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Reconstructing two-dimensional spatial modes for classical and quantum light

Valentin A. Averchenko,1,* Gaetano Frascella ,2,3 Mahmoud Kalash,2,3 Andrea Cavanna,2 and Maria V. Chekhova2,3

1St. Petersburg State University, Ul’yanovskaya street 3, 198504 Saint Petersburg, Russia
2Max Planck Institute for the Science of Light, Staudtstr. 2, 91058 Erlangen, Germany

3University of Erlangen-Nuremberg, Staudtstr. 7/B2, 91058 Erlangen, Germany

(Received 5 September 2020; accepted 20 October 2020; published 30 November 2020)

We propose a method for finding two-dimensional spatial modes of thermal field through a direct measurement
of the field intensity and an offline analysis of its spatial fluctuations. Using this method, in a simple and efficient
way we reconstruct the modes of a multimode fiber and the spatial Schmidt modes of squeezed vacuum generated
via high-gain parametric down-conversion. The reconstructed shapes agree with the theoretical results.
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I. INTRODUCTION

One of the main tasks of statistical optics is to determine
the coherent properties of an electromagnetic field and, as
a consequence, unveil information about the generation and
propagation of the radiation. An important concept is the one
of radiation modes, i.e., solutions to the wave equation. Modes
can be viewed as space-time field distributions (or, alterna-
tively, field distributions in wave vector or frequency space)
where the field is coherent with itself but incoherent with
the field in other modes. Modes are most commonly chosen
as plane monochromatic waves, but there are more elegant
ways to define them. Examples, further used in this paper,
are coherent modes of thermal light [1,2], Schmidt modes
of a bipartite quantum system [3], and the spatial modes of
a multimode fiber. In all three cases, the retrieval of mode
shapes is crucial but not always a simple task.

In this work, we propose a simple method to retrieve the
spatial modes of multimode radiation. Using this method, we
solve two important practical problems from classical and
quantum optics. Namely, we experimentally reconstruct two-
dimensional (2D) spatial modes of a multimode optical fiber
and the Schmidt modes of the quantum radiation generated
through the high-gain parametric down-conversion (PDC).

The experimental reconstruction of the spatial eigenmodes
of a fiber, especially a microstructured one, is crucial since
the actual modes can deviate from the simulated ones. Some
of the reconstruction methods face computational complexity
[4] and require sensitive alignment of interferometers [5] or
cavities [6]. The most established technique is the S2 imaging
[7], which relies on the interference occurring inside the fiber
between the fundamental Gaussian mode and the higher-order
modes, therefore, it is alignment free. Yet, the wavelength of
the coupled light needs to be scanned with a tunable source
and the analysis can be time consuming for the interference
patterns, originally measured with a space-scanning fiber tip
[7], and more recently with a camera [8].
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For PDC radiation, the multimode structure is both an
advantage because it provides an additional resource in quan-
tum communication [9] and sensing [10], and a challenge to
describe. The use of the Schmidt mode framework simplifies
the photon correlations [3] for both low-gain [11] and high-
gain PDC [12]: a single Schmidt mode has photon-number
correlations only with itself or with a single matching mode.
Experimentally finding the Schmidt-mode profiles is therefore
important, but difficult to do in 2D space because the stan-
dard procedure for doing this, singular-value decomposition,
is only defined for one dimension. Until now, 2D coher-
ent modes of PDC have never been reconstructed, although
four-dimensional (4D) joint probability distributions for PDC
have been measured [13]. Instead, because higher-order spa-
tial modes are required for quantum communication, several
groups reconstruct the modes of the PDC radiation only in the
azimuthal degree of freedom, i.e., the orbital angular momen-
tum spectrum [14–16]. Alternatively, Schmidt modes can be
reconstructed in vertical and horizontal Cartesian dimensions
separately, if there is a corresponding symmetry [17]. How-
ever, this is not always the case.

Our approach to reconstruct 2D spatial modes includes the
following steps. First, we directly measure1 the intensity cor-
relation function, which allows us to find the field correlation
function for light with thermal statistics. This is indeed the
case for the output PDC radiation provided that only signal
or idler radiation is measured, and also for a fiber fed with
pseudothermal light.

The calculated spatial field correlation functions form 4D
arrays. We then convert each 4D array into a 2D one using an
array flattening procedure. Finally, a standard diagonalization
of the resulting array yields 2D profiles of the coherent modes
of the field and their integral intensities. In the case of PDC,
the coherent modes found with this procedure coincide with
the Schmidt modes of the down-converted radiation [18].

1The measurement of spatial intensity correlations can be done
with a standard camera. Measuring spatial field correlations requires
measurement of the field interference.
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FIG. 1. (a) Cross section of a light beam and chosen position
vectors ρ and ρ′. (b) Dividing the cross section into nine pixels and
numbering them in a row-major order.

Our method, applicable to a large number of cases, consists
of accessible measurement of intensity distributions and easy
data elaboration, therefore, it promises to outperform in terms
of simplicity all other methods.

Further, we describe the theory of our method in Sec. II.
Section II A defines the field and intensity correlation func-
tions and Sec. II B provides the link between them for thermal
light. The procedure of converting a 4D array into a 2D one is
described in Sec. II C, and the coherent-mode representation,
in Sec. II D. Section III is devoted to the experiment: Sec. III A
deals with the mode reconstruction for the high-gain PDC and
Sec. III B for the multimode fiber. Conclusions are made in
Sec. IV. In the Appendix B an analytical model for calculating
the field correlation function of twin beams of the high-gain
PDC is presented.

II. THEORY

In this section, we review the fundamental quantities of sta-
tistical optics like the field and intensity correlation functions
(CFs) and their interconnection for light with thermal statis-
tics. Then, we propose a method to reduce the dimensionality
of such quantities by reorganization of the distributions.
Finally, we discuss the importance of the coherent-mode rep-
resentation for the field CF.

A. Field and intensity correlation functions

Consider a monochromatic beam of light with a fre-
quency ω0 and fixed polarization propagating along the z axis
[Fig. 1(a)]. The electric field of the beam at a given cross
section with coordinates ρ = (x, y) and at a time t can be
modeled as

E (ρ, t ) ∝ a(ρ)e−iω0t + a+(ρ)eiω0t , (1)

where a(ρ) stands for the complex amplitude of the field at a
point ρ. In the quantum theory a(ρ) is an operator, with the
commutation relation [a(ρ), a+(ρ)] = δ(ρ − ρ′) (for exam-
ple, see [19]). The proportionality coefficient in the expression
(1) is chosen in such a way that the quantity

I (ρ) = a+(ρ)a(ρ) (2)

gives the photon-flux density in photons per unit area of the
beam cross section.

The spatial CF of the field amplitude reads as

G(1)(ρ, ρ′) ≡ 〈a+(ρ)a(ρ′)〉, (3)

where brackets stand for classical or quantum ensemble av-
eraging. The function represents correlations of the field at a
pair of points (or pixels) in the transverse plane [Fig. 1(a)].
Here and further we consider only equal-time correlations,
therefore, the dependence of the correlation function on time
is omitted. Note that the mean intensity at point ρ is given by
the diagonal value of the CF:

〈I (ρ)〉 = G(1)(ρ, ρ). (4)

If the function is known in one transverse plane, then it can
be calculated in another transverse plane along the light prop-
agation using the corresponding propagation equation for the
CF, for example, from [20].

There are several experimental methods to reconstruct the
field CF (for example, see [21] and references therein). In this
work, we reconstruct the first-order CF of the field from the
measurement of the intensity CF, which reads as

〈I (ρ)I (ρ′)〉 = 〈a†(ρ)a(ρ)a†(ρ′)a(ρ′)〉. (5)

It characterizes correlations of intensities at two points of the
beam cross section. The function can be reconstructed via
repetitive measurements of the point-by-point cross-section
intensity and calculating pairwise correlations of intensities
(e.g., using a camera and processing the data).

B. Link between first- and second-order correlation
functions for thermal light

In this paper, we consider light with thermal statistics.
Such light is emitted by thermal and chaotic sources, for
example, through the spontaneous uncorrelated emission of
many atoms. Also, the signal and idler beams generated by
PDC have thermal statistics. For thermal light, field and in-
tensity CFs (3) and (5) are related as (see Appendix A for the
derivation)

〈I (ρ)I (ρ′)〉 = |G(1)(ρ, ρ′)|2 + 〈I (ρ)〉〈I (ρ′)〉
+ 〈I (ρ)〉δ(ρ − ρ′). (6)

The last term is due to the quantization of the field energy.
Formally, it appears after the normal ordering of the operators
in the expression (5), using the commutation relation. The
term contributes to the fluctuations of the intensity at a given
transverse point of the light beam, such that the variance of the
fluctuations is proportional to the average intensity at a given
point. In optical measurements it manifests itself as a shot
noise of photodetection. For intense enough light (number
of photons per coherence area is much greater than one), its
contribution is relatively small and can be neglected. In this
case, Eq. (6) is known as the Siegert relation [2]. Contrary, the
relative contribution of this noise increases for low-intensity
single-photon fields.

This relationship between CFs has been used in the
Hanbury-Brown-Twiss (HBT) experiment to solve the in-
verse problem: reconstruct the field amplitude correlations
and estimate the characteristics of the emitters, like stars, by
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measuring the intensity correlations. Indeed, one can estimate
the modulus of the first-order CF by inverting Eq. (6):

|G̃(1)(ρ, ρ′)| ≈ √〈I (ρ)I (ρ′)〉 − 〈I (ρ)〉〈I (ρ′)〉, (7)

where the shot-noise term is neglected. The right-hand side of
Eq. (7) is the square root of the intensity covariance, which
characterizes the correlation of the intensity fluctuations at
two points of the beam cross section:

Cov(ρ, ρ′) = 〈δI (ρ)δI (ρ′)〉, (8)

where δI (ρ) = I (ρ) − 〈I (ρ)〉. Equation (7) allows one to re-
store the first-order CF of a thermal field completely provided
there is no phase modulation, i.e., G(1) = |G(1)|.

C. Full dimensionality of the correlation functions

In this section, we consider the full dimensionality of only
the first-order field CF (3), but all the following statements can
be easily applied to the intensity CF (5) (that will allow one
to determine the 2D modes of intensity fluctuations, similar
to the use of principal component analysis, for example in the
work [22]). The function G(1)(ρ, ρ′), containing information
on the correlations of the complex field amplitude for all pairs
of points depends in general on four spatial scalar coordinates.
Indeed, the position of each point can be specified by two
Cartesian coordinates ρ = (x, y), as shown in Fig. 1(a), or
by two polar coordinates (ρ, φ). The values of the functions
can be arranged in four-dimensional arrays2 but one cannot
simply visualize such arrays and analyze correlations in this
representation.

Here are some examples of situations where this problem
does not occur. First, when the radiation field is statisti-
cally homogeneous and isotropic in the cross section, the
CF depends only on the distance between the cross-sectional
points, namely, on a scalar: G(1)(ρ, ρ′) = G(1)(|ρ − ρ′|). Sec-
ond, when the field properties are symmetrical with respect to
the propagation axis, the CFs are factorable in two variables,
e.g., in ρ, φ, and G(1)(ρ, ρ′) = G(1)

R (ρ, ρ ′) G(1)
A (φ, φ′). In this

particular case, radial and azimuthal CFs, respectively, indi-
cated with subscripts R and A, can be analyzed independently
and the values of each function G(1)

R,A can be also arranged in
two-dimensional arrays and analyzed (see, for example, [23]).
Similarly, in some cases the factorization takes place for x and
y Cartesian coordinates [17].

In the general case of spatially nonuniform and non-
isotropic field in the transverse plane, the visualization
problem of field correlations and their analysis can be treated
as follows.

We reorganize the 2D field distribution by renumbering all
the transverse-plane points in the order shown in Fig. 1(b).
Of course, different ways of reorganization into 1D arrays are
possible. In the next step, we arrange the 4D distribution of
the CF into a 2D array as follows:

{G(1)(ρn, ρm)} →

⎛
⎜⎝

G(1)(ρ1, ρ1) G(1)(ρ1, ρ2) . . .

G(1)(ρ2, ρ1) G(1)(ρ2, ρ2) . . .
...

...
. . .

⎞
⎟⎠. (9)

2We consider the values of functions for a discrete set of points
because in the experiment we use a camera with pixels.

Here, the first line of the array contains information on the
correlations of the field at the first point with the field at the
first point (autocorrelation), at the second point, and so on.
The second line contains information on the correlations of
the field at the second point with the field at the first point, at
the second point, etc., while the nth line of the array contains
information about the field correlations at the nth point with
the fields at all other points. This reorganization procedure
leads to a visual 2D representation of the field correlation data
at all points of the transverse plane.

The above procedure to replace a 4D array with a 2D one
is similar to tensor reshaping, i.e., a bijective map between an
order-d tensor and an order-k tensor, where k < d . Particular
examples of the reshaping are called array and tensor flatten-
ing, matricizations, unfolding.

Aside from the visual representation of 2D field correla-
tions, such an approach allows us to calculate numerically the
coherent modes of the field, which are discussed in the next
section.

D. Coherent modes

The first-order CF of the field is Hermitian, i.e.,
G(1)(ρ, ρ′) = (G(1)(ρ′, ρ))∗, according to its definition (3).
Thus, according to Mercer’s theorem, it admits the represen-
tation

G(1)(ρ, ρ′) =
∑

m

λmu∗
m(ρ)um(ρ′), (10)

whose eigenvalues λm and eigenfunctions um(ρ) satisfy the
integral equations∫

G(1)(ρ, ρ′)um(ρ′)dρ′ = λmum(ρ). (11)

If the eigenvalues are not degenerate, they can be ordered,
for example, in descending order and numbered accordingly.
Also, they can be numbered according to the spatial character-
istics of the eigenfunctions. In this case, multiple indices can
be used. The values are non-negative, and the functions are
orthogonal and typically taken to be orthonormal. Equation
(10) is called the coherent-mode representation of the first-
order CF and the functions um(ρ), the spatial coherent modes
of the field [1,2].

Using Eq. (4), one can see that the average intensity dis-
tribution of the beam is given by the sum of modulus-squared
coherent modes multiplied by the weights λm:

〈I (ρ)〉 =
∑

m

λm|um(ρ)|2. (12)

Thus, λm can be considered as the integral intensity of the
coherent mode with index m. The distribution of the weights
depends on the light generation process. The effective number
of coherent modes can be estimated with3

K =
(∑

λm
)2

∑
λ2

m

. (13)

3One notes that
∑

λm = 1 when the eigenvalues are normalized.
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FIG. 2. Experimental setup for the reconstruction of the modes
for high-gain PDC (a) and for a multimode fiber (b). BBO, β-barium
borate crystal; DM, dichroic mirror; L, lens; BP, band-pass filter;
CCD, charge-coupled device camera; GGD, ground-glass disk; MF,
multimode fiber.

If there is just a single term in the decomposition in Eq. (10),
then K = 1 and the beam is referred to as single mode. Then,
the first-order CF is factorable and the light field is fully
spatially coherent.

The field representation as a sum of fields of coherent
modes has several applications [24]. We can stress a few of
them. First, Eq. (10) shows that coherent-mode representa-
tion gives information about the field correlations in a cross
section: knowing the coherent modes, one can restore the
first-order CF. This is convenient for describing spatial cor-
relations in the general case of nonuniform and nonisotropic
fields, where the values of the CF form a multidimensional
array. Indeed, if a CF is represented by a 4D array, then
coherent modes constitute 2D arrays and can be visualized
in a 2D density plot. Second, the profiles of coherent modes
and the distribution of their integral intensities give an ad-
ditional insight into the light generation process [25,26].
Third, the propagation of a partially coherent light beam can
be viewed as an independent propagation of fully coherent
modes. Fourth, the representation of a partially coherent field
as a sum of coherent-mode fields enables solving a number of
problems, e.g., spatial filtering with minimal losses to obtain
fully coherent radiation. Indeed, from Eq. (10) it follows that
it is necessary to filter all modes, except the mode with the
highest eigenvalue.

The coherent-mode decomposition of a 4D CF can be done
as follows. First, the CF values for the discrete point set are
presented4 as a Hermitian 2D matrix as described by Eq. (9).
Then, the search for the matrix’s eigenvalues and eigenvectors
is performed. Each eigenvector is then transformed into a
matrix as

⎛
⎜⎝

um(ρ1)
um(ρ2)

...

⎞
⎟⎠ ρ=(x,y)→

⎛
⎜⎝

um(x1, y1) um(x2, y1) . . .

um(x2, y1) um(x2, y2) . . .
...

...
. . .

⎞
⎟⎠. (14)

4An alternative numerical approach: representation of values of a
multidimensional correlation function in a discrete basis set [27,28].

FIG. 3. Single-shot intensity distribution for the PDC signal
emission in the far field as a function of the external angles. Here and
below, the intensity distributions are normalized to the corresponding
maximum values.

This procedure is inverse to the unfolding procedure. As a
result, one gets 2D “profiles” of coherent modes of the field
with a given first-order CF G(1).

III. EXPERIMENT

Here we consider two sources of light: one of the twin
beams generated through high-gain PDC and the output radia-
tion of a multimode fiber fed with thermal light. Both sources,
as mentioned in the Introduction, have thermal statistics. We
measure the spatial distribution of the intensity fluctuations in
the beam cross section for each source with the experimental
setups shown in Fig. 2 and reconstruct the first-order CFs and
the coherent modes of the fields. The obtained experimental
results we compare with the ones of the theoretical models.

A. High-gain PDC

In the first case considered, the light is generated via high-
gain PDC in a second-order nonlinear transparent crystal, as
shown Fig. 2(a). Pump photons can be annihilated to create
twin beams, usually referred to as signal and idler and distin-
guished by polarization, frequency, or propagation direction.
The PDC is in the high-gain regime when the number of pho-
tons per spatial and frequency mode is larger than one [29].
Conservation of momentum during the process leads to quan-
tum photon-number correlations between groups of signal and

FIG. 4. |G(1)| distribution for the PDC emission with vertical
coordinate fixed to zero as a function of the external angles with
(a) and without noise (b).
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FIG. 5. Weights of the Schmidt modes for PDC light recon-
structed from the experiment (blue squares) and from the simulation
(red diamonds). The weights are normalized to their sum up to the
200th mode.

idler wave-vector (plane-wave) modes.5 However, there exists
a basis of signal and idler spatial modes, so-called Schmidt
modes of PDC, in which the correlations are simplified: each
signal mode is only correlated in photon number with a single
matching idler mode [30]. The knowledge of the Schmidt
modes is important for quantum information applications.

One can show that the Schmidt modes of the bipartite
system formed by both signal and idler beams coincide with
the coherent modes of the two subsystems taken separately
[18]. Because each of the twin beams has thermal statistics
[31], based on the results of Sec. II, the Schmidt modes can
be reconstructed from the analysis of the intensity CF of just
one beam.

To generate twin beams through type-I collinear degenerate
PDC, we use a 2-mm β-barium borate (BBO) crystal and

5There are also photon-number correlations between frequency
modes. However, here we focus on the wave vectors and do not
consider the frequency degree of freedom.

the pump at 354.67 nm from the third-harmonic beam of a
Nd:YAG laser. The 18-ps pulses at a repetition rate 1 kHz
and average power 117 mW are needed to reach the high-gain
regime. After the generation of PDC radiation, the pump is
rejected with a dichroic mirror (DM).

CCD camera triggering is synchronized with the pump
pulses. Thus, a single-shot measurement of spatial intensity
distribution of the signal pulses is achieved. A set of 3000
single-shot intensity distributions is captured in the focal
plane of lens L (focal length f = 40 mm). Figure 3 shows
the far-field intensity distribution, plotted versus two Carte-
sian angles. These angles, called external because computed
outside the crystal, are found as the ratio of the Cartesian
transverse wave-vector components and the PDC signal wave-
vector modulus. Further, we analyze the spatial correlations
of intensity within individual pulses, so we consider only
equal-time correlations, described by the expression (5).

We use a band-pass filter (BP) centered at 700 nm with
a bandwidth of 10 nm attached to the camera for frequency
filtering. By using a central wavelength detuned from the de-
generate one (709.3 nm), we remove the idler modes matching
with the signal. In this way, we select only one of the twin
beams and the typical cross correlation of intensity fluctu-
ations between signal and idler modes disappears [23,32].
Since the detuning from degenerate wavelength is small, the
reconstructed modes do not differ from the eigenmodes of the
degenerate PDC.

Given the high number of frequency modes selected, the
intrinsic fluctuations of the twin-beam power are weak. But
the pump excess noise induces additional power fluctuations
and, in this case, we find that the first coherent mode erro-
neously resembles the average intensity distribution. To avoid
this, we normalize each image to the integral intensity and
thus eliminate the effect of all pulse-to-pulse power fluctua-
tions. This normalization results in a small negativity of the
covariance distribution, which, as an artifact of this proce-
dure, is rejected by taking the real part of the square root
in Eq. (7). One can propose another method, potentially free

FIG. 6. First 70 experimentally reconstructed modes for PDC radiation.
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FIG. 7. First 70 simulated modes for PDC radiation. See Appendix B for details of the simulation.

from the indicated artifact and based on the mode analysis of
spatial fluctuations of the field intensity (similar to the work
[22]). Namely, using the procedure described in Sec. II C, one
can establish the mode (and its statistical weight) associated
with fluctuations of the pump intensity. The two-dimensional
profile of the mode should coincide with the average signal
field intensity. By postprocessing the data, one can effectively
filter out the specified mode from the correlation matrix and
exclude the corresponding excess noise.

The far-field intensity correlation distribution from the re-
organization procedure explained in Sec. II C would require
a high-resolution plot. Therefore, we show only a distinctive
feature of the correlations from a 1D cut of Fig. 3, namely,
with the vertical coordinate fixed to zero. Following the pre-
scription in Eq. (6), from the covariance distribution we obtain
the |G(1)| distribution shown in Fig. 4(a). Here, one can see
correlations for the external angles equal within a ∼7 mrad
range. We remove the noise present in the distribution from
residual cross correlations and correlations from almost-zero

FIG. 8. Fidelity from Eq. (15) of the first eight reconstructed (see
Fig. 6) and simulated (see Fig. 7) modes of the PDC radiation.

intensity, to obtain better results in the reconstruction: see
Fig. 4(b).

Figures 5 and 6 show the results of the eigenvalue decom-
position of the reorganized |G(1)| with normalized weights.
The distribution of the experimental weights shown in blue in
Fig. 5 fits well with the exponential decay (shown with a solid
line), as expected from the theory [11]. The effective number
of coherent modes computed with Eq. (13) is Kex = 46 ± 5.
The theoretical weights shown in red in Fig. 5 show little
discrepancy with respect to the one from the experiment. The
calculated Schmidt number for the first 200 simulated modes
is Kth = 52 which is close to the experimental value. The
eigenmodes reconstructed up to the 70th (Fig. 6) resemble the
Hermite-Gauss modes, but show a small asymmetry that can
be attributed to the ellipticity of the pump.

In Appendix B we present a theoretical model that allows
to calculate numerically the first-order CF. We find good
agreement between the fit and the experiment (in terms of
angular width of the far-field PDC emission, angular width of
Schmidt modes, distribution of weights) for the following val-
ues of the simulation parameters: phase mismatch parameter
�0 = −50 m−1, pump FWHMx = 140 μm, pump ellipticity

FIG. 9. (a) Average far-field intensity distribution from the ex-
periment. (b) The far-field intensity distribution reconstructed from
eigenmodes and eigenvalues.
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FIG. 10. Single-shot intensity distribution at the output of the
fiber in the near field as a function of Cartesian coordinates.

ε = 1.2, parametric gain G = 3.8. Obtained theoretical modes
are shown in Fig. 7. The small diagonal inclination of the
experimental modes with respect to the simulated ones can be
associated with the fact that in the experiment the transverse
pump profile is elongated along the slightly rotated vertical
axis. Furthermore, the order of simulated modes (i.e., weights
of the modes) is sensitive to the ellipticity parameter of the
pump beam, as well as a phase mismatch, chosen in the
simulation (see Appendix B). This may explain that the order
of the experimental and simulated modes is different in some
cases, for example, for modes with numbers 15, 16, 17. Also,
a number of experimental mode pairs, e.g., (10,11), (20,21),
(29,30), resemble the hybridization of theoretical mode pairs
(10,11), (20,21), (28,30), respectively. It may be related to the
proximity of the experimental mode weights (see Fig. 5) and
degeneracy of the modes.

The agreement between the simulated and experimental
modes can be tested with the fidelity, defined as

F =
∫

dρ ue(ρ)us(ρ), (15)

where ue and us correspond to normalized two-dimensional
mode distributions in the experiment and in the simulation.

Figure 8 shows very high fidelity for the first eight modes
of the PDC source, confirming the accuracy of the reconstruc-
tion procedure.

Figure 9(a) shows the intensity distribution of the far-field
PDC emission averaged over the 3000 images, with a FWHM
of ∼36 mrad. The visible imperfections are due to the optics.
To check the validity of our reconstruction method, we show
in Fig. 9(b) the far-field intensity distributions obtained from
the modes and weights by using Eq. (12).6 The overlap be-
tween the two average distributions is above 0.99.

B. Multimode fiber

As a proof-of-principle experiment, we reconstruct the
eigenmodes of a step-index fiber with 8.2-μm core (SMF28

6The reconstructed intensity distributions do not change whether
we consider 70, 200, or all 10 000 modes, because the weights decay
exponentially.

FIG. 11. |G(1)| distribution for the vertical cut of the output fiber
intensity distribution at zero horizontal position with (a) and without
noise (b).

Thorlabs). Such a fiber supports a single mode in the infrared
range, but it is multimode for visible light. The solutions to
the Helmoltz equation for this weakly guiding fiber are the
well-known linearly polarized (LP) modes [33]. We compare
the experimental results with the theory to validate our recon-
struction method. In general, we point out that the coherent
modes of a fiber coincide with the eigenmodes, hence the
importance of this reconstruction method.

To generate light with a pseudothermal intensity distribu-
tion, we impinge the second-harmonic beam at 532 nm from
the pulsed Nd:YAG laser described in Sec. III A on a rotating
ground-glass disk (GGD), as shown in Fig. 2(b). The speckle
pattern obtained from the beam is coupled into the fiber with a
10× microscope objective. The distances from disk to objec-
tive and from objective to fiber are chosen such that the disk
is imaged onto the tip of the fiber with demagnification 0.1.

The tip of the fiber at the output is then imaged on a CCD
with another microscope objective providing a magnification
of 71 ± 1. We acquire a set of 2000 single-shot images, one
of which is shown in Fig. 10 as a function of two Cartesian
coordinates. Following the reorganisation procedure on the
intensity distributions, we compute the covariance and by
square root obtain the near-field first-order CF.

In Fig. 11(a), we only show |G(1)| distribution for the
intensity profile at zero horizontal position. This distribution
presents correlations not only along the main diagonal within
a 2-μm range, but also for the antidiagonal (opposite positions

FIG. 12. Experimentally reconstructed normalized weights of
the fiber modes.
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FIG. 13. First 24 reconstructed modes of the fiber. The black dashed line shows the core-cladding interface.

close to the center of the core). The noise due to correlation
with the camera dark noise is removed, as shown in Fig. 11(b).

We decompose the reorganized |G(1)| to obtain the eigen-
modes and eigenvalues and the results are shown in Figs. 12
and 13. The distribution of the weights fits well an exponential
function (shown with a solid line) and the effective number of
coherent modes computed from Eq. (13) is 18 ± 2. This value
agrees well with the theoretical value of 19 modes, obtained
from the V number of the fiber [33]; given the high number
of modes at the input of the fiber, we expect to populate all
supported modes. The reconstructed eigenmodes resemble the
LP modes, which are solutions of the Helmholtz equation
for a multimode step-index fiber. The orientation in terms of
azimuthal angle of the reconstructed modes may vary due to
the fact that the fiber is not maintaining polarization. The
simulated LP modes are shown in Fig. 14 for comparison.
Here, the modes are sorted according to the radial and az-
imuthal indices (m, l ) and the black dashed line represents the
core-cladding interface. The blank slots are modes that cannot
propagate inside the fiber. All the solutions with l �= 0 are
related to a solution with azimuthal index −l . These modes
are not shown because they differ only in the phase profile,

but they should be counted to reach the number of supported
modes.

To prove the validity of the reconstruction method, we eval-
uate the fidelity of the experimental and theoretical modes,
defined in Eq. (15). Figure 15 shows that the fidelity for the
selected modes is always above 85%.

The near-field intensity distribution averaged over the 2000
images is shown in Fig. 16(a). We point out that the mode
content, and consequently the average intensity distribution,
is highly dependent on the light coupling into the fiber; in
our case, we adjusted the input objective to couple most light
along the fiber axis. To check the validity of our reconstruc-
tion method, we show in Fig. 16(b) the intensity distribution
obtained from the modes and weights by using Eq. (12). The
agreement between the two distributions is good.

IV. CONCLUSION AND OUTLOOK

We have presented an experimental method that allows to
determine 2D profiles of the thermal field modes using direct
measurement of the field intensity and offline analysis of its
spatial fluctuations. In particular, using this method, we solved

FIG. 14. LP modes, simulated for the fiber. The black dashed line represents the core-cladding interface.
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FIG. 15. Fidelity from Eq. (15) of five selected fiber modes from
the reconstruction (see Fig. 13) and the theory (see Fig. 14).

two practical problems of classical and quantum optics: we
correctly reconstructed two-dimensional modes of a multi-
mode optical fiber and modes of down-converted radiation,
in an experimentally simple and efficient way.

The advantages of the proposed method are as follows.
First, modes are reconstructed based on a relatively simple
measurement of field intensity correlations. It is similar to
the advantages of the intensity interferometer in the HBT
experiment compared to the field interferometer. Second, the
procedure allows one to reconstruct 2D profiles in a general
case of spatially nonuniform and nonisotropic light fields.

The method is applicable to arbitrary thermal fields.
Furthermore, the analysis of multidimensional correlations
proposed in this work can also be used for fields with non-
thermal statistics. The limitation of the proposed procedure
is that the correlation function of the field must be real and
non-negative.
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APPENDIX A: DERIVATION OF THE SIEGERT RELATION

Here we draft the derivation of the Siegert relation (6) with
the shot-noise term. The first step is to apply the commutation
relation [a(ρ), a+(ρ)] = δ(ρ − ρ′) in the expression of the
intensity correlation function (5). One gets

〈I (ρ)I (ρ′)〉 = 〈a+(ρ)a+(ρ′)a(ρ)a(ρ′)〉
+ 〈a+(ρ)a(ρ′)〉δ(ρ − ρ′). (A1)

For a field obeying Gaussian statistics (i.e., chaotic or ther-
mal light) the first term with the normal ordering of operators
can be calculated as follows (for example, see [34]):

〈a+(ρ)a+(ρ′)a(ρ)a(ρ′)〉 = 〈a+(ρ)a+(ρ′)〉〈a(ρ)a(ρ′)〉
+ 〈a+(ρ)a(ρ)〉〈a+(ρ′)a(ρ′)〉
+ 〈a+(ρ)a(ρ′)〉〈a+(ρ′)a(ρ)〉.

(A2)

Here, the first term is equal to zero for chaotic and thermal
fields. The second term is the product of average intensities
at two spatial points. The last term is a modulus squared
of the first-order correlation function of the field (3). Thus,
combining expressions (A1) and (A2) one reproduces the
relation (6).

APPENDIX B: CALCULATION OF COHERENT MODES
OF DEGENERATE HIGH-GAIN PDC

Here, we calculate coherent modes of the bright twin
beams described in Sec. III A. We assume degenerate regime
of PDC (wavelengths of signal and idler beams coincide) and
use the following approximate expression for the signal and
idler field correlation function [35] measured in the far-field
zone of the nonlinear crystal

G(1)(q, q′) ∝
∫∫

dρ ei(q−q′ )ρA2
p(ρ)

× sinh 
(q, ρ)L


(q, ρ)

sinh 
(q′, ρ)L


(q′, ρ)
. (B1)

Here, q, q′ are transverse wave vectors of the generated field.
Ap(ρ) is the spatial profile of the pump beam at the input face
of the crystal and ρ is the transverse coordinate in the cross
section of the pump beam. L is the length of the nonlinear
crystal. We use the following definitions:


(q, ρ) =
√

σ 2A2
p(ρ) − �2(q)/4, (B2)

�(q) = �0 − |q|2/ks. (B3)

Here, σ is a constant proportional to the effective second-
order susceptibility of the nonlinear crystal characterizing the
downconversion process; �0 is a phase mismatch parameter
that depends on the crystal dispersion; kp,s = 2πnp,s/λp,s are
wave numbers of the pump and signal fields at the central
pump frequency and half of the pump frequency.

The expression (B1) is applicable for the case of the
“narrow-band pump,” i.e., the characteristic angular width of
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FIG. 17. Correlation function for the PDC emission (B1) with
the vertical coordinate fixed to zero (i.e., qy = q′

y = 0) as a function
of the external angles, defined as θ = qx/ks and θ ′ = q′

x/ks.

the pump beam is much smaller (but finite) than the angular
width of PDC. We assume that pump beam has flat phase front
and the Gaussian transverse amplitude profile

Ap(x, y) = G

σL
exp

[−(x2 + y2/ε2)/2w2
p

]
. (B4)

Here, G is equal to the parametric gain [36]. We also intro-
duce the pump ellipticity parameter ε to take into account the
possible asymmetry of the pump beam: the x-axis beam size
is characterized by a full width at half-maximum FWHMx =
2
√

ln 2 wp (with wp being the beam waist) and the y-axis size
is FWHMy = ε FWHMx. The characteristic angular width
of the pump beam defined as in Ref. [35] is δq0 = √

2/wp,
while for PDC it is q0 = √

kp/2L assuming wavelength de-
generacy. For the experimental conditions of L = 2 mm, λp =
355 nm, and np = 1.7, the “narrow-band pump” condition is
fulfilled when FWHM  30 μm.

In the expression (B1) we also assume that the pump
beam (i) does not diffract,7 (ii) has no walk-off in the crystal,

7For a pump with FWHM = 100 μm, the Rayleigh length is 10 cm
and substantially exceeds the experimental crystal length.

FIG. 18. Diagonal (solid blue line) and antidiagonal (dashed red
line) values of the simulated correlation function from Fig. 17.
Corresponding values of the experimental correlation function from
Fig. 4(b) are shown with dots.

FIG. 19. Simulated average intensity.

(iii) is monochromatic. Due to imperfect crystal alignment,
the phase mismatch parameter �0 can be slightly nonzero.
Such deviation is hard to fix in the experiment but affects the
shape of the intensity distribution of signal and idler photons.

Below we present the calculation for the following param-
eter values: phase mismatch parameter �0 = −50 m−1, pump
FWHMx = 140 μm, ellipticity ε = 1.2, parametric gain G =
3.8.

Figure 17 shows calculated correlation function for the
PDC emission (B1) with vertical coordinate fixed to zero (i.e.,
qy = q′

y = 0) as a function of the external angles, defined as
θ = qx/ks and θ ′ = q′

x/ks.
Figure 18 presents comparison of the diagonal and antidi-

agonal values of the simulated (Fig. 17) and experimental
[Fig. 4(b)] correlation functions. It is worth mentioning that
diagonal values of the correlation function determine the in-
tensity profile of the signal beam (in this case, at qy = 0),
according to Eq. (4).

Figure 19 shows the calculated transverse signal intensity
distribution. Further, we reorganize the values of the cal-
culated correlation function into a 2D array following the
procedure shown in the expression (9) and we diagonalize
the array using Eq. (11). The eigenvectors obtained with di-
agonalization of the correlation function are transformed into
matrices according to the procedure presented in (14). As a
result, one gets two-dimensional Schmidt mode profiles which
are shown in Fig. 7. Particularly, Fig. 20 shows the spatial
profile of the first simulated Schmidt mode.

FIG. 20. Spatial profile of the first calculated Schmidt mode.
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