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Describing squeezed-light experiments without squeezed-light states
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Coherent states are normally used to describe the state of a laser field in experiments that generate and detect
squeezed states of light. Nevertheless, since the laser field absolute phase is unknown, its quantum state can
be described by a statistical mixture of coherent states with random phases, which is equivalent to a statistical
mixture of Fock states. Here we describe single-mode squeezed vacuum experiments using this mixed quantum
state for the laser field. Representing the laser state in the Fock basis, we predict the usual experimental results
without using the squeezing concept in the analysis and concluding that no squeezed state is generated in the
experiments. We provide a general physical explanation for the noise reduction in the experiments in terms of a
better definition of the relative phase between the signal and local oscillator fields. This explanation is valid in
any description of the laser field (in terms of coherent or Fock states), thus providing a deeper understanding of
the phenomenon.
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A squeezed state of light is a quantum state in which
the variance in some quadrature is smaller than the vacuum
noise [1–3], having many applications in quantum metrol-
ogy [4–11] and quantum information [12–17]. The use of
squeezed states allows one to achieve sub-shot-noise accu-
racy, since the quantum noise is reduced in some quadrature,
enhancing the system sensitivity [1,2,5]. One example is the
sensitivity enhancement of gravitational wave detectors [6],
and there is an intense active research for improving this sen-
sitivity [5,8–11]. Entanglement is present in squeezed states
of two or more modes, which permits the execution of many
quantum information protocols [12–17].

Squeezed states of light are usually produced with the
interaction of a laser field, considered to be in a coherent state,
with nonlinear media [1–3]. However, due to lack of a priori
knowledge of the laser absolute phase, the quantum state of a
laser field can be written as a statistical mixture of coherent
states with random phases, which is equivalent to a statistical
mixture of Fock states [1,18]. So to consider that a laser field is
in a coherent state is an approximation as good as to consider
that it is in a Fock state. In fact, it is possible to explain exper-
iments such as the interference produced by the superposition
of two independent laser fields [19] by considering the laser
fields in Fock states, since photon detections generate coher-
ence between the two fields [18]. This is analogous to the fact
that two Bose-Einstein condensates can present interference
even if both are initially in number states, since the detection
of atoms generates coherence between them [20–23]. The
direct measurement of the electric field of light waves [24]
can also be explained by considering the laser initially in a
Fock state [25]. In this case, the f :2 f interferometer used
to calibrate the carrier-envelope phase of the light pulses in
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the experiments induces the appearance of a coherent super-
position of Fock states in the system, generating a quantum
state whose expectation value of the electric field operator is
nonzero [25].

Here we describe experiments that produce and character-
ize single-mode squeezed vacuum states of light considering
this mixed state description of the laser field, not being in a
coherent state. In the Fock state basis, the experiments are
described without the production of squeezed states of light
in any part of the setup and without the concept of squeezing
being used in the analysis. By considering a Fock state for
the laser, entanglement is produced between the signal mode
that exits the nonlinear medium and the mode used as the
local oscillator in homodyne detection. The interference of
these modes at a beam splitter produce the same experimental
predictions as the consideration of a coherent state for the
laser, with the production of a squeezed-light state in the setup
which is submitted to homodyne detection. The difference in
interpretations of the experimental results when different basis
(coherent or Fock states) are used to describe the laser field
state is discussed. We provide a general physical explanation
for the noise reduction in the experiments in terms of a better
definition of the relative phase between the signal field and the
field used as local oscillator.

The scheme showed in Fig. 1 illustrates an experiment
for the generation and characterization of the single-mode
squeezed vacuum state. Considering that there is a coherent
state leaving the laser, coherent states with smaller amplitudes
are transmitted and reflected by the beam splitter BS1. The re-
flected field passes through the nonlinear crystal NLC1, where
second harmonic generation occurs. The field with frequency
2ω is reflected by the dichroic mirror DM1 and the field with
frequency ω is transmitted. The reflected field goes to an
optical parametric oscillator (OPO), generating a field with
frequency ω in the squeezed vacuum state [1,2]. The dichroic
mirror DM2 at the exit of the OPO reflects the 2ω field and
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FIG. 1. Scheme for producing and characterizing a single-mode
squeezed vacuum state. BS(1,2) = beam splitters, NLC(1,2) =
nonlinear crystals, DM(1,2) = dichroic mirrors, OPO = optical para-
metric oscillator, M = mirror, D(1,2,3,4) = detectors, ϕ = adjustable
phase.

transmits the ω field to mode a, which is combined with a
coherent state in mode a0 at beam splitter BS2 for the process
of homodyne detection. Explicitly, the state of the signal field
in mode a can be written in the Fock basis as

|ξ 〉 =
∞∑

m=0

Cm|2m〉a, with

Cm =
√

sech r(−1)m

√
(2m)!

2mm!
(eiφ tanh r)m,

(1)

where the squeezing parameters r and φ come from the
squeeze operator, defined as Ŝ(ξ ) = e

1
2 (ξ∗â2−ξ â†2 ) with ξ ≡

reiφ [1,2]. The action of the squeeze operator in the electro-
magnetic vacuum state |vac〉 results in a squeezed vacuum
state above: |ξ 〉 = Ŝ(ξ )|vac〉.

Squeezed states are usually characterized by homodyne
detection, like depicted in Fig. 1. The signal field in mode
a is combined with the local oscillator in a coherent state
with large amplitude |βeiϕ〉a0 (with real β and ϕ) in mode
a0 at BS2, assumed to be a symmetric 50:50 beam splitter.
The intensity measured by detector D1 is proportional to ĉ†ĉ,
with ĉ = (â0 + iâ)/

√
2 being the annihilation operator for the

field in mode c and similarly for the other modes, while the
intensity measured by detector D2 is proportional to b̂†b̂, with
b̂ = (â + iâ0)/

√
2. Defining n̂bc = n̂b − n̂c, under the above

circumstances we have

〈n̂bc〉 ≈ 2β〈X̂ (θ )〉, 〈(�n̂bc)2〉 ≈ 4β2〈(�X̂ (θ ))2〉, (2)

where X̂ (θ ) ≡ (âe−iθ + â†eiθ )/2 is a quadrature operator for
the field in mode a and θ = ϕ + π/2 [1,2]. So, by varying
the parameter ϕ of the local oscillator, the expectation value
and variances of different quadratures can be obtained. For the
squeezed vacuum state of Eq. (1) we have [1,2]

〈(�n̂bc)2〉 ≈ β2[cosh2 r + sinh2 r

−2 sinh r cosh r cos (2θ − φ)]. (3)

According to Eq. (2), variances for n̂bc smaller than β2 imply
variances for X̂ (θ ) smaller than 1/4, characterizing squeezing.

However, as mentioned before, due to lack of a priori
knowledge of the laser absolute phase, the laser field state

can be written as a statistical mixture of coherent states or,
similarly, by a statistical mixture of Fock states [1,18]:

ρl =
∫ 2π

0

dφ′

2π
|αeiφ′ 〉〈αeiφ′ | =

∞∑
n=0

Pn|n〉〈n|, (4)

with α real and Pn = α2ne−α2
/n! giving a Poissonian probabil-

ity distribution for the number of photons with mean number
α2 [1,18]. Note that if the laser is in a coherent state |αeiφ′ 〉, the
phase φ′ defines the phase φ of the squeezed state of Eq. (1).
So if we have an incoherent combination of absolute phases
for the laser field as in Eq. (4), the incoherent combination
of squeezed quadratures results in a nonsqueezed state for the
field in mode a of Fig. 1. The experimental quantum teleporta-
tion using squeezed states [12] was previously criticized due
to the fact that, since the laser field is not a coherent state,
the experimental results could not be associated to a quantum
teleportation protocol [26]. After an intense debate [27–30],
an interesting point of view was constructed claiming that a
phase reference frame must be established for any quantum
information protocol in continuous variables, and under this
perspective the experimental results of Ref. [12] do demon-
strate the implementation of a quantum teleportation protocol
[28,29]. This discussion is related to the question about if
coherence as the quantum superposition of energy eigenstates
in the optical regime (as in a coherent state) is a fiction, as
initially argued by Mølmer [18], or a fact. But if we consider
that a quantum state refers not only to the intrinsic properties
of a system, but also to its relation to external parts, there is
no dilemma. In this view, coherence as a fiction is associated
to an internal treatment of the phase reference frame, while
coherence as a fact is associated to an external treatment of
the phase reference frame, both views being valid [29]. In
the scheme of Fig. 1, note that the phase φ′ of the laser field
also defines the phase ϕ of the local oscillator in mode a0 of
Fig. 1. So, with respect to the phase of the local oscillator, the
quantum state of the field in mode a of Fig. 1 is a squeezed
state. Since the local oscillator is the responsible for estab-
lishing the phase reference, in this perspective the experiments
represented by the setup of Fig. 1 do demonstrate squeezing.

However, according to Eq. (4), to consider that a laser field
is in a coherent state is an approximation as good as to con-
sider that it is in a Fock state. In the following we show how
it is possible to arrive at the same experimental predictions of
Eq. (3) by considering the laser field in a Fock state, but with
a completely different description of the phenomenon.

If a Fock state |M〉 is considered to be the output state
of the laser field in the setup of Fig. 1, the state right af-
ter the beam splitter BS1 is an entangled state of the form
|ψ0〉 = ∑∞

s=0 As|M − s〉a1
|s〉a2

, where s is the number of re-
flected photons, M − s is the number of transmitted photons,
and As is a complex coefficient. Subsequently, at the NLC1

second harmonic generation occurs and the photons with fre-
quency 2ω go to the OPO, where parametric down-conversion
happens. Since in the parametric down-conversion process
photons of frequency 2ω are converted into pairs of photons
of frequency ω, only even photon numbers are allowed in
the a mode. Just to simplify the discussion, we consider the
presence of two perfect detectors D3 and D4 that count the
photon numbers Na3 and Na4 that exit through the a3 and a4
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modes. The total photon number at the modes a and a0 is
therefore N = M − Na3 − 2Na4 , in such a way that the state
just before the beam splitter BS2 is

|ψ〉 =
∞∑

m=0

Cm|2m〉a|N − 2m〉a0
ei(N−2m)ϕ, (5)

where Cm is the probability amplitude of generating m photon
pairs at the OPO. These coefficients Cm are the same as the
ones from Eq. (1), since the probability amplitude of generat-
ing a photon pair should not depend if the incident field at the
OPO is a coherent state with an uncertainty in the number of
photons much smaller than the average number of photons, as
considered in the deduction of Eq. (1), or if it is a combination
of Fock states with the same average and a small uncertainty in
the photon number, as considered in the deduction of Eq. (5).
Considering also that the number of photons in mode a is
much smaller than N , as necessary in the process of homodyne
detection, in the Appendix we arrive at the following result
for the variance of the difference in the number of photons
detected by D1 and D2:

〈(�n̂bc)2〉 ≈ N[cosh2 r + sinh2 r

− 2 cosh r sinh r cos (2θ − φ)], (6)

with θ = ϕ + π/2. This result is equivalent to the one of
Eq. (3) for N ≈ β2.

Note that, by considering the laser field in a Fock state, by
using Eq. (5) we conclude that the quantum state of the field
in the a mode is not a squeezed state, but a statistical mixture
of even photon numbers of the form

∑∞
m=0 |Cm|2|2m〉〈2m|.

So the physical explanation of the phenomenon described in
Fig. 1 in the Fock state basis does not involve squeezing.
The experimental results can be associated to the entangled
state between modes a and a0 described in Eq. (5). For each
pair of photons detected by detectors D1 and D2, there is a
fundamental indistinguishability about if they came directly
from the laser to mode a0 or if they were converted by the
NLC1 into a photon of frequency 2ω and converted by the
OPO into a pair of photons with frequency ω again, arriving
at BS2 through mode a. The interference between these two
probability amplitudes results in the noise increase or decrease
represented in Eq. (6), depending on the phase ϕ of the inter-
ferometer.

Essentially the same result of Eq. (6) is obtained when the
more realistic description of the laser field from Eq. (4) is em-
ployed, which consists on a statistical mixture of Fock states.
If the number of photons of the initial laser field is unknown
and the number of photons that exit trough modes a3 and a4 is
also unknown, there will be a probability distribution on the
value of N in Eq. (6), with an average value N̄ and a standard
deviation �N . But since we have �N/N̄ ∝ 1/

√
N → 0 in

this situation, the results are essentially the same with the
substitution N → N̄ en Eq. (6).

Let us comment now on how the physical explanations of
the experimental results of the setups of Fig. 1 are directly
related to the basis chosen to describe the laser quantum
state from Eq. (4), and how these physical explanations are
inconsistent one with the other. In the coherent state basis,
a squeezed state is produced in the OPO of Fig. 1 and a
homodyne measurement is performed on the field a with the

field a0 acting as a local oscillator. Even if the laser field
does not have a defined absolute phase, being in the mixed
state of Eq. (4), the phase of the local oscillator acts as a
reference phase. But note that this explanation is inconsistent
with the description of the laser field in the Fock state basis,
since in this case there can be no coherent superposition of
different Fock states in the field of mode a, only statistical
mixtures of Fock states being possible, such that there can
be no squeezing. If, on the other hand, we use the Fock state
basis to describe the laser field, the formation of entangled
states like the one of Eq. (5) are responsible for explaining the
experimental results of the setup of Fig. 1. Since the results
of Eq. (6) do not have a strong dependence on the number
of detected photons N , if the laser state has a small relative
uncertainty in the number of photons, like in the mixed state
of Eq. (4), the results are essentially the same. But note that
this explanation is inconsistent with the description of the
laser field state in the coherent state basis, since the incidence
of a coherent state on a beam splitter results in a separate
state for the transmitted and reflected modes, such that no
entanglement as expressed in Eq. (5) can occur. So none of
these presented explanations is general, since each one works
only in a particular basis for the laser field representation.

We now provide a general explanation for the phe-
nomenon, valid in any basis, related to the variance of the
relative phase distribution between the signal field and the
local oscillator field. There are different arguments that lead
to following expression for the relative phase distribution be-
tween two modes of the same frequency in a state ρ [31–33]:

P(
) =
∞∑

N=0

〈

(N )

∣∣ ρ ∣∣
(N )〉, with (7)

∣∣
(N )
〉 = 1√

2π

N∑
n1=0

ein1
|n1〉a|N − n1〉a0 . (8)

The states |
(N )〉 are common eigenstates of the total photon
number (with eigenvalue N) and different phase difference
operators (with eigenvalue 
) among the two considered
modes [31,34,35]. They are also associated to optimum phase
measurements in interferometers [32,33]. Substituting the
quantum state of Eq. (5) in Eq. (7), we have

Pψ (
) = 1

2π

∣∣∣∣∣
mmax∑
m=0

Cme−2im(
+ϕ)

∣∣∣∣∣
2

, (9)

with mmax ≈ N/2. If, as we are considering here, the number
of photons in mode a is much smaller than N , such that |Cm|
is negligible when 2m is of the order of N , we can consider
mmax → ∞, such that Pψ (
) is independent of N in this limit.
So, when the pure state of Eq. (5) is substituted by a mixed
state with small �N/N , we have the same phase difference
distribution of Eq. (9). Note also that, by considering the
problem in the coherent state basis for the laser, Eq. (7) will
make a projection in an eigenstate of the total number of
photons in modes a0 and a, such that following the adopted
approximations we also arrive in the phase difference distri-
bution of Eq. (9).

In Fig. 2(a) we plot the phase difference distribution of
Eq. (9) when the coefficients Cm are given by Eq. (1) with
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FIG. 2. Probability distributions for the phase difference be-
tween signal and local oscillator fields in squeezed vacuum states.
(a) Pψ (
) from Eq. (9) for ϕ = 0 and Cm given by Eq. (1) with φ = 0,
r = 1 (dashed green line) and r = 2 (solid purple line). (b) Loga-
rithm of the ratio between the variance of Pψ (
) from Eq. (9), σ 2

ψ ,
and the variance when the mode a is in the vacuum state, σ 2

0 , in func-
tion of r, considering only the region between 
 = 0 and 
 = π .
The dashed green line corresponds to a dependence σ 2

ψ = σ 2
0 e−r . We

used mmax = 200 in Eq. (9) for all plots.

φ = 0, r = 1 and r = 2, considering also ϕ = 0. There are
two peaks in these distributions, at 
 = π/2 and 
 = 3π/2,
whose widths decrease with the increase of r. Actually, the
variance of each peak has the same dependence with r as
the standard deviation of the squeezed quadrature for the
squeezed vacuum state of Eq. (1), which decay as e−r [1,2].
Figure 2(b) demonstrates this behavior, where is plotted the
logarithm of the ratio between the variance of Pψ (
), σ 2

ψ , and
the variance when the mode a is in the vacuum state, σ 2

0 , in a
function of r, considering only the region between 
 = 0 and

 = π . The dashed green line corresponds to a dependence
σ 2

ψ = σ 2
0 e−r . Since, by Eq. (2), the standard deviation of n̂bc

is proportional to the standard deviation of X̂ (θ ), its minimum
value is proportional to σ 2

ψ . So a general explanation for the
decrease of the standard deviation of n̂bc with an increase of
the parameter r, valid in any basis description of the laser field
state, is a decrease in the variance of the relative phase of the
fields in modes a and a0 in Fig. 1.

To summarize, we have shown how squeezed vacuum
experiments can be described without the production of

squeezed-light states and without the concept of light squeez-
ing being used in the treatment, when the laser field state
is described in the Fock basis. We conclude that a general
explanation for the the decrease on the fluctuations of the
difference of intensities measured by detectors D1 and D2

in the scheme of Fig. 1 with an increase of the squeezing
parameter r is a better definition of the phase difference be-
tween the fields in modes a and a0. This explanation is valid
in any basis we use to describe the laser field state, contrary
to the vacuum squeezed state generation by the OPO, which
is valid only in the coherent state basis for the laser state,
and the entanglement generation between the modes a and a0,
which is valid only in the Fock state basis for the laser state.
We hope that this deeper understanding we provide for the
phenomenon of light squeezing, with so many applications,
can inspire fruitful advances in this field.

The authors acknowledge Paulo Nussenzveig and Marcelo
Martinelli for very useful discussions. This work was sup-
ported by the Brazilian agencies CNPq and CAPES.

APPENDIX

In this Appendix we show that the variance of n̂bc ≡ n̂b −
n̂c = i(â†â0 + â†

0â) for the state of Eq. (5) is given by Eq. (6)
when the number of photons in mode a is much smaller than
N . Using the state of Eq. (5) and making the approximation
N − 2m ≈ N − 2m − 1 ≈ N , one obtains

〈(�n̂bc)2〉 ≈ N
∞∑

m=0

{
|Cm|2(4m + 1)

+ 2Re
[
C∗

mCm+1

√
(2m + 2)(2m + 1)e−2iθ

]}
,

(A1)

where θ = ϕ + π/2. Substituting the coefficients Cm from
Eq. (1), we have

〈(�n̂bc)2〉 ≈ N[A − B cos (2θ − φ)], (A2)

with

A = 1

coshr

∞∑
m=0

(2m)!

22m(m!)2
(tanh2 r)m(1 + 4m),

B = sinhr

cosh2r

∞∑
m=0

(2m)!

22m(m!)2
(tanh2 r)m(2 + 4m).

Using the relations

(1 − x)−1/2 =
∞∑

m=0

(2m)!

22m(m!)2
xm,

d

dx
(1 − x)−1/2 =

∞∑
m=0

(2m)!

22m(m!)2
xm−1m = 1

2
(1 − x)−3/2,

with x = tanh2 r, after some manipulations we arrive at values
for A and B that lead Eq. (A2) to Eq. (6).
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