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Detectors interacting through quantum fields: Non-Markovian effects, nonperturbative generation
of correlations, and apparent noncausality
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We study a system of two localized detectors (oscillators) interacting through a massless quantum field in
a vacuum state via an Unruh-DeWitt coupling. This system admits an exact solution and provides a good
model for addressing fundamental issues in particle-field interactions, causality, and locality in quantum field
measurements that are relevant to proposed quantum experiments in space. Our analysis of the exact solution
leads to the following results. (i) Common approximations used in the study of analogous open quantum systems
fail when the distance between the detectors becomes of the order of the relaxation time. In particular, the
creation of correlations between remote detectors is not well described by ordinary perturbation theory and the
Markov approximation. (ii) There is a unique asymptotic state that is correlated; it is not entangled unless
the detector separation is of the order of magnitude of the wavelength of the exchanged quanta. (iii) The evolution
of seemingly localized observables is noncausal. The latter is a manifestation of Fermi’s two-atom problem,
albeit in an exactly solvable system. We argue that the problem of causality requires a reexamination of the
notion of entanglement in relativistic systems, in particular, the physical relevance of its extraction from the
quantum vacuum.
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I. INTRODUCTION

Understanding how spatially separated quantum systems
interact via relativistic quantum fields becomes increasingly
important. Many proposed quantum experiments in space lie
in the regime where relativistic effects are important and may
even provide tests of new physics [1]. Our ability to construct
entangled states of atoms at large separations will reach a
regime where the retarded propagation of photons will be a
significant factor, thus allowing us to explore experimentally
the relations between entanglement and relativistic causality.
Furthermore, the interplay between localization and causality
is a source of long-standing puzzles in the foundations of
quantum field theory (QFT).

In this paper, we study an integrable model that allows
us to address issues such as the above. The model consists
of two harmonic oscillators interacting with a quantum field
through the Unruh-DeWitt (UdW) coupling [2–4]. The field
lies initially in the vacuum state. The harmonic oscillators can
be viewed as particle detectors or as crude approximations
to atoms (N-level systems). We find and analyze the exact
solution to the system, to conclude the following.

(i) Common approximations that are employed in the
treatment of analogous quantum systems (Markov approxima-
tion, Wigner-Weisskopf approximation, perturbative master
equation) fail if the separation of the two detectors becomes
of the order of the relaxation time. In particular, the above ap-
proximations break down completely in processes that involve
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the exchange of information between far separated detectors.
While this result is derived in a specific model system, its con-
text its quite generic for open quantum systems. In particular,
it suggests that at least some entangled states for atoms at large
separations decay nonexponentially.

(ii) There is a unique asymptotic state of the system. This
state is correlated, however, correlations are suppressed at
large separations between the two detectors. For distances
of the order of the wavelength of the exchanged quanta, the
asymptotic state is entangled. The generated entanglement
evolves significantly at times of the order of the relaxation
scale.

(iii) If we assume that the variables pertaining to detectors
are localized quantum observables, then the reduced dynam-
ics of the detector are noncausal. This is a manifestation of
the famous Fermi two-atom problem (see below). Having an
integrable solution allows us to show that this behavior is not
an artifact of an approximation in the derivation of the dynam-
ics. We believe that this noncausal behavior is fundamentally
kinematical: we need to identify observables that also involve
the field degrees of freedom in order to describe localized
measurements. In other words, physical observables must be
renormalized.

This conclusion implies that entanglement generated
between the detectors may not be a physically meaningful
quantum resource to harvest.
The context of our results is the following.

A. Non-Markovian dynamics

A localized quantum system, such as an atom, in an excited
state decays to the vacuum through its interaction with a
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quantum field, even if the latter is in the vacuum state. Such
decays are typically exponential. When the system is treated
in the theory of open quantum systems [5,6], the exponential
decay law arises as a consequence of Markovian open system
dynamics.

Markovian dynamics are generic for weak coupling of the
system to environment. The second-order Markovian master
equation becomes exact at the van Hove limit [7]. In this
limit, the system-environment coupling λ goes to 0, while
the rescaled time λ2t remains constant. This limit provides
an excellent approximation for a large class of systems, es-
pecially in atom optics. However, comparison with exactly
solvable models—as, for example, in quantum Brownian mo-
tion [8]—shows many regimes in which the second-order
master equation fails. In particular, the van Hove limit may
not be physically relevant when the open system dynamics
are characterized by several long-time scales. This occurs,
for example, if the environment has resonance frequencies or
thresholds [9]. In this paper, we present another case of failure
of the Markov approximation, when the time scale of retarded
propagation is of the same order of magnitude as the decay or
dissipation time.

The study of non-Markovian dynamics in open quantum
systems has seen increased emphasis in recent years, because
of the relevance of non-Markovian behavior to many different
physical contexts, for example, condensed matter physics,
quantum control, quantum biology, and quantum optics (see
Ref. [10] and references therein). Our ability to prepare en-
tangled states in multipartite systems provides technical and
conceptual challenges to the theory of open quantum systems,
because they go beyond the traditional paradigm of a central,
localized system weakly interacting with an environment.

Consider, for example, two atoms prepared in an entan-
gled state, separated by distance r and interacting with a
quantum electromagnetic field. For small separations, this
system is well described by the second-order master equa-
tion (see, for example, Ref. [11]). However, as the separation
increases, approximations involved in the derivation of the
master equation break down, for example, the rotating wave
approximation [12,13]. When r becomes comparable to the
decay time �−1, the van Hove limit stops being a useful
approximation, because it misrepresents strong effects due to
retarded propagation. Simply by analyzing the mathematical
assumptions involved in the Markov approximation, we ex-
pect the decay of an entangled pair of atoms to be strongly
non-Markovian when �r becomes of order unity or larger.
This expectation is verified by our analysis.

Note that this breakdown of Markovian behavior is a non-
perturbative effect: � is proportional to the coupling constant
squared, but we can always find a distance r such that �r ∼ 1.
For atomic states relevant to entanglement experiments, the
relevant length scale may be of the order of hundreds of meters
or kilometers. Hence, the breakdown of Markovianity appears
at scales relevant to macroscopic quantum phenomena.

B. Fermi’s two-atom system

The two-atom system is a classic model for propagation
of information through quantum fields. It was first studied by
Fermi [14]. Fermi assumed that at time t = 0, atom A is in an

excited state and atom B in the ground state. He asked when
B will notice A and move from its ground state. In accordance
with Einstein locality, he found that this happens only at times
greater than r. It took about 30 years for Shirokov to point out
that Fermi’s result is an artifact of an approximation [15].

Several studies followed with conclusions depending on
the approximations used [16]. It was believed that noncausal-
ity is due to the use of bare initial states and that it would
not be present in a renormalized theory. However, Hegerfeldt
showed that non-causality is generic [17,18], as it depends
only on the assumption of energy positivity and on the ex-
istence of systems that are localized in disjoint space-time
regions (see also the critique in [19]). The two-atom problem
is a genuine problem of quantum theory that pertains to the
definability of local observables and the meaning of locality
in relation to quantum measurements.

C. Entanglement generation

It is well known that two systems that do not directly
interact may become entangled through their interaction with
a third system. This general result also applies to localized
systems (detectors) interacting with the quantum field. The
detectors may develop entanglement even if the field lies on
its ground state [20]. This process is called entanglement har-
vesting and it has been extensively studied for different initial
detector states, detector trajectories, or space-time geometries
(see, for example, [21–23]). Interestingly, this process of en-
tanglement creation may also take place between objects that
remain spacelike separated, i.e., in some models, entangle-
ment is seemingly generated outside the light cone [24–26].

However, it is far from obvious that the usual notion of en-
tanglement, defined with reference to nonrelativistic physics,
is an appropriate quantum resource for relativistic systems
described by QFT. A proper quantum resource should be
compatible with strong locality and causality constraints on
acceptable physical observables that are required by QFT.
Indeed, Fermi’s problem is an indication that special care is
needed in identifying acceptable local observables in a rela-
tivistic quantum system.

D. Our model

In this paper, we study the causal propagation of infor-
mation between two separated Unruh-DeWitt detectors [2–4],
rather than between two atoms. An Unruh-DeWitt detector is a
pointlike quantum system that interacts with a quantum scalar
field through a dipole coupling that mirrors the coupling of
atoms to the electromagnetic field.1 Here, we focus on static
detectors; we do not consider effects due to the detectors’
motion.

The main benefit of using the UdW detectors for studying
information transfer in QFT is that they admit exact solutions.
In particular, (i) if the self-Hamiltonian of each detector cor-
responds to a harmonic oscillator, and (ii) if the initial state

1Note that in many references the term “Unruh-DeWitt detector”
is used only for pointlike two-level systems interacting with a field
through a dipole coupling.
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of the field is Gaussian, then the system of N detectors inter-
acting with the quantum field is mathematically equivalent to
a quantum Brownian motion (QBM) model [27] for N oscil-
lators in a bath modeled by harmonic oscillators. This QBM
model is exactly solvable [8,28,29]. Hence, we can compare
the predictions of any approximation with those of the exact
solution. The model considered here has also been studied
by Lin and Hu [30] (see also [26] and [31]) for the same
Hamiltonian but different detector trajectories. Reference [30]
employs a very different approximation scheme and focuses
on a different set of issues. Entanglement generation is a
common issue, and there our results are compatible. However,
we differ on the analysis of causality.

E. Structure of the paper

The structure of this paper is the following. In Sec. II, we
present the general solution to the QBM model with N-system
oscillators interacting with an environment, and we show that
the system of two detectors interacting through a scalar field
is a special solution. In Sec. III, we find the explicit solu-
tion to the two-detector system and prove that the Markov
approximation breaks down completely for the transfer of
information between remote detectors. In Sec. IV, we identify
a unique asymptotic state that is correlated and show that it is
entangled at small separations. In Sec. V, we show that this
model manifests the same noncausal behavior with Fermi’s
two-atom system, and we discuss the implications and how
causality can be restored. Section VI concludes the paper.

II. THE MODEL

A. QBM models

The theory of open quantum systems studies the evolution
of a quantum system S in interaction with an environment E.
Typically, one assumes unitary evolution for the joint system
S + E that includes the system and the environment and
studies observables that pertain solely to S. In many problems,
all information about such observables is contained in the
autonomous time evolution of the reduced density matrix ρ̂S (t )
of the system, often expressed in terms of a master equation.

Quantum Brownian motion is one of the main paradigms
in the theory of open quantum systems. In QBM, the system S
consists of one or more particles. The environment is modeled
as a thermal bath. It consists of a large number of harmonic
oscillators initially in a thermal state. The number of environ-
mental oscillators can be taken to infinity. The coupling term
in the Hamiltonian is linear with respect to either the position
or the momentum of the environmental oscillators. A key
feature of QBM models is that the effects of the environment
are contained in two generalized functions, the dissipation
kernel and the noise kernel [27].

If the Hamiltonian of the system S is quadratic to positions
and momenta of the system particles (harmonic oscillators
and free particles) and the interaction Hamiltonian is linear
with respect to the same variables, then the total system is
integrable, and the reduced dynamics of the density matrix are
exactly solvable [8]. The term “exactly solvable” is used in the
sense of integrability: the exact time evolution of the reduced
density matrix ρ̂S (t ) is expressed in terms of a finite number

of functions of time that admit explicit definitions.2 This is to
be contrasted, for example, with perturbative evaluations of
the dynamics, which typically involve an infinite number of
functions of time that are defined recursively rather than ex-
plicitly. Exactly solvable QBM models essentially implement
a full resummation of the perturbation series for the evolution
operator.

Being exactly solvable the models above can be employed
in order to test the validity of common approximations that
are employed in the derivation of evolution equations for open
quantum systems. In particular, they can be used to test the
very common Markov assumption, i.e., the assumption that
memory effects are negligible.

B. QBM in a multipartite system

1. The Hamiltonian

We consider a system of N harmonic oscillators of masses
Mα and frequencies �α interacting with a heat bath. The bath
is modeled by a set of harmonic oscillators of masses mi and
frequencies ωi. The Hamiltonian of the total system is

Ĥ = Ĥsyst + Ĥenv + Ĥint, (1)

where

Ĥsyst =
∑

α

(
1

2Mα

P̂2
α + Mα�2

α

2
X̂ 2

α

)
, (2)

Ĥenv =
∑

i

(
1

2mi
p̂2

i + miω
2
i

2
q̂2

i

)
, (3)

Ĥint =
∑

i

∑
α

ciαX̂α q̂i, (4)

where ciα are coupling constants.
Since the total Hamiltonian is quadratic with respect to

all positions and momenta, the evolution operator e−iĤt can
be explicitly constructed, and its position matrix elements are
Gaussian.

We consider a factorized initial condition ρ̂sys ⊗ ρ̂env for
the total system. If ρ̂env is Gaussian, then the reduced density
matrix propagators can be computed explicitly. For N = 1, the
reduced dynamics leads to the Hu-Paz-Zhang master equa-
tion [8].

In general, the assumption of a factorized initial condition
between field and detectors is meaningful only as far as the
field modes with energies of the order of the frequencies
�α are concerned. There is no preparation that can enforce
separability for photons at the infrared and ultraviolet edges of
the spectrum. However, a nonfactorized initial condition does
not allow us to consider general initial states for the field [32],
and in many model systems, including QBM, the effect of the
nonfactorizing initial state dies out after a time scale of the
order of a high-frequency cutoff [33].

2This does not mean that these functions can be evaluated exactly.
Their evaluation may involve approximation schemes or be numeri-
cal.
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2. The Wigner function propagator

In this paper, we employ the solution to the multipartite
QBM model in the Wigner representation, first derived by
Halliwell and Yu [34] (see also [35]). In particular, we employ
the general solution of Ref. [28] for N system oscillators;
for an alternative derivation of the dynamics for N system
oscillators, see Ref. [29].

The key point in the derivation of [28] is that the propagator
of the Wigner function for the reduced system is Gaussian,
whose coefficients can be exactly evaluated. In particular, the
propagator is described by two matrices: matrix R(t ), that
corresponding to the classical dissipative equations of motion;
and matrix S(t ), that containing the effect of environment-
induced diffusion.

As we employ the results in Ref. [28], we do not consider
the evolution of the environment degrees of freedom. Hence,
all states and observables described in what follows refer
solely to the system degrees of freedom. We therefore drop
the subscript S in describing the reduced state of the system.

The Wigner function for a reduced density matrix ρ̂ that
describes N particles is given by

W (X, P) = 1

(2π )N

∫
dζe−ı P·ζ ρ̂

(
X + 1

2
ζ , X − 1

2
ζ

)
. (5)

We use the coordinates ξ a = (X1, X2, . . . , XN , P1, P2, . . . , PN )
in phase space; the Wigner function is expressed as W (ξ ).

The dynamics in the Wigner picture is implemented by the
Wigner function propagator Kt (ξ f , ξ0), namely, a kernel that
evolves the initial Wigner function W0 to the Wigner function
Wt at time t ,

Wt (ξ f ) =
∫

d2Nξ0

(2π )N
Kt (ξ f , ξ0)W0(ξ0). (6)

For QBM models, the Wigner function propagator is Gaus-
sian. The most general form of a Gaussian propagator is

Kt (ξ f , ξ0) =
√

detS−1

πN
exp

[
−1

2

[
ξ a

f − ξ a
cl (t )

]
× S−1

ab (t )
[
ξ b

f − ξ b
cl (t )

]]
, (7)

where Sab is a positive definite matrix and

ξ a
cl (t ) = Ra

b(t )ξ b
0 . (8)

Matrix Ra
b defines the solution to the classical equations

of motion. Matrix Sab determines the evolution of the
environment-induced fluctuations. To see this, we consider the
correlation matrix

Vab := 1
2 Tr[ρ̂(ξ̂aξ̂b + ξ̂bξ̂a)] − Tr(ρ̂ξ̂a)Tr(ρ̂ξ̂b). (9)

By Eq. (7),

V (t ) = R(t )V (0)RT (t ) + S(t ), (10)

where V0 is the correlation matrix of the initial state.
The explicit form of matrices R and S was derived in

Ref. [28]. They depend on two kernels, the dissipation kernel,

γαα′ (s) = −
∑

i

ciαciα′

2miω
2
i

sin(ωis), (11)

and the noise kernel,

ναα′ (s) =
∑

i

ciαciα′

2miω
2
i

coth

(
ωi

2T

)
cos(ωis), (12)

which also characterize the path integral description of
QBM [8,27]. The crucial step in the determination of matrices
R and S is to find the solution to the homogeneous part of the
linear integrodifferential equation [28]:

¨̂Xα (t ) + �2
r X̂α (t ) + 2

Mα

∑
α′

∫ t

0
dsγαα′ (t − s)X̂α′ (s)

=
∑

i

ciα

Mα

q̂0
i (t ). (13)

The solution of Eq. (13) is

X̂a(t ) =
∑

α

(
u̇αα′ (t )X̂α′ + 1

Mα′
uαα′ (t )P̂α′

)

+
∑
α′

1

Mα′

∫ t

0
dsuαα′ (t − s)

∑
i

ciα′ q̂0
i (s), (14)

where uαα′ (t ) is the solution of the homogeneous part of
Eq. (13) with initial conditions u̇αα′ (0) = δαα′ and uαα′ (0) =
0. Equation (13) is essentially the classical equation of mo-
tion with a non-local-in-time dissipation term defined by the
dissipation kernel.

Given the solution u(t ), we define matrix R as

R =
(

u̇(t ) u(t )M−1

Mü(t ) Mu̇(t )M−1

)
, (15)

where M = diag(M1, . . . , MN ) is the mass matrix for the sys-
tem.

The matrix elements of S are given by

SXαXα′ =
∑
ββ ′

1

MβMβ ′

∫ t

0
ds

∫ t

0
ds′uαβ (s)νββ ′ (s − s′)uβ ′α′ (s′),

(16)

SPαPα′ = MαMα′
∑
ββ ′

1

MβMβ ′

∫ t

0
ds

×
∫ t

0
ds′u̇αβ (s)νββ ′ (s − s′)u̇β ′α′ (s′), (17)

SXαPα′ = Mα′
∑
ββ ′

1

MβMβ ′

∫ t

0
ds

×
∫ t

0
ds′uαβ (s)νββ ′ (s − s′)u̇β ′α′ (s′). (18)

C. Two UdW detectors

We consider a system of two identical static harmonic
oscillators of mass M = 1 and frequency � interacting with
a scalar field through the UdW interaction Hamiltonian. The
Hamiltonian of the total system form, where we assume that
the detectors are localized at x = x1 and x = x2, is

Ĥint =λ

(∫
d3xφ̂(x)q̂1δ

3(x−x1)+
∫

d3xφ̂(x)q̂2δ
3(x−x2)

)
,

(19)

where λ is a coupling constant.
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For a free scalar field, the total Hamiltonian,

φ̂(x) =
∫

d3k

(2π )3

1√
ωk

(â(k)eik·x + â†(k)e−ik·x ), (20)

is a special case of the QBM Hamiltonian.
We compare the interaction term, (19), with the general

form of the QBM interaction Hamiltonian,

Ĥint =
∑

i

∑
α

ciαX̂α q̂i. (21)

We note that the index i, which labels the environmental
oscillators, corresponds to three momenta k, mi = 1, ωk = |k|,
and ckα = λ√

2ωk
eıkxα .

With the identifications above, the evaluation of the dissi-
pation kernel is straightforward. By Eq. (11),

γ (s) = γ0(s)

(
1 0
0 1

)
+ γr (s)

(
0 1
1 0

)
, (22)

where

γ0(s) = − λ2

8π2

∫ ∞

0
dk sin(ks), (23)

γr (s) = − λ2

8π2r

[∫ ∞

0
dk

sin(kr) sin(ks)

k

]
. (24)

The function γ0(s) is the dissipation kernel of the one-detector
system [36].

In QBM models, expressions such as the above for the
dissipation kernel are regularized through the introduction
of an ultraviolet cutoff �. For example, for a single system
oscillator the dissipation kernel is often expressed as γ (s) =∫ ∞

0 I (k) sin(ks), where I (k) is a function known as the spec-
tral density of the environment [27]. The spectral density is
typically assumed to decay rapidly for k > �, where � is a
cutoff frequency.

For condensed-matter reservoirs, the cutoff frequency is
a natural characteristic of the reservoir. If the environment
corresponds to a quantum field, as in the present case or as
in models of quantum optics, then � is introduced by hand,
and it corresponds to a regime where the effective description
of particles (system) interacting with a quantum field (envi-
ronment) fails. For example, in quantum optics, Hamiltonians
for particle-field interaction are derived subject to the dipole
approximation. This asserts that the size r0 of the particle is
much smaller than the typical wavelengths of the field with
which it interacts. Hence, particle-field interactions of this
type do not make sense for frequencies of the order of r−1

0
and higher. For this reason, the introduction of a cutoff �

of order r−1
0 is physically meaningful. It is also mathemat-

ically essential because it regulates divergences. In general,
the introduction of a cutoff in QFT systems is rather arbitrary:
physical predictions from such models are meaningful only if
they are cutoff independent.

As it turns out, the introduction of an ultraviolet cutoff �

is essential for γ0(s) in Eq. (23), in order to avoid divergences.
In principle, we should introduce the same cutoff � to γr ,
however, γr is little affected unless r is of the order of �−1

or smaller. Alternatively, we can regularize γ0 by equating it
with γr0 for some r0 � r.

By Eq. (12), the noise kernel is

ν(s) = ν0(s)

(
1 0
0 1

)
+ νr (s)

(
0 1
1 0

)
, (25)

where

ν0(s) = λ2

8π
δ(s), (26)

νr (s) = ν21(s) = λ2

32πr
[sgn(r − s) + sgn(r + s)]. (27)

III. THE CLASSICAL EQUATIONS OF MOTION

A. The inverse Laplace transform

As explained in Sec. II B 2, the reduced dynamics of the
system are expressed in terms of the Wigner function propa-
gator. The latter is constructed from the knowledge of matrices
R(t ) and S(t ). Matrix R(t ) corresponds to the classical equa-
tion of motion of the system variables, and it is constructed
from the knowledge of the function u(t ), which is a solution
to the classical equation of motion

üα (t ) + �2
r uα (t ) + 2

∑
α′

∫ t

0
dsγαα′ (t − s)uα′ (s) = 0, (28)

subject to the initial conditions u̇αα′ (0) = δαα′ and uαα′ (0) = 0.
Next, we evaluate the solutions uαα′ (t ) of the classical

equation of motion, (13). Since Eq. (13) is linear, it can be
solved by a Laplace transform. It is straightforward to evaluate
the Laplace transform ũ(z) of u(t ) as A−1(z), where A(z) is the
2×2 matrix with elements

Aαα′ (z) = (
z2 + �2

α

)
δαα′ + 2γ̃αα′ (z), (29)

where γ̃αα′ (z) is the Laplace transform of the dissipation ker-
nel. The Laplace transforms of γ0 and γr are

γ̃0(z) = − λ2

16π2
ln

(
1 + �2

z2

)
� − λ2

8π2
ln

(
�

z

)
, (30)

γ̃r (z) = − λ2

16πrz
[e−rzĒi(rz) − erzEi(−rz)], (31)

where we have simplified γ0(z) by assuming that the relevant
values of z satisfy |z| � �; Ei stands for the exponential
integral function, defined by [37]

Ei(z) = γ + ln |z| +
∞∑

z=1

zn

n!n
, (32)

where γ is the Euler-Mascheroni constant and Ēi(z) = Ei(z̄).
It follows that

ũ(z) = 1

2

[
1

z2 + �2 + 2γ̃0(z) + 2γ̃r (z)

(
1 1
1 1

)

+ 1

z2 + �2 + 2γ̃0(z) − 2γ̃r (z)

(
1 −1

−1 1

)]
. (33)

Hence, u(t ) takes the form

u(t ) = 1

2

[
f+(t )

(
1 1
1 1

)
+ f−(t )

(
1 −1

−1 1

)]
(34)
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FIG. 1. Bromwich contour, branch cut, and poles related to
Eq. (35). Integration is along a straight line from c − i∞ to c + i∞,
where c is a real constant larger than the real part of the poles of the
integrand. The contour is closed by a semicircle of radius R → ∞.

in terms of functions f±(t ), which are defined by the
Bromwich integrals

f±(t ) = 1

2π i

∫ c+i∞

c−i∞
dz

ezt

z2 + �2 + 2γ̃0(z) ± 2γ̃r (z)
, (35)

where c is a real constant larger than the real part of any pole
in the integrand.

The integrand in Eq. (35) has a branch cut at z = 0. For this
reason, we consider the integration contour in Fig. 1, which
circles around the branch cut. Using Cauchy’s theorem, we
find that the functions f±(t ) consist of two parts,

f±(t ) = f 0
±(t ) + I±(t ). (36)

The part f 0
±(t ) contains the contribution from the poles in the

region enclosed by the contour, as in Fig. 1; we refer to it as
the pole term. The part I±(t ) includes the contribution from
the negative imaginary axis; we refer to this as the branch-cut
term.

B. The pole term

For sufficiently small λ, the poles can be identified pertur-
batively. To this end, we set z±

+ = ±i� + λ2x, and we solve
the equation

z2 + �2 + 2γ̃0(z) ± 2γ̃r (z) = 0 (37)

to leading order in λ2. We find that the poles associated with
f+ are at z±

+ = ±i� + iδ�+ − �+ and the poles associated
with f− at z±

− = ±i� + iδ�− − �−, where

δ�± = − λ2

8π2�

(
ln

(
�

�

)
± cos(r�)

r�
Si(r�) ∓ sin(r�)

r�
Ci(r�)

)
, (38)

�± = �0

(
1 ± sin(r�)

r�

)
, (39)

�0 = λ2

16π�
. (40)

Si(x) and Ci(x) are the trigonometric integrals [37]. The con-
stant �0 is the decay rate of a single oscillator interacting with
a scalar field.

Besides the two poles above, there exists a pole that is not
accessible by perturbation theory. This solution corresponds
to the regime |z| � �. For example, consider the case where
r → ∞, so that the contribution of the γ̃r (z) term is negligible,

and Eq. (37) has a root for Re(z) � �e− π�
2�0 . For finite r the

solution acquires an imaginary part. Since the real part of
the root is positive, its contribution to u(t ) blows up expo-
nentially as t → ∞. This term is unphysical, because it is
incompatible with the dissipative nature of the open system
evolution.

An analogous term appears in the Abraham-Lorentz clas-
sical treatment of the radiation reaction, which leads to a
third-order equation for a particle’s position [38]. In fact,
the exponentially runaway solution in such systems was first

found by Planck [39]. For the role of these solutions in QBM
models of particle-field interaction, see Ref. [36].

These runaway solutions originate from the inadequacy
of the particle-field coupling to account for soft photons. In
the present context, runaway solutions can be avoided by an
infrared regularization. For example, we can regularize by
assuming a finite mass μ for the scalar field. This is equivalent
to shifting the argument of γ0(z) by μ, so that we redefine

γ0(z) = − λ2

16π2
ln

(
1 + �2

(z + μ)2

)
. (41)

For μ > �e− π�
2�0 , the third pole has a negative real part and

does not lead to runaway solutions. This regularization results
in the integrand manifesting branch cuts at z = −μ ± i�,
which have to be taken into account by an appropriate mod-
ification of the contour integral. In the weak-coupling limit
(�0/� � 1), μ−1 is much larger and �−1 is much smaller
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than physically relevant time scales, so we can simply ignore
the contribution of this pole at physically relevant time scales.
In contrast, for strong coupling, the runaway solutions cannot
be regularized away. The system of the two UdW detectors
coupled with the scalar field is physically meaningful only in
the weak-coupling limit.

We conclude that in the weak-coupling limit, except at very
early times (t ∼ O(λ4)), the pole term is well approximated by

f (0)
± (t ) = sin �̃±t

�̃±
e−�±t . (42)

C. The branch-cut term

To evaluate the integral along the negative near axis, we
use the identities

γ̃0(−s ± iε) = F (s) ∓ i
λ2

16π
, (43)

γ̃r (s ± iε) = G(s) ∓ i
λ2

16πsr
sinh(rs) (44)

for positive ε → 0. The functions F (s) and G(s) are

F (s) = − λ2

8π2
ln

(
�

s

)
, (45)

G(s) = − λ2

8π2rs
[cosh(rs)Shi(rs) − sinh(rs)Chi(rs)] (46)

where Shi is the hyperbolic sine integral function and Chi the
hyperbolic cosine integral function, defined as

Shi(z) =
∫ t

0

sinh(t )

t
dt,

Chi(z) = γ + ln z +
∫ z

0

cosh(t ) − 1

t
dt . (47)

Then

I±(t )=− λ2

8π2

∫ ∞

0
dse−st

× 1 ± sinh(rs)
rs

(s2+�2 + 2F (s)+2G(s))2+(
λ2

8π

)2(
1 ± sinh(rs)

rs

)2
.

(48)

The function I±(t ) cannot be evaluated analytically. A good
approximation that is valid for t > r is to ignore the terms of
order λ2 in the denominator, so that

I±(t ) = − λ2

8π2

∫ ∞

0
dse−st 1 ± sinh(rs)

rs

(s2 + �2)2
. (49)

For t < r, the approximation above does not hold, because
dropping the terms of order λ2 in the denominator renders the
integral divergent.

For �t � 1, Eq. (49) becomes

I±(t ) = − λ2

8π2�4

[
1

t
± 1

r
tanh−1(r/t )

]
. (50)

In Fig. 2 we plot I± as a function of �0t for different values
of �r. It is negative valued and increases asymptotically to
0. It is unlike the pole term, in that it does not involve any
oscillations.

D. The Markov approximation

Equation (35) is similar to the equation for the persistence
amplitude of an unstable quantum state in the random phase
approximation [9]. In fact, the two kernels γ̃0 and γ̃r are
similar to the ones that appear in the evolution of a pair of
atomic qubits interacting with the electromagnetic field [40].
The difference is that the dominant term contains a quadratic
rather than a linear term with respect to z, reflecting that in a
harmonic oscillator we consider both positive-frequency and
negative-frequency solutions.

The split, (36), into a pole term and a branch-cut term
is generic whenever the kernels describing the effect of the
environment contain branch cuts. A common approximation
in the study of unstable systems is the Wigner-Weisskopf
approximation (WWA), in which (i) the branch-cut term is
neglected, and (ii) the poles are calculated to leading order in
perturbation theory [9]. The WWA leads to exponential decay.
It coincides with the van Hove limit, namely, taking the limit
λ → 0, with λ2t kept constant. In the open quantum system
context, the van Hove limit leads to the second-order master
equation that describes Markovian dynamics [5].

It is straightforward to evaluate the van Hove limit of
Eq. (35). A function of the form

f (t ) = 1

2π i

∫ c+i∞

c−i∞
dz

ezt

z2 + �2 + λ2a(z)
, (51)

for some kernel λ2a(z), can be written as

f (t ) = 1

2π i

∫ c+i∞

c−i∞

dz

i
√

�2 + 2λ2a(z)

[
1

z − i
√

�2 + 2λ2a(z)

− 1

z + i
√

�2 + 2λ2a(z)

]
. (52)

We set z = i� + λ2x in the first term and z = −i� + λ2x in
the second. Then we take the limit λ → 0, with λ2t constant,
to obtain

f (t ) = 1

�

(
e−i�t− λ2a(i�)

�
t − ei�t− λ2a(−i�)

�
t
)
, (53)

i.e., the pole term with a perturbative evaluation of the poles.
The van Hove limit essentially substitutes the classical

equation of motion with non-local-in-time dissipation with
an equation that is local in time. Hence, it removes memory
effects from the evolution equation. A local-in-time equation
for dissipation is a necessary—but usually not a sufficient—
condition for Markovian dynamics. This can be seen in
path integral derivations of the QBM master equation [8,27];
Markovian behavior requires that the noise kernel also be-
comes local.

To summarize, the Markov approximation to the system
under study presupposes the validity of the WWA. Hence, the
violation of the latter is a definite sign of the existence of non-
Markovian dynamics.

E. Non-Markovian dynamics

The WWA, and consequently the exponential decay law,
cannot be valid at all times (see the reviews [9,41], and [42]).
Exponential decay fails at very early times due to quantum
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FIG. 2. Evolution of �I± as a function of �0t for different values of the dimensionless �r, where �0/� = 10−3 and � = 1. In figures (a),
(b) �r = 1, (c), (d) �r = 10 and (e), (f) �r = 1000.

Zeno dynamics. It also fails at very late times: the branch-
cut term typically falls off as an inverse power of t and
eventually becomes larger than the pole term, which decays
exponentially. However, the time scale for this decay is much
larger than the relaxation time. For example, in optical sys-
tems even for �0/� as large as 10−3, the breakdown of
the exponential decay takes place at �0t ∼ 30 when less
than 1 : 1026 of the initial systems remains in the excited
state.

A violation of the WWA is physically meaningful only if it
takes place at time scales compatible with the dissipation time,
i.e., if it happens when �0t is a small number. We show that
this takes place in the system studied here when the detectors
are separated by a large distance r.

Equation (34) implies that u11 = u22 = 1
2 ( f+ + f−) and

that u12 = u21 = 1
2 ( f+ − f−). The terms u11 and u12 describe

the dependence of the variables of one detector on the initial
conditions of the second detector, while u12 and u21 essen-
tially describe the correlations developed between the two
detectors.

Equations (38) and (39) imply that as r → ∞, �+ = �−
and δ�+ = δ�−. By Eq. (42), f (0)

+ (t ) = f (0)
− (t ) as r → ∞,

for all t . Hence, the pole part of u12(t ) vanishes for all t as
r → ∞. In contrast, the branch-cut term remains finite. By
continuity, for any given t there is a finite distance r, at which
the branch-cut term dominates over the pole term, and hence,
the WWA fails.

We have verified this behavior numerically as shown in
Fig. 3. There, we present a semilogarithmic plot of the pole
term of u12 divided by the full u12, as a function of time.
We chose �0/� = 10−3, i.e., we work well within the weak-
coupling regime. By construction, this ratio is very close to
0 if the WWA holds, and it differs significantly from 0 if the
WWA fails. The plots show that the behavior of this function
changes when r becomes of the order of �−1

0 . At this scale, we
see significant violations of the WWA at the scale of �0t ∼ 1
and a complete breakdown as �0t becomes about 5. Note
that both violations and the breakdown of the WWA occur
early, when a significant fraction of the energy remains in the
system.

The WWA is well preserved for u11 and u22 in the regime
where it fails for u12. Nonetheless, the WWA also fails for
u11 and u22 at sufficiently large times. This is to be expected,
because—as mentioned earlier—the WWA is guaranteed to
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FIG. 3. Evolution of the quantity
u(0)

12
u12

, where u(0)
12 stands for the Markovian part of u12, as a function of �0t and for different values of the

dimensionless �r. In this plot, �0/� = 10−3.

fail in the long-time limit. What is rather unexpected is that
for sufficiently large r, the WWA breaks down at relatively
early times also for u11 and u22. We found that for �0r < 10,
the breakdown of the WWA occurs at �0t � 15, i.e., at a time
where a negligible amount of energy remains in the system.
However, for �0r > 50, the WWA breaks down much earlier,
when �0t � 5.

In all regimes that we have studied, the WWA breaks down
at the u12 term both earlier and more strongly than it does
at the u11 and u22 terms. Therefore, the WWA fails primarily
for terms that describe the creation of correlations between
distant detectors. For these terms, the branch-cut contribution
dominates. This result strongly suggests that the creation of
correlations over large distances is a nonperturbative effect. It
cannot be described correctly by perturbative approximation
schemes, such as the von Hove limit or the second-order
master equation.

The conclusion above is unquestionable for the present
model, because we have an integrable system and, conse-
quently, full control over all approximation schemes. We
conjecture that this behavior may characterize other open sys-
tems with similar Hamiltonians, for example, N-level atoms
coupled to the electromagnetic field, found at separations r
of order of the relaxation time. However, to see such effects,
we have to treat them using methods beyond the second-order
master equation, which provides the most widely used treat-
ment of such systems.

The system also exhibits non-Markovian behavior at
the opposite regime r → 0, as γr → γ0, and f− becomes
simply 1

�
sin �t . This behavior has been extensively stud-

ied in multipartite QBM models (see, for example, [30]
and [43]). We are not concerned with this regime here,
because the limit �r � 1 is not compatible with the identi-

fication of the oscillators either with atoms or with particle
detectors.

IV. ASYMPTOTIC STATES AND GENERATION
OF ENTANGLEMENT

In this section, we show that the open system dynamics of
the detectors lead to a unique asymptotic state. This state is
correlated, and it is entangled for small separations.

A. Asymptotic state

In Sec. II, we showed that the reduced density matrix
propagator for this model is fully determined by matrices R(t )
and S(t ). In Sec. III, we evaluated R(t ) and showed its non-
Markovian behavior for �0r � 1. Matrix S(t ) is determined
by Eqs. (16)–(18).

When evaluating the matrix elements Sab(t ), we find that
even for the nondiagonal elements the dominant contribu-
tion comes from the functions u11(t ) and u22(t ) and their
derivatives. These functions are well described by the pole
term except for very long times. Hence, we expect that the
WWA is accurate for Sab(t ). Numerically, we find that the
difference between the Sab calculated via the WWA and
the exact expression is of the order of �0/� � 1. If
we substitute solely the pole term for u(t ) in Eqs. (16)–
(18), integrations can be carried out analytically. They lead
to an analytic expression for Sab(t ) that is accurate to
order �0/�.

The functions uαα′ (t ) vanish as t → ∞, hence, so does the
matrix Rab(t ). Equation (7) implies that as t → 0, the Wigner
function propagator becomes independent of ξ0. Numerical
evaluation of Sab(t ) shows that it asymptotes to a constant
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matrix for large t ; we denote this matrix S(∞). Hence, asymp-
totically the system is described by the Wigner function,

W∞(ξ ) = 1

π
√

det[S(∞)]
exp

[
−1

2
S−1

ab (∞)ξ aξ b

]
. (54)

By Eq. (10), the correlation matrix at infinity Vab(∞) coin-
cides with Sab(∞).

Interestingly, the matrix S(∞) involves correlations be-
tween the two detectors: the matrix elements SX1X2 (∞),
SP1P2 (∞), and SX1P2 (∞) that describe such correlations are
nonzero. To see this, we use the fact that the dominant
contribution to Sab(∞) is well approximated by the WWA.
Substituting Eq. (42) into Eqs. (16)–(18), taking the limit
t → ∞, and keeping terms to leading order in �0/�, we
obtain

SX1X1 (∞) = SX2X2 (∞) = �0

�

[
1

�+
+ 1

�−
− 1

2�r

(
sin(�+r)

�+
− sin(�−r)

�−

)]
, (55)

SP1P1 (∞) = SP2P2 (∞) = �0�

[
1

�+
+ 1

�−
− 1

2�r

(
sin(�+r)

�+
− sin(�−r)

�−

)]
, (56)

SX1P1 (∞) = SX2P2 (∞) = 2�0

�

(
δ�

�
+ sin(�+r) − sin(�−r)

4�r

)
, (57)

SX1X2 (∞) = SX2X1 (∞) = �0

�

[
1

�+
− 1

�−
− 1

2�r

(
sin(�+r)

�+
+ sin(�−r)

�−

)]
, (58)

SP1P2 (∞) = SP2P1 (∞) = �0�

[
1

�+
− 1

�−
− 1

2�r

(
sin(�+r)

�+
+ sin(�−r)

�−

)]
, (59)

SX1P2 (∞) = SX2P1 (∞) = �0

�

(
−1 + sin(�+r) + sin(�−r)

2�r

)
. (60)

Remarkably, the correlation terms SX1X2 and SP1P2 turn out
to be of order (�0/�)0, i.e., of the same order as the diagonal
terms. However, unlike the diagonal terms, the correlation
terms are suppressed as �r becomes significantly larger than
unity. For �r � 20 or less, there is a significant residual
correlation between the detectors. This may appear surprising,
but we note that the destruction of correlations at late times
may be a common feature of either high-temperature baths
or systems of qubits, but it is not a generic property of open
quantum systems. The existence of asymptotic correlations
appears more intuitive when viewing the oscillators as actual
particle detectors. We would expect the detectors to develop
correlations if they dominantly interact with particles with a
de Broglie wavelength of the order of their distance.3

Next, we examine whether the asymptotic state is entan-
gled. To this end, we employ the positive partial transpose
separability criterion of Peres and Horodecki [44,45]. In the
present context, the positive partial transpose criterion is ap-
plied to the correlation matrix V . A correlation matrix on
L2(R) ⊗ L2(R) is separable if it satisfies

V � − i

2
J̃, J̃ = �J�, (61)

3There is no lower limit to � in our model—except for the infrared
cutoff—so the detectors could be correlated even if they are sepa-
rated by macroscopically large distances. Of course, actual particle
detectors are macroscopic systems, and the variables X̂α are highly
coarse-grained. The inclusion of additional degrees of freedom to
the detector would introduce decoherence effects that would suppress
such correlations beyond some length scale L.

where J is the symplectic form in the four-dimensional phase
space of two particles and � is the matrix of the positive par-
tial transpose operation � = diag(1, 1, 1,−1) [46]. Hence, if
the matrix V � + i

2 J̃� has a negative eigenvalue, the associ-
ated state is entangled.

In Fig. 4, we plot the minimal eigenvalue λ− of S(∞) + i
2 J

as a function of �r. A negative value of λ− indicates an en-
tangled Gaussian state; a positive value, a separable Gaussian
state. If V � − i

2 J̃ , then 2iJṼ � I , where Ṽ = �V �. Hence,
all symplectic eigenvalues of 2Ṽ are greater than 1. If this
inequality does not hold, then (at least) the smallest symplec-
tic eigenvalue ν− of 2Ṽ is smaller than unity. It follows that
λ− < 0 if ν− < 1, and vice versa. Hence, the criterion for
entanglement employed here is equivalent to the one provided
by the negativity log ν− of the quantum state [47].

FIG. 4. The minimal eigenvalue λ− of the matrix S(∞) + i
2 J̃ as

a function of �r.
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FIG. 5. The evolution of minimal eigenvalue λ− of Vt + i
2 J̃ for initial factorized state |z〉 ⊗ |z′〉 and for different values of �r. We see that

entanglement is generated only for small r. In these plots, � = 1.

We see that the asymptotic state is entangled for �r � 1.79
and that the entanglement is stronger as r → 0. The results
are qualitatively compatible with the analysis in Ref. [20]
(which ignores backreaction) and with the analysis in
Ref. [30] (which employs an expansion scheme). We note that
Eqs. (55)–(60) provide the exact asymptotic expression of S
in the weak-coupling limit.

B. Entanglement generation

Having established the asymptotic behavior of the two-
detector system and identified the asymptotic behavior of
entanglement, we examine how entanglement is generated in
time. Again, we employ the separability criterion, (61). We
consider an initial factorized state |z〉 ⊗ |z′〉 that is a product
of coherent states. In Fig. 5(a), we plot the lowest eigenvalue
of Vt + i

2 J̃ as a function of �0t , where Vt is given by Eq. (10).
We note the following. First, the relaxation time for dis-

tances such that �r is of order unity is significantly larger than
�−1

0 , because the small decay constant �− is much smaller
than �0. For example, for �r = 0.5, �−1

− = 25�−1
0 . For small

values of �r, entanglement is generated at early times, as
shown in Fig. 5(a). For a large value of �r, there is no
generation of entanglement. However, for �r close to unity
(but still smaller than the bounding value, 1.79), entanglement
is generated only at late times, when the system converges to
its asymptotic entangled state.

The behavior of entanglement depends crucially on the
parameter �r. The choice of the initial state |z〉 ⊗ |z′〉 does
not significantly affect the creation of entanglement. Other
factorized initial states exhibit the same behavior.

For z = z′ = 0, the initial state is |0, 0〉, i.e., the ground
state of the system of two oscillators. However, this state is not
the lowest-energy state for the full field detector Hamiltonian.
For this reason, the energy of the detector degrees of freedom
momentarily increases as a result of the interaction with the
environment, which would be paradoxical if |0, 0〉 were a true
ground state.

The state |0, 0〉 may be viewed as a ground state of the
system if we can assume a setup in which the field detector
coupling switches on at t = 0. As long as the switching-on
takes place at time scales much smaller than �−1, the solutions
to the reduced dynamics derived here are applicable.

In this context, the creation of entanglement from an initial
vacuum state is referred to as harvesting of the QFT vacuum.
Most research on harvesting focuses on the evaluation of
the effect at the lowest order of time-dependent perturbation
theory. This is a good approximation as long as the inter-
action is switched on for a time interval much smaller than
the relaxation time. For longer times, perturbation theory is
not reliable. An open quantum system treatment that takes
backreaction into account is essential; otherwise the effects of
relaxation cannot be incorporated into the description. For ex-
ample, the asymptotic creation of entanglement as in Fig. 5(b)
occurs at time scales of the relaxation time.

We emphasize that most research on harvesting refers to
moving detectors, while here we restrict our consideration to
static ones. We find that there is no significant generation of
entanglement outside the light cone for static detectors.

V. THE CHALLENGE OF CAUSALITY

An important motivation of this work is to understand
how causality is implemented in the communication of
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separated localized quantum objects through a quantum field.
The present model, being exactly solvable, provides an ex-
plicit demonstration of Fermi’s two-atom problem, in which
the fundamental physical issues are not obscured by questions
about the validity of approximations.

It is straightforward to verify that the classical equations
of motion, (13), are not causal: X̂2(t ) depends on the value
of X̂1(0), even for times t < r. This result is not surprising.
Equation (13) describes the interaction between the oscillators
in terms of direct coupling in position—even if it is nonlocal
in time—and it is well known that direct particle coupling
cannot lead to causal dynamics in relativistic systems. The
problem is that Eq. (13) describes the evolution of the ex-
pectation values of the observables X̂1,2, hence, its noncausal
behavior seemingly implies superluminal signals.

Having an exactly solvable model allows us to demon-
strate explicitly that this noncausal behavior is not an artifact
of common approximations employed in such systems; for
a treatment of causality violation in interactions between
oscillator UdW detectors, see [48] and [49]. In particular,
noncausality is not due to the choice of a factorizing initial
condition, which was employed in the derivation of the den-
sity matrix propagator. Such a condition cannot hold exactly,
because any preparation of the system cannot affect arbitrarily
high energies of the field. Factorizability holds at most up to a
cutoff energy scale. However, existing models in the theory of
quantum open systems strongly suggest that such correlations
are mostly significant at early times and that their effects
becomes negligible as correlations are established between
system and environment due to dynamical interaction.

More importantly, we can derive an exact evolution equa-
tion for the expectation value 〈X̂r〉 [28],

d2

dt2
〈X̂α (t )〉 + �2

α〈X̂α (t )〉 + 2
∑
α′

∫ t

0
γαα′ (t − s)〈X̂α′ (s)〉

=
∑

i

ciα

Mα

〈q̂0
i (t )〉, (62)

where q̂i is the field operator associated with the ith mode,
evolving according to the free equations of motion for the
field. We can also choose the initial state to satisfy 〈φ̂(x)〉 =
〈π̂ (x)〉 = 0, where π̂ (x) is the field conjugate momentum.4

This condition implies that 〈q̂0
i (t )〉 = 0, hence, 〈X̂α (t )〉 satis-

fies Eq. (13). Mean values evolve noncausally, irrespective of
the initial condition.

The situation is analogous to that of Fermi’s two-level atom
mentioned in Sec. I. In this sense, it is generic to all relativistic
systems when we attempt to describe their subsystems as com-
pletely localized in space. Hegerfeldt proved with minimal
assumptions that for any systems A and B, in disjoint regions,
interacting through a quantum field, the excitation probability
of B is nonzero immediately after t = 0 [17]. The present
model exemplifies Hegerfeldt’s theorem in an exactly solvable
system.

4This is a natural condition for a state that behaves like the field
vacuum. In any case, the mean value of the field and its conjugate
momentum can be shifted to any value by a unitary action of the
Weyl group, which is generated by the field canonical algebra.

The only known theory of relativistic interactions is QFT,
and this is subject to constraints about localization of ob-
servables [50–52]. The noncausal behavior of models of
particle-field interaction is therefore no surprise at the fun-
damental level. However, there is an important result that
supports causality in UdW detectors: Cliche and Kempf [53]
considered a pair of pointlike two-level UdW detectors, pre-
pared initially in a factorized state. The first detector is in a
general state; the second detector is in the ground state. They
showed that even if the reduced matrix of the second detector
becomes excited immediately, it does not depend on the initial
state of the second detector, as long as the two detectors are
spacelike separated.

The result above does not contradict our analysis, as it
refers to a different system (two-level vs oscillator detectors).
However, it demonstrates a different behavior of detectors,
and it is important to understand the origins of the differ-
ence. One possibility is that two-level detectors inherently
behave better than oscillator ones. Strictly speaking, the in-
teraction Hamiltonian (both in this paper and in [53]) is ill
defined as a self-adjoint operator, as it involves the value of
a quantum field (an operator-valued distribution) at specific
points without smearing. It is conceivable that the prob-
lems from this ill definition are magnified by the dimension
of the detector’s Hilbert space, leading eventually to non-
causal behavior. Note that even for two-level detectors the
use of smeared fields in the Hamiltonian leads to noncausal
behavior [48].

Another possibility is that the result in Ref. [53] holds
only for the specific initial state of vacuum for one of
the two detectors. To the best of our knowledge, there
is no analysis that shows causal behavior for expectation
values of general observables in two-level detectors, for
example, showing that in two-level systems and for space-
like separation the expectation value of σ̂x for one detector
is independent of the expectation value of any σ̂i from
the other detector. This is a difficult property to guar-
antee, given that the two detectors develop entanglement
instantaneously [20].

To better understand causality in UdW detectors, it is
important to adapt the analysis in Ref. [53] to higher-
dimensional Hilbert spaces and to the behavior of general
observables. The causality result in Ref. [53] follows from
the analysis of the Dyson series for the total system of de-
tectors and field. For the system studied here, the Dyson
series can be fully resummed, so, in principle, we can have
a precise identification of the terms responsible for noncausal
behavior.

We believe that the type of noncausality identified here
is not an artifact of unphysical dynamics, for example, due
to the limited validity of the field-particle coupling of this
model. One way to see this is the following. Field-particle
couplings can be derived for the dynamics of an N-level
atom coupled to the electromagnetic field [54]. The harmonic
oscillators considered here can be viewed as atoms with equal
spacing in the levels and N → ∞. The starting point in such
derivations is the full quantum electrodynamics. The crucial
condition that leads to couplings of the form of (19) is the
dipole approximation. This asserts that the size of the lo-
calized systems is much smaller than the wavelength of the
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emitted radiation. Since the size of these systems defines the
cutoff frequency �, the dipole approximation is expected to
hold with an accuracy of the order of �/�. Hence, corrections
to the dipole approximation (and, hence, to the field-particle
coupling) are expected to increase with � and to be sensitive
to the cutoff �. This is the case for the runaway solutions
that are regularized away (see Sec. III B). In contrast, the non-
causal behavior that characterizes Eq. (13) is insensitive to �

or to �.
For this reason, we believe that the problem of causal-

ity in detector-field interactions is fundamentally kinematical
and not dynamical. This is supported by several theorems
on the impossibility of defining localization observables in
relativistic quantum systems [50–52]. Existing definitions of
localized observables conflict with the requirement for rel-
ativistic causality. Observables that appear to be local and
causal in classical theory or in on-relativistic quantum theory
(e.g., a particle’s position) fail to be so in relativistic quantum
theory.

In order to clarify this point, we must clarify the sense in
which we use the word “local,” because this term has different
meanings in quantum information theory and in QFT. In quan-
tum information theory, locality is related to factorizability
with respect to the tensor product. For example, in a system
described by a Hilbert space H1 ⊗ H2, operators of the form
Â ⊗ Î or Î ⊗ B̂ correspond to local observables. In QFT, the
locality of an observable refers to the space-time (or spatial
region) of support for this observable. For example, the ob-
servable φ̂( f ) := ∫

d3xφ̂(x) f (x) is localized in a region C, if
the smearing function f has support only in C.

Consider the observables X̂α and P̂α , which describe the
degrees of freedom of the oscillator detectors in the present
model. Certainly, they are local observables in the former
sense. It would be natural to assert that they are local also
in the second sense, i.e., that they correspond to observables
localized in a small neighborhood around the points x = x1

and x = x2. For example, one may assume that the detector
degrees of freedom correspond to another field ψ̂ , so that X̂1

and P̂1 correspond to local observables for this field around x1

and X̂2 and P̂2 correspond to local observables for this field
around x2.

This interpretation might make sense for a free field ψ̂ ,
because the Fock space of the field can factorize as H1 ⊗
H2 ⊗ Hrest, where H1 involves field variables localized in
a region C1, H2 involves field variables localized in a re-
gion C2, and Hrest involves field variables localized outside
C1 ∪ C2. Then we could identify X̂1 and P̂1 with operators in
H1 and X̂2 and P̂2 with operators in H2. Note that such an
identification might not be compatible with a local QFT, as
one would have to show that the evolution of X̂α and P̂α is
generated by a local Hamiltonian, which is the integral of a
Hamiltonian density.

The point is that X̂α and P̂α might be interpreted as lo-
cal observables for ψ̂ , only as long as ψ̂ and φ̂ do not
interact. When the interaction is present, X̂α and P̂α can no
longer be viewed as localized observables pertaining to a
single detector. But then, if they are nonlocal observables,
the noncausal interaction identified earlier is not conceptually
problematic.

This also means that a causal description of relativistic
transmission of information requires a consistent definition of
localized observables. The Hilbert space of the total system
is Htot = Hd1 ⊗ Hd2 ⊗ Hfield, where Hdα is a Hilbert space
associated with the α detector and Hfield the field Hilbert
space. An operator that corresponds to a measurement in a
region around x1 through the detector should not be of the
form Â ⊗ Î ⊗ Î (i.e., local in the quantum information sense),
but rather it should be a nonfactorized operator on Htot that
reduces to the factorizing form for λ → 0. Heuristically, a
local observable should be dressed by “virtual photons”5 in
order to be compatible with causality. This is in accordance
with Hegerfeld’s proposal, about reconciling QFT with his
non-go theorems [18].

Still, it is doubtful that self-adjoint operators that gener-
alize X̂α and P̂α for the interacting system can be defined
in a way that is compatible with causality. There are strong
arguments that ideal measurements—i.e., measurements cor-
responding to self-adjoint operators—are incompatible with
causality in QFT [56]. These arguments are completely in-
dependent of the analysis of Fermi’s two-atom problem, and
they involve a QFT analysis of measurement. They strongly
suggest that all QFT measurements must be nonprojective.
However, if X̂α and P̂α exist as self-adjoint operators in a QFT
underlying the present models, they would define projective
measurements, in contradiction to the above result.

Finally, we note that one of us has proposed the use
of time-extended observables for the description of particle
localization [57]. Such observables correspond to positive
operator-valued measures that partly depend upon the dynam-
ics of the quantum system [58]. Hence, a model with exactly
solvable dynamics, such as the one analyzed here, is important
for the explicit construction of such observables and for the
testing of their causal behavior.

VI. CONCLUSIONS

Future quantum experiments will allow us to test important
issues at the foundations of QFT and of quantum informa-
tion, pertaining to the principles of causality and locality and
their relation to nonclassical correlations like entanglement.
Exactly solvable models, like the one analyzed here, allow us
to explore regimes that will be experimentally accessible, but
they are not adequately describedby the usual approximation

5Note a key difference between QFT and quantum mechanics.
Consider a composite quantum system with Hilbert space H1 ⊗ H2.
In quantum mechanics, it is possible to define both a noninteracting
Hamiltonian of the form ĥ1 ⊗ Î + Î ⊗ ĥ2 and an interacting Hamilto-
nian in this Hilbert space. This is not possible in QFT. According to
a crucial theorem by Haag, an interacting Hamiltonian does not exist
in the same Hilbert space with the noninteracting Hamiltonian [55].
Indeed, this is the reason for the infinities of QFT perturbation theory.
It follows that a bipartite splitting of the Hilbert space of the form
H1 ⊗ H2 is not possible in an interacting theory. Observables by ne-
cessity are dressed, i.e., they involve both components. For example,
in QED, fermionic observables necessarily involve photonic degrees
of freedom, in quantum optics, atomic observables involve photonic
degrees of freedom, and so on.
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schemes, such as the Markov approximation or the pertur-
bative analysis of master equations. Our conclusion that the
generation of correlations between subsystems at large sepa-
rations is a nonperturbative process is particularly important
in relation to this context.

We believe that the model presented here provides an
important tool for addressing foundational issues in QFT,
because it has a formal exact solution and provides full mathe-
matical control of all approximation schemes. It may be used
for constructing localized observables to address the Fermi
problem, for understanding causal propagation of signals and
information in QFT, and for generalizing existing quantum
information concepts to relativistic systems.
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