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Superexponential diffusion in nonlinear non-Hermitian systems
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We investigate the quantum diffusion of a periodically kicked particle subjected to both nonlinearity-induced
self-interactions and PT -symmetric potentials. We find that, due to the interplay between the nonlinearity and
non-Hermiticity, the expectation value of the mean square of momentum scales with time in a superexponential
form 〈p2(t )〉 ∝ exp[β exp(αt )], which is faster than any known rates of quantum diffusion. In the PT -symmetry-
breaking phase, the intensity of a state increases exponentially with time, leading to the exponential growth of
the interaction strength. The feedback of the intensity-dependent nonlinearity further turns the interaction energy
into the kinetic energy, resulting in a superexponential growth of the mean energy. These theoretical predictions
are in good agreement with numerical simulations in a PT -symmetric nonlinear kicked particle. Our discovery
establishes a mechanism of diffusion in interacting and dissipative quantum systems. Important implications and
possible experimental observations are discussed.
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I. INTRODUCTION

Diffusion of particles is of fundamental importance in
many disciplines of physics, e.g., statistical physics and
condensed matter physics. Its mechanism governs the conduc-
tivity of electrons [1], the spin transport [2], the heat transfer
[3], and the Fermi acceleration of cosmic ray particles [4–11],
just to name a few. In the classical domain, a seminal result of
the random motion of Brownian particles is normal diffusion
[12], which is characterized by the linear growth (∝ t) of the
second moment of the observable. Quantum mechanically, the
random diffusion of microscopic particles in disordered po-
tential is totally suppressed by quantum interference, leading
to the well-known Anderson localization (AL) [1]. Its analog
in momentum space is the dynamical localization (DL) [see
the linear Hermitian (L-H) zone in Fig. 1], which occurs
in chaotic systems periodically driven by impulsive fields
[13–17].

In the Hermitian case, periodically driven systems exhibit
interesting diffusion behaviors, such as power-law diffusion
∝ tη [18] and exponential diffusion ∝ eγ t [19,20] (see the L-H
zone in Fig. 1), which originate from the quantum resonance.
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In the past two decades, extensive studies have been concen-
trated on the diffusion process in complex systems, where
the disorder and nonlinearity may coexist [21–31]. Nonlinear
effects appear in a broad range of systems, for instance, in
the Bose-Einstein condensates [32] and in nonlinear optics
[33]. Up to now, a wide spectrum of diffusion processes, from
power-law diffusion [34–41] to exponential diffusion [42–45],
has been found in nonlinear systems [see the nonlinear Her-
mitian (NL-H) zone in Fig. 1].

A common condition for the appearance of these diffusion
processes is the assumption of Hermiticity of quantum me-
chanics. Even without Hermiticity, a new class of system with
PT symmetry possesses the real eigenvalues as well [46–48].
The non-Hermitian Hamiltonian can be used to describe
nonequilibrium relaxation problems [49], optical transport in
lossy media [50,51], and open quantum systems [52]. Thus
it has been a subject of extensive theoretical [53–59] and
experimental studies [60–67]. The non-Hermitian extension
of Floquet-driven systems stimulates fruitful studies on the
quantum diffusion behavior, where the DL phenomenon and
ballistic diffusion have been reported [68] [see the linear non-
Hermitian (L-NH) zone in Fig. 1]. In this context, the quantum
diffusion in a system with non-Hermiticity and nonlinearity
deserves urgent investigation [69–77].

In this work, we investigate the wave-packet dynamics
in a Floquet system, where both the PT symmetry and
nonlinearity are periodically modulated in time. In the broken-
PT -symmetry phase, for which the quasienergies become
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FIG. 1. Schematic diagram for quantum diffusion in different
situations: left, linear (L) zone; right, nonlinear (NL) zone; bottom,
Hermitian (H) zone; top, non-Hermitian (NH) zone.

complex, the wave packets diffuse in a way that the mean
square of momentum is the exponent of time, i.e., 〈p2(t )〉 ∝
exp[βeαt ]. To the best of our knowledge, this is the first
report of a superexponential diffusion (SED). The underlying
physics is due to the coexistence of two facts: (i) the expo-
nentially fast growth of the intensity of the wave function due
to the non-Hermiticity and (ii) the positive feedback mecha-
nism of the intensity-dependent nonlinearity. Our theoretical
prediction of the law of the SED is consistent with numeri-
cal results. We note in passing that exponential acceleration
of particles has received extensive investigation. It has been
reported that a sequence of highly correlated motions of a ran-
dom walk model leads to the exponential Fermi acceleration
in the time-dependent billiard systems [9–11], which allows
for exploring the ultrafast acceleration in different systems.
Our finding of SED sheds light on the ultrafast acceleration of
the Fermi-Ulam model.

II. MODEL AND RESULTS

The system we consider is a quantum kicked particle in an
infinite square well [78,79]. We make an extension to the PT -
symmetric kicking potential which, in contrast to Hermitian
kicking, induces exotic transport behaviors [70,71,80]. The
interatomic interaction is described by a mean-field nonlin-
ear term, which is temporally modulated by delta kicks. The
Hamiltonian in dimensionless units reads

H = p2

2
+ V (x) + VK(x)

∑
n

δ(t − n) + HI

∑
n

δ(t − n),

(1)
where

V (x) =
{

0 if |x| < L
2+∞ otherwise,

(2)

VK(x) = K[cos(x) + iλ sin(x)], (3)

and

HI = g0|ψ (x, t )|2. (4)

Here p = −ih̄eff∂/∂x is the momentum operator, x is the coor-
dinate, and h̄eff denotes the effective Planck constant with the
commutation relation [x, p] = ih̄eff. The parameter L controls
the width of the infinite square well. In the kicking potential
VK(x), the parameter K indicates the strength of its real part,
and λ is the strength of its imaginary part. The parameter

g0 controls the nonlinear interaction strength. It is worth
noting that the delta-kick nonlinearity induces rich physics,
such as exponential instability [42–45] and dispersionless dy-
namics of wave packets [81], which are absent in systems
with static nonlinear interactions [82]. In addition, this kind
of system with rigid boundary conditions has served as a
prototype for investigating the Fermi acceleration of particles
in a cosmic ray in astrophysical plasmas [4–8]. Therefore,
the PT -symmetric extension of this system is of broad
interest.

Let |ϕ j〉 be the eigenstate of the unperturbed Hamiltonian
H0 = p2/2 + V (x), with H0|ϕ j〉 = Ej |ϕ j〉. In the representa-
tion of |ϕ j〉, an arbitrary state can be expressed as |ψ (t )〉 =∑+∞

j=0 ψ j (t )|ϕ j〉, with ψ j (t ) being the component of the eigen-
state |ϕ j〉. The initial state is taken as the ground state,
i.e., ψ (x, 0) = √

2/L cos(πx/L). The time evolution of the
quantum state over a period is governed by |ψ (t + 1)〉 =
U |ψ (t )〉. Due to the periodic kicking, the Floquet operator
has the expression U = UfUK, where the kicking evolution
operator is UK = exp [−iVK(x)/h̄eff − iHI(x, t )/h̄eff], and the
free evolution operator is Uf = exp(−ip2/2h̄eff ). Specifically,
one-period evolution contains four steps: (i) the kicking evo-
lution in x space, ψ̃ (x, t ) = UK(x, t )ψ (x, t ); (ii) the sine
transformation of the state |ψ̃ (t )〉 from coordinate space to
momentum space; (iii) the free evolution in p space, ψ (p, t +
1) = Uf (p)ψ̃ (p, t ); and (iv) the inverse sine transformation
of the state |ψ (t + 1)〉 from p space to x space for the next
period evolution. Without loss of generality, we consider the
case with L = 2π , for which the particle can experience the
kicking potential of a full period of 2π .

A commonly used quantity to characterize the quantum
diffusion in momentum space is the expectation value of ki-
netic energy,

〈p2(t )〉 =
∑

j

p2
j |ψ j (t )|2/N , (5)

where the norm of the quantum state is N (t ) = ∑
j |ψ j (t )|2.

This quantity coincides with the expectation value of kinetic
energy up to a factor of 1/2. Note that in the phase that breaks
the PT symmetry, the norm N (t ) could increase exponen-
tially with time. Thus, the above definition of the expectation
value drops the contribution of the norm N (t ).

In the present work, we investigate both numerically and
theoretically the time dependence of the mean kinetic energy
〈p2(t )〉. We consider the case that the system is in the PT -
symmetry-breaking phase, which is guaranteed by setting the
value of the imaginary part of the kicking potential to be
sufficiently large. Figure 2(a) shows that, for g0 = 0, the mean
kinetic energy is suppressed during the time evolution, which
is just the phenomenon of DL. Interestingly, for a specific
value of the nonlinear strength (e.g., g0 = 0.1), the mean
kinetic energy follows that of the linear case g0 = 0 for time
smaller than a threshold value tc, beyond which it increases in
a superexponential way. Such an intrinsic phenomenon occurs
even if the nonlinear strength is very small, e.g., g0 = 10−7.
More importantly, we theoretically find the law of the super-
exponential growth of mean kinetic energy,

〈p2(t )〉 ≈ exp (βeαt ), (6)
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FIG. 2. (a) Time dependence of the mean energy 〈p2〉 for λ =
0.05 with g0 = 0 (squares), 10−7 (circles), 10−4 (triangles), and 0.1
(diamonds). Dashed lines (in red) denote the fitting function of the
form 〈p2〉 ≈ exp (βeαt ). Arrows mark the threshold time tc for the
appearance of the superexponential diffusion. (b) Probability den-
sity distribution in eigenstate space with λ = 0.05 and g0 = 0.1 at
times t = 10 (black curve) and 12 (blue curve). Dashed lines (in
red) indicate the exponential profile of the form |ψn|2 ∝ exp(−n/ξ )
with ξ being the localization length. (c) The growth rate α of the
mean energy versus λ for g0 = 0.1 (squares), 10−3 (circles), and
10−5 (triangles). The red line indicates our theoretical prediction
α ∝ Kλ/h̄eff in Eq. (14). Other parameters are K = 5, h̄eff = 0.5, and
L = 2π . (d) The growth rate |D| versus λ with K = 5 for h̄eff = 0.5
(circles) and 0.25 (squares). Red lines indicate the theoretical predic-
tion |D| = h̄eff/(2Kλ) in Eq. (10). Inset: The threshold time tc versus
ln(g0) for K = 5, λ = 0.5, and h̄eff = 0.1. The solid line indicates
our theoretical prediction in Eq. (10).

with α ∝ Kλ/h̄eff and β ∝ g2
0. As a further step, we numeri-

cally calculate the growth rate α for different λ, as shown in
Fig. 2(c). One can see that the growth rate α increases linearly
with λ. Moreover, its change with respect to g0 is negligible,
coinciding with our theoretical prediction that α ∝ Kλ/h̄eff.
The corresponding probability distribution in eigenstate space
is shown in Fig. 2(b), which demonstrates the exponentially
decayed profile, i.e., |ψn|2 ∝ exp(−n/ξ ) with ξ being the
localization length. Taking into account 〈p2(t )〉 ∝ h̄2

effξ
2, the

localization length will increase in the superexponential way,
which is dramatically different from the phenomenon of the
DL.

From Fig. 2(a), one can also see that the threshold time tc
for the appearance of the SED decreases with the increase of
nonlinear strength g0. Numerical results of tc for different g0

are depicted in the inset of Fig. 2(d), which demonstrates the
good agreement with the analytical formula in Eq. (10). To
further confirm our analytical analysis, we numerically inves-
tigate the growth rate D of tc for different λ. The numerical
results are in good agreement with the theoretical prediction,
i.e., D = −h̄eff/(2Kλ) [see Fig. 2(d)]. We want to stress that
we have also numerically investigated the system with the
periodic boundary condition, which is just the PT -symmetric

extension of the kicked rotor model. This system exhibits the
same SED, which can be predicted by our theory as well. We
believe that the superexponential diffusion is a general phe-
nomenon that goes beyond the simple model systems studied
in this work. The universality of superexponential diffusion in
other non-Hermitian nonlinear systems is left for our future
studies.

III. THEORETICAL ANALYSIS

We concentrate on the case of the PT -symmetry-breaking
phase, i.e., Kλ/h̄eff � 1, for which the norm exponentially
increases with time: N ≈ exp(Kλt/h̄eff ). As an estimation,
we analyze the time evolution of the quantum state at the
point x0 = π/2, which corresponds to the maximal value
of the imaginary part of the kicking potential, i.e., Vi(x0) =
Kλ sin(x0) = Kλ. After several kicking periods, the quantum
state is extremely centered at x0, since the action of the
imaginary kicking term of the Floquet operator U i

K(x0) =
exp(Kλ/h̄eff ) on a quantum state can greatly amplify the
probability amplitude of the state in x0 if Kλ/h̄eff � 1. Ac-
cordingly, the time evolution of the probability amplitude for
x0 = π/2 is approximately given by

|ψ (x0, t )|2 ∝ N (t ) ∝ exp

(
2

Kλ

h̄eff
t

)
|ψ (x0, 0)|2. (7)

As a consequence, the nonlinear interaction strength increases
exponentially as

g0|ψ (x0, t )|2 ∝ g0|ψ (x0, 0)|2 exp

(
2

Kλ

h̄eff
t

)
. (8)

Our previous investigations on a PT -symmetric kicked
rotor model demonstrate that, in the PT -symmetry-breaking
phase, the imaginary part of the kicking potential leads to the
formation of the localized modes in both real and momentum
space [70,71]. Interestingly, such localized modes can be ap-
proximately described by Gaussian wave packets [70]. That
is to say, the PT -symmetric kicking potential induces the
localization in x0; meanwhile, the quantum state is localized in
a specific position p0 in momentum space. It is worth noting
that the effects of nonlinear interaction lead to the spreading
of the quantum state in different momentum sites, that is, the
delocalization in momentum space. Based on this, we propose
a competing mechanism to explain the appearance of SED.

In this system, there is a competition between the non-
Hermitian kicking potential and the nonlinear interaction.
The non-Hermitian kicking potential leads to localization.
Meanwhile, the nonlinear interaction destroys the localiza-
tion. At the initial time, the nonlinear interaction at x0, i.e.,
g0|ψ (x0, 0)|2, is much smaller than the imaginary part of the
non-Hermitian kicking potential. Thus, during the short-time
evolution, the dynamics of this system is governed by the non-
Hermitian kicking potential. When the nonlinear interaction
strength exceeds the imaginary kicking strength, the effects of
nonlinear interaction dominate the dynamical behavior of the
system, consequently causing the appearance of the SED. It is
hence straightforward to get the threshold time tc by

g0|ψ (x0, t )|2 = Kλ. (9)
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Combining Eqs. (8) and (9) yields the relation

tc ∝ − h̄eff

2Kλ
ln(g0) + h̄eff

2Kλ
ln

(
Kλ

|ψ (x0, 0)|2
)

, (10)

which is confirmed by our numerical results [see the inset of
Fig. 2(d)].

Next, we evaluate the time dependence of the mean kinetic
energy. Previously, we developed a hybrid quantum-classical
(HQC) theory to explain the exponential diffusion induced
by temporally modulated nonlinear interactions [44,45]. Our
mathematical analysis is based on the investigation of a peri-
odically modulated rotor model whose dynamics is governed
by the nonlinear Schrödinger equation. We find the mathe-
matical equivalence between this system and a generalized
kicked rotor (GKR) model. Our HQC theory gets the iter-
ative equation of mean energy from the classical mapping
equations, which yields the law of the exponential diffusion
[44,45]. A detailed derivation of the HQC theory can be found
in Refs. [44,45]. Our diffusion-based theory is verified by the
another method with integration of the Schrödinger equation
[43].

Here, we make an extension of the theory to systems with
non-Hermiticity. Our HQC theory predicts an iterative equa-
tion of energy,

〈p2(t + 1)〉 ≈ 〈p2(t )〉 + Cg2(t )〈p2(t )〉, (11)

where the time-dependent nonlinear interaction strength is
defined as g(t ) = g0|ψ (x, t )|2, and C is an unimportant con-
stant (see Refs. [44,45] for the derivation details of the above
equation). As an estimation, we use |ψ (x0, t )|2 to replace
|ψ (x, t )|2, which is reasonable since |ψ (x0, t )|2 accounts the
maximal contribution. Substituting Eq. (8) into Eq. (11) yields

〈p2(t + 1)〉 ≈ 〈p2(t )〉 + Cg2
0 exp

(
4Kλt

h̄eff

)
〈p2(t )〉. (12)

In the continuous-time limit, the above equation yields

d ln(〈p2〉)

dt
≈ Cg2

0 exp

(
4Kλt

h̄eff

)
. (13)

Therefore, the time dependence of the mean kinetic energy
takes the form

〈p2(t )〉 ∝ exp

[
g2

0 exp

(
4Kλ

h̄eff
t

)]
. (14)

The validity of our theoretical prediction is confirmed by the
numerical results of the growth rate of mean energy, i.e.,
α ∝ Kλ/h̄eff [see Fig. 2(c)]. We want to stress that our study
focuses on the regime away from quantum resonance, i.e.,
h̄eff 	= 4πr/s with r and s coprime integers. Although in the
quantum main-resonance case h̄eff = 4π the intensity of the
quantum state increases in the way of Eq. (8), the mean square
of momentum does not obey the iterative equation in Eq. (11).
As a consequence, the quantum diffusion is not superexpo-
nentially fast. We leave the quantum diffusion in quantum
resonance situation for further investigation.

We would like to mention that the phenomenon of SED
also occurs in cases with a non-Hermitian kicking potential,
i.e., VK(x) = (K + iλ) cos(x)

∑
n δ(t − n), where K and λ in-

dicate the strength of the real and imaginary parts of the

FIG. 3. Schematic illustration of our proposed optical system
with multilayer media, where the blue layers denote Kerr media and
the gray layers represent the phase gratings.

kicking potential. Our consideration of the PT -symmetric
potential in the present work is inspired by the fact that
this kind of system could display fruitful physics due to the
PT -symmetry-breaking transition. Another reason for us to
investigate the PT -symmetric kicking potential is based on
the experimental interest, i.e., the realization of this kind of
kicking potential by using the optical setting of Fabry-Pérot
optical resonator with intracavity phase and loss gratings,
which was first proposed in Ref. [68]. Based on this proposal,
we provide an experimental setup of a PT -symmetric optical
system with periodically placed Kerr media and phase grat-
ings. This system has the advantage of the controllability of
the kicking times by engineering the numbers of the layers of
both the Kerr media and phase grating.

As a further step, we propose an optical setup to emulate
the wave dynamics described by the Hamiltonian in Eq. (1).
Optical waveguides provide an ideal platform for the observa-
tion of the wave-packet transport in PT -symmetric systems
[60,62,69,73,83–86]. Under the paraxial approximation, the
propagation of light is governed by an equation mathemati-
cally equivalent to the Schrödinger equation [87,88], where
the longitude dimension of light mimics the time variable.
We consider an optical system consisting of a periodic se-
quence of multilayers of phase gratings and Kerr media in
the propagation direction (see Fig. 3), which is a modification
of the realization of the kicked rotor model using optical
settings [68,89–91]. It was proposed that the effect of sinu-
soidal and quarter-wave-shifted gratings is described by the
PT -symmetric potential, which means that these gratings in-
troduce the “gain-or-loss” mechanisms to the system [68]. The
Kerr effects of media induce an intensity-dependent nonlinear
term in Eq. (1). To realize the delta kicks in time, both the
sizes of the phase grating and Kerr media in the propagation
direction z should be much smaller than the period of the
optical sequence. The light is trapped in the transverse dimen-
sion by waveguides, which resembles the reflective boundary
condition of an infinite square well in Eq. (1). The propagation
of light in such an optical system is governed the Hamiltonian
in Eq. (1). Therefore, our finding of the SED is within reach
of current experiments and may shed light on the fundamental
problems of quantum diffusion.

IV. SUMMARY

We investigate, both numerically and analytically, the
SED in a PT -symmetric kicking system. The underlying
physics of such an intrinsic phenomenon is the positive
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feedback mechanism of the nonlinearity, which turns the
exponential growth of the intensity of wave packets in the
PT -symmetry-breaking phase into the kinetic energy. Our
theoretical prediction of the threshold time for the appearance
of the SED and the law of SED are in good agreement with
numerical results. This behavior is of particular importance in
the field of Fermi acceleration, where the process for accel-
erating cosmic ray particles to large energy scales is still an
open question [5,92].

The effect of nonlinear interaction on the AL and DL is a
long-standing problem. Most of the investigations concentrate
on the case with static nonlinear interactions; namely, it is
not time dependent. Although there are no strict theoretical
conclusions on this issue, extensive numerical experiments
have demonstrated the power-law diffusion of particles due
to the destruction of the localization by nonlinear effects
[21–27]. Remarkably, analytical predictions of the Anderson
localization of Bogoliubov quasiparticles under the inter-
atomic interaction has been shown in Refs. [28–31]. The
unprecedented control of nonlinear interactions by the Fes-
hbach resonance in ultracold atoms and by the femtosecond
laser writing technique in nonlinear optics opens the opportu-

nity for investigating the quantum diffusion under periodically
modulated nonlinearity. There are only a few studies on the
fate of AL and DL in the presence of temporally modulated
nonlinear interactions [41–45]. Therefore, our finding of the
SED is of significance, especially for the engineering of dif-
fusion in recent experiments.
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