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We quantify the disturbance of a quantum state undergoing a sequence of observations and particularly focus
on a weak measurement followed by postselection and compare these results to the projective counterpart. Taking
into account the distinguishability of both the system and the device, we obtain the exact trade-off between the
system state disturbance and the change in the device pointer state. We show that for particular postselection
procedures the coupling strength between the system and the device can be significantly reduced without losing
measurement sensitivity, which is directly transferred to a reduced state disturbance of the system. We observe
that a weak measurement alone does not provide this advantage, and only in combination with postselection is
a significant improvement in terms of increased measurement sensitivity and reduced state disturbance found.
We further show that under realistic experimental conditions this state disturbance is small, whereas the exact
postselection probability is considerably larger than the approximate value given by the overlap of the initial and
final states when neglecting the system state disturbance.
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I. INTRODUCTION

Suppose we perform a sequence of observations of the
observables A and then B on an initially prepared system
described by state ρi [1]. In the final B measurement we select
only those cases in which the measurement corresponding to
a particular outcome is affirmative; this outcome is described
by the eigenstate | f 〉. In such an experiment the observable A
is measured on the pre- and postselected (PPS) subensemble
defined by the initial preparation and final measurement.

To consistently describe this measurement as an inherent
active process the system under investigation has to interact
with a measuring device [2], and correlations between both
systems will emerge. For strong coupling we have the pro-
jective von Neumann measurement [3,4], and the conditional
expectation value of the measured observable A on the PPS
ensemble follows from the Aharonov-Bergmann-Lebowitz
(ABL) formula [5],

〈A〉ABL =
∑

ν

aν

Tr(� f �Aν
ρi�Aν

)∑
μ Tr(� f �Aμ

ρi�Aμ
)
, (1)

where � f = | f 〉〈 f | is the projector on the final state and aν

and �Aν
= |χν〉〈χν | are the eigenvalues and the projector on

the eigenstates of A, respectively.
On the contrary, if the coupling is sufficiently weak, the

outcome of such a weak measurement [6] on a PPS ensemble
is given by the weak value (WV) [7,8],

〈A〉WV =
∑

ν

aν

Tr(� f �Aν
ρi )∑

μ Tr(� f �Aμ
ρi )

= 〈 f |Aρi| f 〉
〈 f |ρi| f 〉 . (2)
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The measurement of the WV was the subject of an extensive
discussion [9–12].The ability to measure the WV led to an
analysis of fundamental quantum aspects [13–19] and to an
explanation of the observed phenomena [20–23]. The appli-
cation of the WV to quantum state measurement [24–27] is
still of current interest [28], and WVs are extensively used for
quantum metrology [29–31].

However, measuring the WV and extracting information
from the system are by no means possible without disturbing
it [32]. The trade-off between the measurement disturbance
and the information gain was investigated to a large extent in
the context of quantum cryptography [33,34]. In the context
of weak and protective measurements it has been shown that
such measurements cause a minimal disturbance of the system
[35,36]. Thus, in WV measurement protocols the disturbance
of the system during the intermediate weak measurement is
usually neglected [35] and quantified by the transition proba-
bility from the initial to an orthogonal state [36,37]. From the
perspective of the gained information the analysis is usually
focused on the (quantum) Fisher information of the mea-
surement outcome [31,38–41], and no direct relation to the
corresponding state disturbance is provided.

In the following we will present a unified analysis of
the state disturbance of the system and the change in the
device state, accounting for the information gain, for a
generic weak-value experiment. This is done by quantifying
the distinguishability between the states during the measure-
ment sequence. This also takes into account the change to
nonorthogonal states, important for quantum state differen-
tiation [42,43]. With the exact model used to describe the
WV measurement protocol, we can quantify the mutual state
change in the system and the device during the measurement
sequence. This allows us to directly relate the information gain
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of the device in the trade-off to the system state disturbance.
Quantifying the system state disturbance in a WV measure-
ment protocol will help us to analyze the boundaries of the
experimental setup and to examine the approximations made
when predicting experimental outcomes. For instance, we will
show that the system state disturbance for a specific mea-
surement protocol is small, whereas the exact postselection
probability can be significantly larger than the approximate
value which neglects this state disturbance.

This paper is organized as follows. In Sec. II we introduce
the exact model to describe the measurement sequence. With
the exact expressions we investigate the disturbance of the
system state during the measurement sequence in Sec. III.
We compare a weak measurement with the projective coun-
terpart and include a postselection procedure. In Sec. IV we
analyze the change in the device state during the measure-
ment sequence and discuss the relation to the weak-value
amplification technique. In Sec. V we explicitly connect
the mutual change in the system and device state to obtain the
exact trade-off relation between the system state disturbance
and the change in the device pointer state. We further discuss
the assumption of negligible state disturbance during a weak
measurement and show that the resulting approximate expres-
sion for the postselection probability can considerably differ
from the exact value under realistic experimental conditions.
In Sec. VI we conclude the paper.

II. MEASUREMENT SEQUENCE AND CONDITIONAL
EXPECTATION VALUE

In this section we introduce the model to describe the gen-
eralized measurement, where the internal degree of freedom
of a system is coupled to a variable in configuration space.
This coupling is quite general [44], and we will later specify
the generic case of a two-level system coupled to its coor-
dinate, e.g., a Stern-Gerlach-type experiment. The following
analysis provides an exact model for the measurement se-
quence which extends the description in terms of state vectors
from [45] to density matrices. We can thus describe the exact
mixed state of the system originating from the measurement.

Consider an ensemble of systems described by an initial
state ρi and a measurement device which is prepared in a
well-defined state σi = |φ〉〈φ|. The measurement interaction
Hamiltonian couples the system observable A to the device
pointer momentum p with the canonical conjugate pointer
position q, such that [q, p] = i (h̄ = 1),

HI (t ) = gδ(t − t0)A ⊗ p, (3)

where g is the coupling strength and δ(t − t0) account for an
impulsive measurement interaction at time t0 [46,47]. Prior
to the measurement the system and the device are in an
uncorrelated product state ϒi = ρi ⊗ σi and, during the mea-
surement, evolve to the entangled state ϒ ′ = U (ρi ⊗ σi )U †,
with the unitary evolution given by U = exp(−igA ⊗ p). The
total state after the measurement interaction is

ϒ ′ =
∑
νμ

〈χν |ρi|χμ〉|χν〉〈χν |χμe−igaν p|φ〉〈φ|eigaμ p, (4)

where aν and |χν〉 are the eigenvalues and eigenstates of A,
respectively.

To obtain the pointer reading of the device 〈q〉 = Tr(qϒ ′),
we specify the initial device state to be a Gaussian centered at
q = 0 with spread 
 in the q representation φ(q) ≡ 〈q|φ〉 =
(2π
2)−1/4 exp[−q2/(4
2)]. Thus, the pointer position after
the measurement interaction, 〈q〉 = g〈A〉i, is proportional to
the expectation value of the system observable in the initial
state 〈A〉i = TrS (Aρi ), where TrS (·) denotes the trace over the
system degrees of freedom.

Now, suppose the final postselection is performed on the
system by a projective measurement of some other observ-
able, and we select on those outcomes corresponding to the
eigenstate | f 〉, i.e., ϒ f = � f ϒ

′� f /Tr(� f ϒ
′).

The total state after such a postselection is

ϒ f = 1

P( f )

∑
νμ

〈χν |ρi|χμ〉〈 f |χν〉〈χμ| f 〉

× | f 〉〈 f |e−igaν p|φ〉〈φ|eigaμ p, (5)

where P( f ) = Tr(| f 〉〈 f |ϒ ′) is the postselection probability
for measuring the property corresponding to the state | f 〉.
Accordingly, the corresponding pointer shift is given by

〈q〉i, f = g

P( f )

∑
νμ

〈 f |χν〉〈χμ| f 〉〈χν |ρi|χμ〉

× 1

2
(aν + aμ)e− g2

8
2 (aν−aμ )2

, (6)

which is the exact conditional expectation value of A for a gen-
eralized measurement [9,45]. The postselection probability is

P( f ) =
∑
νμ

〈 f |χν〉〈χμ| f 〉〈χν |ρi|χμ〉e−g2(aν−aμ )2/(8
2 ). (7)

In the strong-coupling limit, g � 
, the conditional
pointer reading reduces to the ABL formula 〈q〉ABL =
g
∑

ν aν |〈 f |χν〉|2〈χν |ρi|χν〉/
∑

μ |〈 f |χμ〉|2〈χμ|ρi|χμ〉. How-
ever, in the weak-measurement limit, g � 
, the exponential
in (5) can be expanded to first order [7,35], and we obtain
the familiar result for a weak measurement of A on a PPS
ensemble,

〈q〉WV = gRe

( 〈 f |Aρi| f 〉
〈 f |ρi| f 〉

)
, (8)

given by the real part of the WV (2). Note that the exact
outcome (6) reproduces the WV (8) for g/
 → 0, i.e.,
limg/
→0〈q〉i, f = 1

2
g

P( f ) [〈 f |Aρi| f 〉 + 〈 f |ρiA| f 〉] = 〈q〉WV ,
where we have used limg/
→0 P( f ) = 〈 f |ρi| f 〉. While the
shift in the pointer position is proportional to the real part of
the WV, the imaginary part is imprinted in a change in the
pointer momentum [46].

To specify the model we will compare the different
measurement protocols for a Stern-Gerlach-type experiment,
where the system observable is given by the z component
of the spin of a spin-1/2 particle, i.e., A = σz, and is cou-
pled to the particle’s momentum (3). Initially, we prepare
the system in the spin-up state along the ξ direction with
angle α to the x axis in the x-z plane, ρi = |↑ξ 〉〈↑ξ |, with
|↑ξ 〉 = cos α/2|↑x〉 + sin α/2|↓x〉. To define the PPS ensem-
ble we select for final spin-up states along the η direction with
angle β to the x axis, i.e., |↑η〉 = cos β/2|↑x〉 + sin β/2|↓x〉.
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FIG. 1. Pointer reading 〈q〉 for different measurement protocols
of the z component of the spin of a spin-1/2 particle for different
preparation procedures with angle α. The final postselected state is
|↑x〉 with β = 0. The expectation value in the initial state 〈σz〉i =
sin α (black dashed line) is bounded by ±1 (dotted horizontal lines).
The conditional expectation value following the ABL formula is
shown for β = 0.3π (black dash-dotted line) and obeys the same
boundaries as the expectation value. The peculiarity of the WV (blue
solid line) arises when it exceeds the conventional boundaries of pro-
jective measurements. The exact result for different order parameters
g/
 recovers the ABL and the WV in the corresponding limits (gray
dashed, dotted, and dash-dotted lines).

The initial preparation and the final postselection are likewise
performed with a Stern-Gerlach device along the ξ and η

directions, respectively.
For this particular example the exact result of the condi-

tional expectation value is given by

〈σz〉i, f = sin α + sin β

1 + sin α sin β + e− g2

2
2 cos α cos β

. (9)

This expression reproduces the conditional expectation value
following ABL 〈σz〉ABL = (sin α + sin β )/(1 + sin α sin β )
and the weak value 〈σz〉WV = sin [ 1

2 (α + β )]/cos [ 1
2 (α − β )]

for g/
 � 1 and g/
 � 1, respectively.
The measurement outcomes for different orientations of

the initial state are shown in Fig. 1, where we have taken β =
0 [48]. The conventional expectation value (without postselec-
tion) 〈σz〉i = sin α is bounded by −1 � 〈σz〉i � 1. Similarly,
the conditional expectation value following ABL lies within
the same bounds.

The striking feature in the weak measurement regime,
when 〈σz〉i, f � 〈σz〉i, is due to the nonvanishing overlap of
the device states which cause quantum interference [47]. As
α → π the weak value diverges since the initial (|↓x〉) and
final (|↑x〉) states become orthogonal.

III. DISTINGUISHABILITY DURING
MEASUREMENT SEQUENCE

We shall now investigate the effect of the measurement
sequence on the system state and quantify the disturbance

caused by a generalized measurement including postselection.
As a measure of this disturbance we will use the distinguisha-
bility between two states. The advantage of this measure is
that we can use it to define a distance between the two states.
This allows us to quantify all changes in the system state,
and we are not limited to quantifying the disturbance in terms
of the transition to an orthogonal state. In doing so, we are
also able to identify the influence of the measurement on the
coherence of the system.

A. Comparing strong and weak measurements

The initial preparation procedure generates spin-up states
|↑ξ 〉 = cos α/2|↑x〉 + sin α/2|↓x〉 (all density matrices are
represented in the measured σz basis),

ρi =
(

1
2 (1 + sin α) 1

2 cos α
1
2 cos α 1

2 (1 − sin α)

)
. (10)

For the intermediate projective measurement (without postse-
lection), which will destroy all coherence, the state is left in a
statistical mixture of eigenstates |↑z〉 and |↓z〉,

ρs =
(

1
2 (1 + sin α) 0

0 1
2 (1 − sin α)

)
. (11)

On the contrary, the weak measurement disturbs the initial
state only slightly, such that the exact system state is given
by

ρw =
∑

νμ∈{↑z,↓z}
〈χν |ρi|χμ〉|χν〉〈χν |χμe− g2

8
2 (aν−aμ )2

=
(

1
2 (1 + sin α) 1

2 cos α e− g2

2
2

1
2 cos α e− g2

2
2 1
2 (1 − sin α)

)
. (12)

Note that following the original derivation of the WV in
[7,35], the decoherence factor exp[−g2/(2
2)] vanishes and
is identical to (12) when g/
 → 0.

To quantify the disturbance of the system during the mea-
surement sequence we use the trace distance between two
density matrices D(ρ1, ρ2) = 1

2 Tr(|ρ1 − ρ2|) as a measure of
how much the system state after the measurement deviates
from the state prior to the interaction. The trace distance has
the properties of a metric in the space of density matrices and
a natural interpretation as the distinguishability between the
two states [49,50]. For a spin-1/2 particle the trace distance
between two states ρ1 and ρ2 with matrix elements (ρ1/2)i j has
the simple form D(ρ1, ρ2) =

√
a2 + |b|2, where a = (ρ1)11 −

(ρ2)11 and b = (ρ1)10 − (ρ1)10 are the differences in the popu-
lation and coherence of the two density matrices, respectively.

At first, we consider the trace distance between the initial
state ρi and the intermediate state after a strong or weak
measurement. For a strong von Neumann measurement we
have D(ρi, ρs) = 1

2 |cos α|, while for the weak measurement

D(ρi, ρw ) = 1
2 |cos α|(1 − e−g2/(2
2 ))

� D(ρi, ρs), (13)

demonstrating that the distinguishability between the state
prior to the measurement and the state after the measure-
ment is smaller for the weak-measurement case than in the
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projective counterpart. Interpreting D(ρi, ρs/w ) as the amount
the system state changes, or, equivalently, the amount of dis-
turbance caused by the measurement, confirms that a weak
measurement is minimally disturbing. For g/
 → 0, such
that D(ρi, ρw ) = 0, the initial state is undisturbed, but no
information is obtained. In the opposite limit g/
 → ∞ we
recover the effect of a projective measurement, leading to an
enhanced information gain in the trade-off for a larger state
disturbance [34]. Both measurements are nondisturbing for
α ∈ {π/2, 3π/2}, which is the case for a procedure which
initially prepares an eigenstate of the measured observable.

To quantify the difference between both experimental
schemes in terms of the corresponding amount of preserved
coherence (the populations remain unaltered), we show the
difference in the trace distances of both schemes D(α) =
D(ρi, ρs) − D(ρi, ρw ) for different values of the order pa-
rameter g/
 in Fig. 2(a). This is a direct measure of the
preserved coherence in a weak-measurement process and is
associated with the conservation of information inside the
system during a weak measurement. For larger D(α), and
thus smaller D(ρi, ρw ), the amount of preserved coherence
increases and is maximal for α ∈ {0, π} when the initial state
ρi = (|↑z〉 ± |↓z〉)(〈↑z| ± 〈↓z|)/2 is an equal superposition of
the eigenstates corresponding to the measured observable σz.
We observe that D(α) = 1

2 |cos α| exp[−g2/(2
2)] � 0, im-
plying that the strong measurement removes more information
carried by the system than a weak measurement, but in return
increases the information gain. This illustrates the fact that
a weak measurement is less disturbing and will be used to
obtain the trade-off relation between the information gain and
the system disturbance [33,34] in the following sections.

B. Distinguishability of two ensembles

The minimally disturbing characteristic of weak measure-
ment not only leads to the survival of coherence in the face
of performing a measurement but additionally helps us to
preserve the distinguishability of two different ensembles.
Suppose we prepare two different initial states ρi and ρ ′

i with
angles α and α′, respectively. Any measurement ultimately
leads to a reduced distinguishability of these two ensembles
due to the contraction property of the trace distance [50].
However, if the measurement is weak, the distinguishability
between the two ensembles will never be smaller than for a
projective measurement,

D(ρi, ρ
′
i ) =

√
1
2 [1 − cos(α − α′)]

�D(ρw, ρ ′
w )

= 1
2

√
(sin α − sin α′)2 + (cos α − cos α′)2e−g2/
2

�D(ρs, ρ
′
s) = 1

2 |sin α − sin α′|. (14)

The inequality D(ρw, ρ ′
w ) � D(ρs, ρ

′
s) has a geometrical in-

terpretation on the Bloch sphere. Recalling that after the
measurement the two ensembles of two-level systems are
described by mixed states ρ = 1

2 [1 + r · σ], where 1 is the
identity matrix, the bold σ is the vector of Pauli matrices, and
|r|2 � 1. In fact we have |rs|2 = sin2 α, and |rw|2 = sin2 α +
cos2 α exp[−g2/
2], and hence, |rs|2 � |rw|2. Thus, the two
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FIG. 2. (a) Measure of preserved information in the system (at-
tributed to preserved coherence) of a weak measurement compared
to a projective measurement D(α) = 1

2 |cos α| exp[−g2/(2
2)] for
different initial preparation angles α and order parameters g/
.
(b) Distinguishability of two different initial preparations ρi and ρ ′

i

prior to the measurement D(ρi, ρ
′
i ) (blue solid line) and following a

weak measurement on both ensembles D(ρw, ρ ′
w ) (gray dashed and

dotted lines) or projective measurement D(ρs, ρ
′
s ) (black dash-dotted

line). In all cases we have fixed α′ = 0.

mixed states after a strong measurement are each located on
a sphere with a smaller radius than in the weak-measurement
case.

The dependence of the distinguishability between two en-
sembles for the different measurement schemes, compared
to the initial distinguishability, can be seen in Fig. 2(b) (we
have fixed the preparation of the second ensemble to α′ =
0). The behavior of D(ρi, ρ

′
i ) (blue solid line) is expected

since the two ensembles have a maximal distinguishability
when the two states are orthogonal for α = π . For these or-
thogonal ensembles the distinguishability after the projective
measurement (black dash-dotted line) has vanished since the
measurement of σz will produce identical mixed states. To
enhance the distinguishability of the two ensembles compared
to a projective measurement, we can perform a weak mea-

062206-4



STATE DISTINGUISHABILITY UNDER WEAK … PHYSICAL REVIEW A 102, 062206 (2020)

surement (gray dashed and dotted lines) in order to minimally
disturb each ensemble and retain their distance.

Note that this distinguishability between two ensembles is
more robust against stronger coupling than the disturbance of
a single ensemble. In Fig. 2(a) a weak measurement for an
order parameter of g/
 = 3 is virtually equivalent to a pro-
jective measurement in terms of the state disturbance, whereas
for the distinguishability of two ensembles in Fig. 2(b) there is
still a significant distinction in the distinguishability between
a projective and a weak measurement for g/
 = 10.

The property of enhanced state distinguishability between
the two mixed states following a weak measurement com-
pared to the projective counterpart is directly manifested in the
enhanced probability of correct state identification P = 1

2 [1 +
D(ρ1, ρ2)], with the trace distance as the bias in favor of cor-
rect state identification for an optimal measurement strategy
[50]. We thus have Pw = 1

2 [1 + D(ρw, ρ ′
w )] � Ps. This could

be used to identify the possibly unknown interaction strength
g. Suppose two parties prepare orthogonal initial states, i.e.,
D(ρi, ρ

′
i ) = 1, and send these states through the same experi-

ment with unknown coupling strength. An observer receiving
ρw or ρ ′

w with equal probability can infer the coupling strength
g = 


√
2|ln(2Pw − 1)| from the obtained success probability

Pw of state identification following the unknown interaction.

C. The influence of postselection

We shall now investigate the consequence of the posts-
election measurement on the system, which projects on the

spin-up state along the η direction, with angle β to the x axis.
The system after the projective postselection measurement is
described by

ρ f =
(

1
2 (1 + sin β ) 1

2 cos β
1
2 cos β 1

2 (1 − sin β )

)
. (15)

First, we note that due to the postselection the two
different initial preparations ρi and ρ ′

i will be found in
identical final states ρ f = |↑η〉〈↑η |, independent of the pre-
vious measurement strength. Thus, from the perspective
of the system state the two initial ensembles cannot be
distinguished anymore, i.e., D(ρ f , ρ

′
f ) = 0. And by solely

observing the final state of the system no inference about
the type of the previous measurement can be achieved,
whereas this information is encoded in the probe state
disturbance [51].

In order to investigate the effect of the postselection on
the ensemble in more detail, we compare the postselected
final state ρ f with the case in which the final measurement
is nonselective. The state after the nonselective final mea-
surement is obtained when re-mixing all different outcomes
ρ f , weighted with the probability p f that the corresponding
measurement outcome was obtained. The state if then given
by ρ̄ = ∑

f p f ρ f and will contain dependencies of the initial
preparation and the type of previous measurement imprinted
in the probability of success p f . The trace distance between
the initial state and the final nonselective state ρ̄ for a general
intermediate measurement is

D(ρi, ρ̄ ) = 1
2

√
[A(α, β ) − B(α, β ) e−g2/(2
2 )]2 + [cos α + B(α + π/2, β ) − A(α + π/2, β ) e−g2/(2
2 )]2

, (16)

where A(α, β ) = sin α cos2 β and B(α, β ) =
cos α sin β cos β. In the strong and weak limits this simplifies
to D(ρi, ρ̄s) = 1

2

√
A(α, β )2 + [cos α + B(α + π

2 , β )]2 and
D(ρi, ρ̄w ) = 1

2 |sin(α − β )|, respectively. We found that
D(ρi, ρ̄s) � D(ρi, ρ̄w ). This is in agreement with the
inequality of Eq. (13) and the corresponding geometrical
interpretation that, due to the increased disturbance of
projective measurements, the states traverse a longer path on
the Bloch sphere. The distance measure in the strong D(ρi, ρ̄s)
(gray horizontal line) and weak D(ρi, ρ̄w ) (black dash-dotted
line) limits can be seen in Fig. 3. For comparison we show the
distance of the initial state with the two possible postselected
states D(ρi, ρ↑) =

√
1
2 [1 − cos(α − β )] (blue solid line) and

D(ρi, ρ↓) =
√

1
2 [1 + cos(α − β )] (blue dashed line). We

observe that D(ρi, ρ↑,↓) � D(ρi, ρ̄w ), which implies that the
distinguishability of the initial state and any postselected
final state is always larger than the initial state with the
nonselective final state following a weak measurement.
This inequality holds for arbitrary initial preparation α and
final postselection β. This demonstrates that the effect of
postselection is decisive if it follows a weak measurement
and can considerably increase the distinguishability of the
initial state in comparison to the nonselective measurement.
In contrast, for a previous projective measurement such

a general inequality cannot be found for arbitrary initial
preparations.

To analyze the consequence on the state distinguishability
caused by performing a postselection more generally, we con-
sider an arbitrary two-level system. The system is prepared
in the pure state ρi = |i〉〈i| and postselected on the final state
ρ f = | f 〉〈 f |. The nonselective final state is ρ̄ = p f | f 〉〈 f | +
p⊥| f⊥〉〈 f⊥|, with the probability of success p f (p⊥) for the
postselection ρ f (and the orthogonal state ρ⊥ = | f⊥〉〈 f⊥|).
The difference in the distinguishability for the selective and
nonselective final measurements obeys

D(ρi, ρ f ) − D(ρi, ρ̄ ) � D(ρi, ρ f ) −
∑

f

p f D(ρi, ρ f ), (17)

where we used D(ρi,
∑

j p jρ j ) �
∑

j p jD(ρi, ρ j ). Since
p⊥ = 1 − p f , we further have

D(ρi, ρ f ) − D(ρi, ρ̄ ) � (1 − p f )(|〈 f⊥|i〉| − |〈 f |i〉|). (18)

Since 0 � p f � 1, we find that D(ρi, ρ f ) � D(ρi, ρ̄ ) if
|〈 f⊥|i〉| � |〈 f |i〉|. Thus, when the projection of the initial
state onto the state orthogonal to the final postselected state
is larger than the projection onto the postselection itself,
the process of postselection leads to an enhanced distin-
guishability compared to the nonselective case. This holds
for arbitrary measurements and is in accordance with Fig. 3.
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FIG. 3. Distinguishability of the initial state D(ρi, ρ̄s,w ) from the
state after a nonselective final measurement of the spin in the η

direction for an intermediate projective (gray horizontal line) or weak
measurement (black dash-dotted line). For comparison we show the
distance of ρi with the postselected states ρ↑ = |↑η〉〈↑η | (blue solid
line) and ρ↓ = |↓η〉〈↓η | (blue dashed line) given by D(ρi, ρ↑,↓) =√

1
2 [1 ∓ cos(α − β )]. We have set β = 0.

However, the inequality for the intermediate weak measure-
ment D(ρi, ρ f ) � D(ρi, ρ̄w ) holds for arbitrary initial states
in a WV measurement protocol but, in general, not if the
previous measurement is projective.

We shall now relate the observed enhancement of the
state distinguishability between the initial state and the differ-
ent final states to the corresponding measurement outcome.
We have seen that any postselected subensembles in a WV
measurement protocol increase the distinguishability to the
initial state compared to the nonselective case. For the case
of postselecting ρ↑ = |↑x〉〈↑x |, the distance to the initial
state ρi = cos α/2|↑x〉 + sin α/2|↓x〉 is larger than between
ρi and the orthogonal state ρ↓ = |↓x〉〈↓x |, i.e., D(ρi, ρ↑) �
D(ρi, ρ↓), for α ∈ [π/2, 3π/2], namely, when the projection
of the initial state to the state orthogonal to the postselection is
larger than the projection to the postselection itself. This is the
same region of initial preparations α where the WV 〈σz〉WV =
tan(α/2) exceed the eigenvalue range (see Fig. 1). Note that
in the region of anomalous WV the contribution from the
coherence part |b|2 = (ρi )10 − (ρ↑)10 = 1

4 (cos α + 1)2 in the
trace distance D(ρi, ρ↑) exceeds the contribution from the
population a2 = (ρi )11 − (ρ↑)11 = 1

4 sin2 α.

IV. CHANGE IN THE POINTER STATE

In the previous section we quantified the state distur-
bance of the system during the measurement sequence. We
shall now analyze the change in the pointer state with re-
spect to the initial state σi = |φ〉〈φ|, represented by 〈q|φ〉 ∝
exp[−q2/(4
2)]. To quantify the change we use the fi-
delity as a distance measure between two states F (σ1, σ2) =
Tr(

√√
σ1σ2

√
σ1) [49]. Since the initial pointer state is pure,

the fidelity simplifies to F (σi, σ2) = 〈φ|σ2|φ〉.

A. Pointer state during the measurement sequence

If we perform a strong von Neumann measurement the
fidelity with the initial state vanishes, F (σi, σs) = 0, since
the postmeasurement state σs = ∑

ν〈χν |ρi|χν〉|q − gaν〉〈q −
gaν |, and the initial state is orthogonal (for aν �= 0). The
more interesting case is given if we perform a weak mea-
surement instead. The fidelity between the initial pointer state
and the state after the weak measurement interaction σw =∑

ν〈χν |ρi|χν〉e−igaν p|φ〉〈φ|eigaν p is given by

F (σi, σw ) =
∑

ν

〈χν |ρi|χν〉e−g2a2
ν/(4
2 ). (19)

For the specific case where we measure σz with the
initial system state ρi = |↑ξ 〉〈↑ξ | we found F (σi, σw ) =
exp[−g2/(4
2)].

Following this weak measurement we perform the postse-
lection on the system such that the final pointer state is given
by σ f = TrS (ϒ f ), where ϒ f is the total state in Eq. (5), and
thus, the fidelity with the initial state is

F (σi, σ f ) =
∑

νμ〈 f |χν〉〈χμ| f 〉〈χν |ρi|χμ〉e− g2

8
2 (a2
ν+a2

μ )

∑
νμ〈 f |χν〉〈χμ| f 〉〈χν |ρi|χμ〉e− g2

8
2 (aν−aμ )2
.

(20)

This is the exact fidelity between the initial pointer state and
the final state after a generalized measurement and postse-
lection. The fidelity between the initial state and the final
state following the approximate WV derivation in [7] yields
F (σi, σWV ) = exp[−g2(Re〈A〉WV )2/(4
2)]. Note that for the
ABL measurement protocol we trivially obtain a vanishing
fidelity, F (σi, σABL) = 0.

Considering the case of measuring σz with initial state ρi =
|↑ξ 〉〈↑ξ | and postselecting on |↑x〉 (corresponding to β = 0),
we found that the exact fidelity (20) is

F (σi, σ f ) = (1 + cos α)e−g2/(4
2 )

1 + cos α e−g2/(2
2 )
. (21)

In Fig. 4 we show the fidelity (21) for increasing coupling
strength g and different preparation procedures α. In the limit
of g � 
 the fidelity of the WV measurement F (σi, σWV ) =
exp[−g2 tan2(α/2)/(4
2)] is recovered, but we can see that
for larger coupling strength the WV is insufficient to de-
scribe the change in the pointer state and higher-order terms
need to be taken into account. In the projective measure-
ment limit g � 
 the fidelity vanishes. For comparison we
have shown the fidelity without postselection F (σi, σw ) =
exp[−g2/(4
2)].

However, we want to emphasize a feature of the pointer
fidelity in relation to the performed postselection. In Fig. 4
the fidelity between the initial state and the final state af-
ter postselection F (σi, σ f ) is larger than the fidelity without
postselection F (σi, σw ) for a preparation procedure with α1 =
0.3π , and in contrast F (σi, σ f ) is smaller than F (σi, σw ) for
the preparation angle α2 = 0.9π . The preparation procedure
of the initial state ρi(α) has a larger overlap with the final
postselected state |↑x〉 for α1 or with the orthogonal state |↓x〉
for α2. Thus, for the case of 〈↓x|ρi(α)|↓x〉 � 〈↑x|ρi(α)|↑x〉,
the initial state ρi(α) and final state |↑x〉 tend to become
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FIG. 4. Fidelity of the pointer state for increasing coupling
strength g. The fidelity of the initial state with the state following
a weak measurement and without postselection F (σi, σw ) (black
dotted line) is independent of the preparation procedure. If a post-
selection is performed, the fidelity of the initial state with the final
pointer state F (σi, σ f ) is shown for different preparation procedures
α1 = 0.3π [blue (dark gray) dashed line] and α2 = 0.9π [blue (dark
gray) solid line]. The fidelity for the WV outcome F (σi, σWV ) (light
gray dashed and solid lines) agrees with the exact result only in the
weak-coupling regime.

orthogonal, leading to a larger WV and hence an increased
pointer shift. This ultimately reduces the fidelity F (σi, σ f ).
We shall now prove that this property is not accidental for
the two angles shown but holds for a general initial state |i〉
and final state | f 〉 and corresponding orthogonal state | f⊥〉.
Essentially, we have to prove that

F (σi, σw ) � F (σi, σ f ) (22)

if |〈 f⊥|i〉| � |〈 f |i〉|. Inserting the expressions for the fidelity,
we find that cos α e−g2/(2
2 ) � cos α. This is true only if
cos α � 0, implying that α ∈ [π/2, 3π/2], which completes
the proof. Note that this is the same region of initial states
where the WV exceeds the eigenvalue range leading to
anomalous pointer shifts.

B. Relation to weak-value amplification

We have seen that the outcome of a weak measurement
including postselection can cause the pointer state shift al-
most arbitrarily large, leading to an enhancement effect for
measuring the small coupling parameter g. This effect of large
pointer shifts due to WV is used in the weak-value amplifica-
tion (WVA) technique, where a small signal can receive huge
amplification effects due to postselection [52]. This amplifi-
cation is at the expense of a reduced postselection probability
for the almost orthogonal initial and final states necessary to
obtain large pointer shifts. Nevertheless, the WVA technique
has been used to increase the measurement sensitivity of
small effects in various experiments, and it was shown that
WVA has an advantage in terms of quantum metrology by
reducing different types of noise and making use of quantum
resources [29,31,52–56]. Since the demonstrated advantage

depends on the assumptions made about the experimental
conditions, such as detector saturation or noise, there is still
ongoing debate about under which conditions WVA can out-
perform a conventional measurement scheme [38–40,57–59].
However, considering realistic experimental conditions, e.g.,
including detector saturation and noise, it was conjectured
[60] and shown [41] that WVA can outperform conventional
schemes and can approach the quantum Cramér-Rao bound
for parameter estimation [31,61].

In the following we want to answer the question, Which
measurement protocol provides the most unambiguous pa-
rameter detection to extract the classical information? The
larger the distinguishability between the initial state σi and
final pointer state σ f is, the higher the probability to un-
ambiguously correlate the measured pointer position to the
previous interaction. Thus, pointer readings are not mistak-
enly assigned to the interaction, while the pointer is actually
obtained from the initial position for large uncertainties. A
measure to quantify this distinguishability between the pointer
states is given by 1 − F (σi, σ f ), implying that it is favorable
to minimize the fidelity F (σi, σ f ) with respect to increasing
the unambiguous measurement detection.

In general, we observe that the fidelity of the pointer be-
tween the initial and final states F (σi, σ f ) is reduced for larger
coupling strength and vanishes for a projective measurement
(g � 
). For moderate coupling strength g � 
 the fidelity is
reduced when an additional postselection is performed on an
almost orthogonal final state (see Fig. 4). Thus, we assert that
a conventional projective measurement is favorable in terms of
an unambiguous retrodiction of the pointer shift. However, the
conditions on the parameters (g,
) are usually constrained
by the experimental setup. And since the aim of WVA is to
measure a very small parameter g, the constraint on 
 � g
for projective measurements is severe. Thus, when taking into
account this constraint imposed by the experimental setup the
fidelity between initial and final pointer states is nonvanishing.
Still pursuing the lowest-fidelity measure, we find that for
an experiment with fixed g � 
, the largest decrease of the
fidelity F (σi, σ f ) is observed when including postselection
on almost orthogonal initial and final states, precisely the
requirements of anomalous WV (Fig. 4). We thus observe that
under the possible constraint imposed by the experiment, a
weak-measurement protocol including postselection leads to
the largest detection sensitivity of the small coupling parame-
ter g.

Note that a weak measurement alone does not lead to a pro-
nounced decrease of the fidelity, and only in combination with
postselection on an orthogonal state is a significant decrease of
the fidelity observed. Thus, the unambiguous differentiation
of the pointer state before and after the measurement protocol
is enhanced by proper postselection, in accordance with the
observed increase of quantum Fisher information for postse-
lected weak measurements compared to weak measurements
alone [62].

V. BOUNDARY FOR MINIMAL
MEASUREMENT DISTURBANCE

We shall now quantitatively analyze the usual assump-
tion that in a WV measurement protocol the disturbance of
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the initial state is negligible during the intermediate weak
measurement [35]. We therefore define a lower bound for
the minimal state disturbance of the system in order to ex-
tract a desired amount of information in terms of the pointer
change.

A. Boundary from pointer perspective

To quantify the measurement sensitivity of the extracted
information from the pointer perspective, we will make use
of the pointer fidelity. The fidelity of the pointer state implies
that more information about the observable is extracted for
lower values, in the sense that it makes the outcome more
distinguishable from the initial state. We thus want to place an
upper bound on the pointer fidelity Fb, such that information
about the interaction can unambiguously obtained. Since the
fidelity reduces for larger coupling strength, we deduce the
minimum coupling strength gmin in order to obtain Fb for
the different measurement protocols.

For a weak measurement without postselection with
Fb(σi, σw ) = exp[−g2/(4
2)], we readily found that gI

min =
2


√|ln Fb|. However, if we perform a subsequent postselec-
tion on the system, we can solve (21) for gmin and obtain

gII
min = 2


√√√√√ln

⎡
⎣C(α) +

√
C(α)2 − 4F 2

b cos α

2Fb

⎤
⎦, (23)

where C(α) = 1 + cos α. We can now compare the argu-
ments of the square root from gI

min and gII
min to identify

the regime in which the coupling strength is minimized by
the postselection procedure. Assuming that gII

min � gI
min im-

plies that ln Fb � − ln[κ (α)/(2Fb)], where κ (α) = C(α) +√
C(α)2 − 4F 2

b cos α . This holds only when cos α � 0, i.e.,
α ∈ [π/2, 3π/2]. Thus, in the regime where initial and final
states become orthogonal, the postselection procedure can
improve the measurement sensitivity. This should be under-
stood in terms of obtaining the same pointer fidelity Fb as in
the case without postselection for a lower coupling strength
gII

min � gI
min.

If we insert these lower bounds for the coupling strength
into the trace distance of the system states of Eq. (13), we
have a quantitative measure for the actual state disturbance
after the intermediate weak measurement. We find that for the
weak-measurement case without postselection

DI
min(ρi, ρw ) = 1

2 |cos α|(1 − F 2
b

)
. (24)

Using the relation between trace distance and fidelity
D(σ1, σ2) �

√
1 − F (σ1, σ2)2 [49], we obtain a lower bound

on the state disturbance of the system with respect to the trace
distance of the pointer Dp(σi, σw ),

DI
min(ρi, ρw ) � 1

2 |cos α|D2
p(σi, σw ). (25)

This is the trade-off relation for the state disturbance of the
system state in terms of the pointer-state change.

However, with the implementation of an additional posts-
election, the minimal coupling strength needed to obtain the
same pointer fidelity Fb is different. Using (13) and (23), we
find for the minimal state disturbance
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FIG. 5. Trace distance of the system states of Eq. (13) as a
measure of the state disturbance for the measurement interaction
strength gmin to obtain a desired pointer fidelity Fb for different initial
preparations α1 = 0.3π (dotted lines), α2 = 0.6π (dashed lines), and
α3 = 0.9π (solid lines). A reduced state disturbance due to postse-
lection [blue (dark gray) solid and dashed lines] is found for α ∈
[π/2, 3π/2] compared to a weak measurement without postselection
(light gray solid and dashed lines).

DII
min(ρi, ρw ) = 1

2 |cos α|[1 − γ (α)F 2
b

]
, (26)

where γ (α) = 4/κ2(α). If γ (α) � 1, the distinguishability
between the initial state and the state following the weak
measurement is decreased compared to the nonpostselec-
tion scenario (24). We found that γ (α) = 4/κ2(α) � 1 if
cos α � 0, which is the case for α ∈ [π/2, 3π/2], and thus,
DII

min(ρi, ρw ) � DI
min(ρi, ρw ). Hence, a reduced state distur-

bance due to postselection is given for the same initial
preparation where we obtain anomalously large WV and a
reduced pointer fidelity. The state disturbance of (24) and (26)
can be seen in Fig. 5, where a considerably large advantage
in terms of a reduced disturbance due to postselection can
be found for the case of α3 = 0.9π (solid lines). Note that,
technically, the postselection itself does not reduce the system
state disturbance in the sense that it cures a previous larger
disturbance, but it allows us to operate the experiment with a
coupling strength gmin smaller than that for the case without
postselection in order to reach the same fidelity for the pointer
state Fb.

This observation is in accordance with the advantage of
the weak-value-amplification technique for small coupling
strength. If we wish to measure a small coupling parameter
g, the measurement sensitivity of the pointer can considerably
increase if a postselection on a system state orthogonal to the
initial state is performed.

B. Is the weak-measurement disturbance negligible?

We have seen that it is necessary to disturb the system in
order to extract any information from it [32–34], whereas the
disturbance of the system in a WV measurement protocol is
often neglected [35]. Thus, it is assumed that D(ρi, ρw ) � 0.
Given the lower bound of the coupling strength gmin for a
desired pointer fidelity, we can ask the question of whether the
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disturbance of the weak measurement is actually negligible or
not.

The disturbance of the system for the coupling strength
gmin needed to obtain the pointer fidelity Fb is given by
DII

min(ρi, ρw ) [Eq. (26)] and DI
min(ρi, ρw ) [Eq. (24)] for the

cases with and without postselection, respectively. For real-
istic experimental conditions with an initial state of angle
α = 170◦ and postselecting for β = 0, we found that the
state disturbance for a pointer fidelity of Fb = 0.1 is given by
DII

min(ρi, ρw ) = 0.06. And depending on the desired task, this
disturbance can be considered negligible. However, here we
have used the fact that following the weak measurement, post-
selection on the system is performed such that the minimal
coupling strength can be reduced to obtain the same pointer
fidelity as opposed to the case of a single weak measurement
without postselection in which gI

min � gII
min. Consequently, the

disturbance for the case without postselection for the same
experimental conditions is DI

min(ρi, ρw ) = 0.49 and can by no
means neglected.

Thus, for the measurement protocol including postselec-
tion, which can operate with smaller coupling strength to
obtain the same detection sensitivity, we found that the dis-
turbance due to the intermediate weak measurement can be
neglected. In contrast, a single weak measurement without
postselection will significantly disturb the system to reach the
equivalent measurement sensitivity.

Important for anomalous WV measurements is that the
initial, |i〉 = cos α/2|↑x〉 + sin α/2|↓x〉, and final, | f 〉 = |↑x〉,
states need to be almost orthogonal, resulting in a reduced
signal intensity due to postselection. Since the state distur-
bance during the weak measurement is usually neglected,
the success probability of the postselection measurement
outcomes is likewise approximated by Pap = |〈 f ||i〉|2 =
|cos α/2|2, whereas the exact postselection probability (7)
is given by Pf = 1

2 {1 + cos α exp[−g2/(2
2)]}. For the
experimental parameters above with gII

min from (23), we
found that Pap = 0.0076, but for the exact postselection
probability we have Pf = 0.071, which exceeds the
approximated postselection probability by nearly one order of
magnitude. The fact that the exact postselection probability
is considerably larger than the approximated overlap of
initial and final states provides a further advantage of the
weak-value-amplification technique in the sense that the true
number of counts is much larger than often assumed.

VI. CONCLUSIONS

We have analyzed the trade-off between the state dis-
turbance of the system and the change in the device state

for weak measurements with and without postselection. In
comparison to projective measurements, it holds, in general,
that the distinguishability of the initial system state from the
state following a weak measurement is reduced compared
to the projective case, i.e., D(ρi, ρw ) � D(ρi, ρs), while the
same relation holds for the distinguishability of the device
states, i.e., 1 − F (σi, σw ) � 1 − F (σi, σs). Thus, the trade-
off for an increased information gain of the device is the
larger system state disturbance. Due to the nonperturbative
approach we obtained the exact trade-off for the minimal
system state disturbance of a weak measurement DI

min in terms
of the pointer-state change. A lower bound for the distur-
bance in terms of the pointer distinguishability was obtained,
DI

min(ρi, ρw ) � 1
2 |cos α|D2

p(σi, σw ).
However, if subsequent postselection is performed, the

interaction strength can be considerably decreased while
maintaining the same sensitivity in the pointer distinguisha-
bility. We found that including postselection, DII

min(ρi, ρw ) �
DI

min(ρi, ρw ) if the initial and final states tend to be-
come orthogonal. The observed advantage of reduced state
disturbance in a weak measurement protocol including posts-
election is a collective effect of the preserved coherence and
corresponding minimal disturbance during the intermediate
weak measurement with the fact that when performing proper
postselection, a lower coupling strength is sufficient to obtain
the same pointer change. The fact that this combined effect
of weak measurement and postselection leads to a larger
pointer shift in the case of nearly orthogonal postselection
can significantly outperform a weak measurement alone. This
observation is therefore directly connected to the appearance
of anomalous weak values.

The analysis of quantum information measures and mea-
surement disturbance trade-off relations in weak measurement
schemes are of current interest [63,64] and are particularly
related to quantum metrology analysis, where it was re-
cently shown that the Fisher information of the measurement
outcome can be increased in the postselected subensemble
[31,65]. It would therefore be of direct interest if the shown
advantage of imaginary weak values for quantum metrology
[66] were likewise observed in the measurement disturbance
trade-off relation. We further believe that an extended anal-
ysis including open quantum systems [67,68] and the use
for quantum communication protocols [69] are of current
interest.
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