n j, j) − ϕ(n j, π ( j))]. (C13)

The possibility of writing the phase in this form is essentially
enabled by the property that states corresponding to x and x′
have same local particle numbers: therefore, for every term
(n j, j) arising from bit-string x there must exist a correspond-
ing term (n j, f ( j)) arising from bit-string x′, where f is a
function that maps sources into sources; furthermore, since
the particle emitted from each source can be found at only
one location, the function f must be one-to-one, and hence
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a permutation. Now we will prove by construction that the
phase can be cast in the form given by (C12).

Let G = 〈π〉 be the cyclic subgroup of the full permutation
group that is generated by π , where we assume π is not the
identity permutation. G has a natural group action on the
set Zd . It is well known that the orbits of a set under
the action of a group form a partition of the set; which we
denote by Y := Zd/G. For any equivalence class [y] in Y
choose a representative y in Z j , with the further requirement
that the representative of [1] is 1. Furthermore, let ky be the
cardinality of the equivalence class [y]; equivalently ky is the

smallest positive integer such that π ky (y) = y. With all this
notation established, it is straightforward to show that

�ϕ(x, x′) =
∑
[y]∈Y

ky−2∑
l=0

[ϕ(nπ l (y), y) − ϕ(nπ l (y), π
l+1(y))

+ ϕ(nπ l+1(y), π
l+1(y)) − ϕ(nπ l+1(y), y)]. (C14)

The proof proceeds by writing out each term in the sum over
Y explicitly and comparing with Eq. (C13). For example the
portion of the sum with y = 1 is

[ϕ(n1, 1) − ϕ(n1, π (1)) + ϕ(nπ (1), π (1)) − ϕ(nπ (1), 1)]

+ [ϕ(nπ (1), 1) − ϕ(nπ (1), π
2(1)) + ϕ(nπ2(1), π

2(1)) − ϕ(nπ2(1), 1)] + · · ·
+ [ϕ(nπ k1−2(1), 1) − ϕ(nπ k1−2(1), π

k1−1(1)) + ϕ(nπ k1−1(1), π
k1−1(1)) − ϕ(nπ k1−1(1), 1)]. (C15)

We see that in the sum above, the last term of every bracket is
canceled by the first term of the succeeding bracket. Looking
at the third term of every bracket and the first term of the
first bracket, we see that every term ϕ(ns, s) appears. Finally,
the second term of every bracket plus the last term of the last
bracket account for all terms −ϕ(ns, π (s)).

Thus we have established Eq. (C14), which shows that
�ϕ(x, x′), and therefore all probabilities arising from lo-
cal linear operations and measurements on single charged
particles in superposition of spatial trajectories can be de-
duced from bipartite loop integrals as the one depicted in
Fig. 2.
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