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Dissipative phase transition in a mirrorless optical parametric oscillator
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We experimentally demonstrate a dissipative phase transition in a mirrorless optical parametric oscillator
(MOPO) using a double-� system in thermal atomic vapor. Bistable behavior is observed in the output power
of the beams generated via the MOPO with the variation of the input power of the driving fields. We show that
the long-lived hyperfine ground-state coherence induced by the Gaussian pump and the generated fields leads
to the observation of optical bistability in the MOPO threshold. We further study the critical slowing-down of
nonequilibrium dynamics in the vicinity of the forward threshold where the switching time of the generated
fields diverges with the critical exponent, α = −0.86 ± 0.02. Our observations pave the way to understanding
and characterizing the phase transitions in driven-dissipative systems using a simple nonlinear optical system
like the MOPO.
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I. INTRODUCTION

Dissipation in quantum many-body systems is inevitable
due to their interaction with the environment. When the sys-
tem is externally driven by a coherent source, the interplay
between driving and dissipation leads the system to a steady
state far from equillibrium. Unlike systems at thermal equi-
librium, phase transitions in such driven-dissipative quantum
systems known as dissipative phase transitions (DPTs) are far
less understood. Recent advancements in experimental tools
and techniques have allowed investigations of DPTs using
different systems such as Bose-Einstein condensate coupling
to an optical cavity [1,2] or a semiconductor microcavity
[3,4] and Rydberg excitation in dilute atomic vapor [5]. In
parallel, few theoretical models have also been developed
to understand and characterize the DPT [6–14]. One of the
intriguing features associated with DPTs is optical bistability,
which is the coexistence of two stable phases differing in their
optical properties [15]. Typically, a bistable system consists of
a nonlinear medium placed inside a cavity to provide optical
feedback to the system [16]. However, there are instances
of optical bistability in systems without the requirement for
a resonator such as bistability using degenerate four-wave
mixing [17], intrinsic atom-light coupling [18], polarization
bistability in sodium vapor [19], resonatorless bistability with
single-mirror feedback [20], dynamic bistability in Raman
generation [21], or bistability as a result of cooperative inter-
atomic interaction with Rydberg atoms [5].

In this paper, we report the observation of optical
bistability at the threshold of a mirrorless optical parametric
oscillator (MOPO) using a double-� system in thermal
atomic vapor [22]. A MOPO is the nonlinear interaction of
a counter-propagating pump and control fields leading to
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the parametric oscillation of a pair of counter-propagating
Stokes and anti-Stokes fields in the absence of a cavity
[23]. The existing works on MOPOs are mostly centered
on the study of its narrow linewidth [24,25], tunable
threshold [26], and spatial correlation [22]. We observe
that the generated Stokes and anti-Stokes power display
bistable behavior with variation of the input power of the
driving fields, which is further explained using a suitable
theoretical model. We also present experimental evidence
that the hyperfine ground-state coherence or the spin waves
[27–29] induced by interactions of the pump (control)
and generated Stokes (anti-Stokes) fields with the medium
lead to bistable behavior of the MOPO threshold. The
observed optical bistability in MOPOs is associated
with the first-order phase transition, with spin waves serving
as the order parameter. The memory effect due to the finite
lifetime of the spin waves makes it an ideal system for the
investigation and better understanding of the DPT. Here, we
demonstrate the critical slowing-down of the nonequilibrium
dynamics by measuring the response of the system in the
vicinity of the MOPO threshold.

II. THEORETICAL MODEL

Figure 1(a) shows a schematic of the energy level diagram
for the MOPO process. To understand the MOPO-based bista-
bility, we consider the propagation equations of the Stokes
and the anti-Stokes beams inside the medium. Under slowly
varying amplitude approximation for the case of plane waves,
while neglecting the effect of cross-phase modulation, the
nonlinear wave equations can be written as [30,31]
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FIG. 1. (a) Schematic of the energy level diagram for the MOPO
process. νHF is the splitting of the hyperfine ground states |1〉 and
|2〉, whereas |3〉 is the excited state. ωp (ωc) represents the optical
frequency of the input pump (control) beam and ωs (ωa) corresponds
to the optical frequency of the generated Stokes (anti-Stokes) beam.
�p (�c) is the single-photon detuning of the pump (control) beam
and �s (�a) is the single-photon detuning of the Stokes (anti-Stokes)
beam. (b) Variation of the pump conversion efficiency (η) with dif-
ferent values of κl�i showing the threshold of MOPO generation
at κl�i = π

2 .

where �p (�s) and �c (�a) are the Rabi frequencies
of the pump (Stokes) and control (anti-Stokes) beams,
respectively. k denotes the magnitude of the wave vector
and is taken to be the same for both Stokes and anti-Stokes
beams. N is the number density of the atomic vapor. ρ

(ps)
21 =

�p�s/(4�p(�eff − iγc)) (ρ (ca)
12 = �c�a/(4�c(�eff + iγc)))

is the ground-state coherence induced by the interaction of
pump (control) and Stokes (anti-Stokes) beams. �eff = � −
�2

p/(4�p) + �2
s /(4�p) + �2

c/(4�c) − �2
a/(4�c) with � =

�s − �p = �a − �c and γc is the dephasing rate of the
ground-state coherence. We consider the generation with ef-
fective detuning, �eff = 0 [32]. Here, we have neglected
the absorption for all beams due to their large detunings
from the corresponding transitions. As the control conversion
efficiency is negligibly low, the control beam can be con-
sidered undepleted. However, the pump depletion is taken
into account by considering �2

p(z) + �2
s (z) = �2

p(z = 0) =
�2

i , where �i is the input pump Rabi frequency. We use the
boundary conditions, �2
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0, where l is the length of the vapor cell. It is to be

noted that �0 is the Rabi frequency of the generated Stokes
field. Now, Eqs. (1) and (2) can be simplified to get

d2�s

dz2
+ κ2

(
�2

i + �2
0

)
�s − 2κ2�3

s = 0. (3)

Here, κ = − 3
8 k( Nμ2

ε0 h̄ ) �c
�p�cγc

. With a change of variables,
�s → x and z → t , Eq. (3) resembles the equation of mo-
tion of a classical particle under the action of a potential
given by V (x) = 1

2κ2(�2
i + �2

0)x2 − 1
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Eq. (3) that meets the boundary conditions is found to be
κl�i = EllipticK(η) [33]. Here, η stands for the pump con-
version efficiency, given as η = �2

0/�
2
i . The value of η can

be evaluated for the given �i, κ , and l and the threshold
condition for the system is defined for η → 0 as shown in
Fig. 1(b). Hence Eq. (3) has a solution with a positive η if
κl�i > π

2 . The threshold Rabi frequency of the pump field for
the plane-wave case is given as π

2κl , which is consistent with
the reported threshold condition for similar systems [25,26].

For a medium with thermal vapor, the dephasing rate is
dominated by the transit time of the atoms through the beam
and is given as γc = vavg/2r, where vavg is the average velocity
of the atoms and r is the radius of the beam in the transverse
direction. The threshold condition can now be rewritten by
considering the r dependence as

κ0l�ir = π

2
,

where κ0r = κ . In the above model, the pump beam is
considered to be a cylinder with radius r and the Rabi fre-
quency is constant in the transverse direction. However, in
the case of a Gaussian pump beam with 1/e − radius being
wo, the spatial dependence of the Rabi frequency in the trans-
verse direction is �i(r) = �me−r2/2w2

0 , where �m is the Rabi
frequency at the center of the beam. The threshold condition
for the Gaussian beam can be modified as κ0l�me−r2/2w2

0 r =
π/2. Since e−r2/2w2

0 r has a maximum value of wo/
√

e, the
above equation does not have a solution for �m < �F , where
�F = ( π

2κ0l )(
√

e
w0

), and it is denoted as the forward threshold
Rabi frequency of the MOPO for a Gaussian pump beam.

The forward threshold Rabi frequency for the case of a
Gaussian beam is much larger than the threshold for the case
of a plane wave, which leads to an abrupt generation of the
MOPO at the center of the beam. Now, the backward thresh-
old is a consequence of the long-lived ground-state atomic
coherence present in the system, which remains even if the
pump power is decreased to a value lower than the initial
forward threshold. This finite atomic coherence in the back-
ward direction is determined by the size of the Stokes beam.
When the pump peak power is reduced to a value such that
the size of the Stokes beam is insufficient to sustain coherence
throughout the medium, then the Stokes power falls to 0, re-
sulting in the backward threshold. So, the backward threshold
can be determined by replacing r with ws in the equation for
the threshold condition and is given as �B = ( π

2κ0l )( 1
ws

). The
condition ws > wo/

√
e implies �F > �B, which leads to the

bistability as observed in the system.

III. EXPERIMENTAL METHODS AND RESULTS

A schematic of the experimental setup is shown in
Fig. 2(a). The input pump and control beams are derived from
two lasers operating at 780 nm (D2 line of rubidium) and
counter-propagating to each other in a magnetically shielded
5-cm Rb vapor cell heated to 115◦C (atomic density, ∼1.5 ×
1013 cm−3). The pump beam is ∼1.2 GHz blue-detuned to
the transition 85Rb F = 2 → F ′ = 3 and the control laser
is red-detuned to the 85Rb F = 3 → F ′ = 4 transition by
∼800 MHz. We use a lens combination to vary the pump
beam size, whereas the control beam waist is fixed at 1 mm.
The input beams are linearly polarized in the same direction,
whereas the generated beams are cross-polarized to the input
beams and hence are filtered using polarizing beam splitters.
The details of the experimental setup and the optimized pa-
rameters to achieve the single spatial and temporal mode in
the MOPO can be found in Ref. [22]. To experimentally study
MOPO-based optical bistability, the control power is fixed
above the threshold value and the pump power is modulated
with a ramp function using an acousto-optic modulator. In this
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FIG. 2. (a) Schematic of the experimental setup for the ob-
servation of MOPO-based optical bistability. PBS, polarizing
beam splitter; AOM, acousto-optics modulator; PD, photodetector.
(b) Bistability of the Stokes power with pump power variation,
where w0 = 150 μm and the control power is fixed at 45 mW. Open
blue circles (open red squares) show the experimental data in the
increasing (decreasing) pump power direction and also represented
by the arrows. Filled black circles represent the theoretical fitting.
The fitting parameters are κ = −6.3 × 10−7 m−1 s, l = 0.05 m, and
ws = 113 μm.

way, we study the pump threshold in both the increasing and
the decreasing directions of the pump power. The generated
Stokes power is detected using a photodetector and is ana-
lyzed using an oscilloscope.

The long-lived coherence between the ground states of the
system is one of the reasons for the observation of bistability.
Hence, both threshold values depend on the frequency of the
ramp signal used to change the pump power. This observation
is similar to the dynamical bistability observed in a Raman
gain system using alkali vapor [21]. However, as we further
study the system with a reduced modulation frequency, below
50 Hz, the thresholds are observed to be independent of the
modulation frequency. In this regime, the change in pump
power is sufficiently slow that the system always remains in
steady state. The steady-state bistability observed in our sys-
tem is fundamentally different from the dynamical bistability,
which vanishes at a slower modulation frequency [21]. At
steady state, we observe that the pump threshold value for the
MOPO in the increasing pump power direction is larger than
the value in the decreasing pump power direction as shown in
Fig. 2(b). We also theoretically evaluate the generated Stokes
power (∝ �2

0) using the model presented in the text. The Rabi

frequency of the pump is calculated as �m = �
√

P
πw2

0
/(2Isat ),

where Isat and � are the saturation intensity and excited-state
decay rate of 85Rb, respectively. P denotes the power of the
beam. We first calculate the generated Stokes power in the
direction of decreasing pump power by considering the pump
beam as a plane wave. γc is determined from the Stokes
beam size, which is measured using 4 f imaging of the Stokes
and anti-Stokes beams at both exit faces of the cell [22]. It
is found that the Stokes beam size varies in the range of
100–125 μm over the length of the cell but is independent
of the pump beam power in the range of single-mode MOPO
generation except near the backward threshold power. The
calculated Stokes power is then fitted with the experimental
data by adjusting the value of κ and an overall gain factor
to account for any loss of the pump and Stokes power while
propagating through the cell and different optical elements
to the detector. The forward threshold is further calculated
using the relation �F /�B = √

ews/w0, where the beam sizes
used are w0 = 150 μm and ws = 113 μm. Our theoretical
model fits well with the experimental observation as shown
in Fig. 2(b).

To verify the effect of the long-lived atomic coherence
in the system, we perform an experiment by modulating the
input pump power following a functional form as shown in
Fig. 3(a). The pump is switched on by keeping its power
above the forward threshold (power level A) such that Stokes
and anti-Stokes beams are generated. Then the pump power
is switched to the bistable region (level B). While the system
is in the bistable region, the pump is switched off completely
for a short period of �T to study the MOPO generation. The
corresponding generated Stokes power is shown in Fig. 3(a).
Initially, the pump power is efficiently converted to Stokes
power at both level A and level B. As the pump power is
switched to 0 in the bistable region, the Stokes generation
stops. Now as the pump power is switched back to level B,
which is lower than the forward threshold, the Stokes beam is
observed to be generated after a delay as depicted in the inset
in Fig. 3(a). This switching-back of the Stokes power is evi-
dence of the presence of finite ground-state coherence in the
bistable regime, which leads to generation of the Stokes beam.
We also observe that as we increase �T , after a certain value,
the Stokes beam is not switched back as a result of complete
decay of the coherence. The coherence time in this system
is then defined as the maximum value of �T , for which the
Stokes beam is switched back to a finite value. We measure
this coherence time in the bistable region as a variation of the
pump beam waist. The corresponding experimental data are
presented in Fig. 3(b), where the coherence time is found to
depend linearly on the beam waist. This behavior follows the
fact that atomic coherence is limited by the transit time of the
atoms through the laser beam.

As is well known, optical bistability is a characteristic
feature of the first-order phase transition [34]. For our case,
the experimental observation of a discontinuity in the gener-
ated field at the threshold and the bistable behavior imply the
presence of a first-order phase transition, where the ground-
state coherence acts as the order parameter. To investigate the
nonequilibrium dynamics of the phase transition, the input
pump power is switched on from 0 to a finite value, which

053724-3



SAHOO, NAYAK, MISHRA, AND MOHAPATRA PHYSICAL REVIEW A 102, 053724 (2020)

FIG. 3. Experimental verification of the role of atomic coherence for optical bistability. (a) Stokes power (solid blue line) measured by the
response to pump power modulation (dotted red line). Level A refers to the pump power above the forward threshold and level B falls within
the bistable region. Inset: Expansion of the highlighted area in (a) with a �T value of 0.8 μs. (b) Variation of coherence time with the pump
beam waist (w0). Black circles represent experimental data and the solid red line shows the linear fitting.

is higher than the forward threshold power, and the Stokes
beam is generated with a time delay called the switch-on time
(τ ). The inset in Fig. 4(a) shows the experimental data for
the delayed Stokes power generation in response to a pulsed
pump beam. As the pump power approaches the threshold
value, the switch-on time of Stokes generation diverges (crit-
ical slowing-down). We observe that τ follows a power law
given by τ = A(P − PT )α , where P is the input pump power,
PT is the threshold power, and α is the critical exponent. The
experimental data are shown in Fig. 4(a), where the value
of α is evaluated from the fitting. For a system exhibiting
optical bistability in an optical cavity, the value of the critical
exponent (α) is predicted to be −0.5 [35,36]. The measured
critical exponent for the system with an optical cavity [37]
as well as the Rydberg system [5] is found to be consistent
with the theoretical prediction. On the other hand, the value
of α for this system is found to be −0.86 ± 0.02, which is
evaluated for a wide range of experimental parameters such
as different control powers and atomic densities as presented
in Fig. 4(b).

IV. SUMMARY AND CONCLUSION

In summary, we have demonstrated a DPT using a sim-
ple nonlinear optical system like the MOPO. Compared
to systems with an optical cavity, this system exhibits a
conventionally different nonequilibrium phase transition with
a different value of the critical exponent. Also, MOPO-based
optical bistability is observed when the Gaussian pump field
is used to drive the system. The theoretical model predicts that
if the pump field is a plane wave, then the MOPO will have
a laserlike threshold, which is associated with a second-order
phase transition. Since the MOPO threshold strongly depends
on the transverse profile of the pump field, which can easily
be modulated using a spatial light modulator, it can offer a
very rich system to study and investigate different aspects of
the DPT.
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