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Gauge potential is known to account for quite a few fundamental physical issues, such as electromagnetic
interaction in electrodynamics, the standard model in particle physics, and even topological phenomena in
condensed matter physics. Therefore engineering the so-called artifical gauge potential in controllable exper-
imental platforms has been an attractive topic that may expedite the research on these issues. In this paper, we
propose to periodically modulate the frequency of the superconducting flux qubit via two-tone drives, which
can be further used to engineer the artificial gauge potential. As an example, we show that the fermionic
ladder model penetrated with effective magnetic flux can be constructed by superconducting flux qubits using
such two-tone-drive-engineered artificial gauge potential. In this superconducting quantum circuit system, the
single-particle ground state can range from vortex phase to the Meissner phase due to the competition between
the interleg coupling strength and the effective magnetic flux. We also present the method to experimentally
measure the chiral currents by the single-particle Rabi oscillations between adjacent qubits. In contrast to
previous methods of generating artificial gauge potential, our proposal does not need the aid of auxiliary couplers
and in principle remains valid only if the qubit circuit maintains enough anharmonicity. The fermionic ladder
model with effective magnetic flux can also be interpreted as one-dimensional spin-orbit-coupled model, which
thus lays a foundation towards the realization of the quantum spin Hall effect.

DOI: 10.1103/PhysRevA.102.053722

I. INTRODUCTION

Gauge potential is a core ingredient of the electromag-
netic interaction in electrodynamics [1], the standard model
in particle physics [2], and even the topological phenomena
in condensed matter physics [3]. However, the behaviors of
microscopic particles in gauge potentials are rather difficult to
study in natural systems, due to their well-known low control-
lability. Representatively, for example, strong magnetic field
is experimentally challenging to generate for electrons in solid
systems. Therefore engineering effective gauge potential in
artificial quantum platform stands a wise option in order to ac-
cess higher tunability. Superconducting qubit circuits [4–12],
which inherit the advantages of microwave circuits in flex-
ibility of design, convenience of scaling up, and maturation
of controlling technology, have recently won great celebrity
in simulating the motions of microscopic particles placed in
gauge potentials. In superconducting qubit circuits, photons
play the role of carriers, which, in contrast to electrons, will
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cause no backaction onto the artificial gauge potential due to
the charge neutrality.

The engineering of artificial gauge potential (mainly the
effective magnetic flux) in superconducting qubit circuits
greatly depends on the nonlinearity of Josephson junctions
in auxiliary couplers [13–17]. In this manner, the chiral
Fock-state transfer [13], multiparticle spectrum modulated
by effective magnetic flux in the Jaynes-Cummings model
[14], condensed-matter and high-energy physics phenom-
ena in quantum-link model [15], and flat band in the Lieb
lattice [16] have been theoretically studied. In experiment,
effective-magnetic-flux-induced chiral currents of a single
photon and a single-photon vacancy have been respectively
observed in one-photon and two-photon states [17]. By con-
trast, in cold atom systems, artificial gauge potentials are
usually engineered using periodically modulated onsite en-
ergy [18–21]. This has motivated the similar proposal of
engineering artificial gauge potentials via periodically modu-
lating the Josephson energy of the transmon qubit circuit [22],
which however maintains valid only in small anharmonicity
regime. To remedy this drawback, we propose to modulate
the qubit frequencies of the coupled qubit chain with two-
tone drives. This method can in principle be applied to a
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superconducting qubit circuit with any nonzero anharmonic-
ity, which can thus simulate fermions rather than bosons as in
Ref. [22]. Besides, nonlinearity is known to be a key factor
for demonstrating quantum phenomena [6]. Thus periodically
modulating the energy of the qubit circuit with better anhar-
monicity is significant for exploring nonequilibrium quantum
physics.

Meanwhile, thanks to the recent experimental progress
in the integration scale of superconducting qubit circuits
[23–26], the quantum simulation research based on super-
conducting qubit circuits is now advancing from single or
several qubits [27–38] towards multiple qubits [14,16,17,39–
46]. However, most experiments are yet confined to the chain
structure (one dimension) currently [17,41,43,44], which thus
lacks one more dimension to realize the two-dimensional
topological phenomena induced by gauge potential, e.g.,
the quantum Hall effect or quantum spin Hall effect [47].
Recently, the quasi-two-dimensional ladder model [45] and
true-two-dimensional Sycamore processor [46] have both
been achieved with the state-of-the-art technology in super-
conducting quantum circuits, but neither of them involves the
research on artificial gauge potential. Therefore the effect of
artificial gauge potential needs to be further explored beyond
the one-dimensional system. In particular, the ladder model
is almost the simplest two-dimensional model that implies
rich physics, which, for example, can be mapped to the
one-dimensional spin-orbit-coupled chain if penetrated by the
effective magnetic flux [21,48].

To make an initial attempt towards two-dimensional quan-
tum simulation with artificial gauge potential, we will design
the concrete superconducting qubit circuit that realizes the
ladder model penetrated by the effective magnetic flux. We
will focus the vortex and Meissner phase transitions induced
by the competition of related parameters, such as the coupling
strengths and effective magnetic flux. Since the lattice number
cannot be achieved so many as the atom number in cold atom
systems, we will mainly concentrate on the practical case
with finite lattice number. Besides, the method to measure the
two phases will also be discussed for the future experimental
implementation.

In Sec. II, we introduce the theoretical model that employs
two-tone drives to engineer artificial gauge potential in the
ladder model constructed by superconducting qubit circuits.
In Sec. III, we analyze the vortex-Meissner phase transition
at different parameter regimes. In Sec. IV, we discuss the
experimental feasibility to generate the single-particle ground
state and measure the vortex-Meissner phase transition. In
Sec. V, we summarize the results and make some discussions.

II. TWO-TONE DRIVE INDUCED ARTIFICIAL GAUGE
POTENTIAL

A. Theoretical model

As an example, we consider the ladder model constructed
by the X-shape gradiometer flux qubit circuits (see schematic
diagram in Fig. 1). The individual flux qubit is manipulated by
classical direct current flux bias and alternating current drive
(colored in blue), and the states of qubits are dispersively read
out through a coplanar waveguide resonator (colored in green)
[49–52]. The flux qubits are coupled to their nearest neighbors

FIG. 1. Ladder model constructed by X-shape flux qubits with
the gradiometer structure which can cancel out some common flux
noise penetrated through the two symmetric loops. The Josephson
junctions, flux qubit loop, readout resonator, classical flux bias are
colored in gray, red, green, and blue, respectively. The Josephson
energy for the big and small Josephson junctions are respectively
EJ and αEJ , where 1

2 < α < 1 should be satisfied to generate the
double-well potential and meanwhile, suppress the intercell tunnel-
ing. Besides, the flux qubits are coupled to their nearest neighbors
with X-shape mutual inductances that are mostly determined by
the nearest edge on the loop. The microwave coplanar waveguide
resonator (CPW) is shorted at the terminal near the flux qubit loop
such that only the inductive coupling is valid. The flux qubit loop is
designed like a cross (i.e., of X shape) such that different coupling
regions can be well separated to minimize the crosstalk.

with mutual inductances that are mostly determined by the
nearest edge on the loop. The flux qubit loop is designed like
a cross (i.e., of X shape) [53] such that different coupling
regions can be well separated to minimize the crosstalk. The
first (second) row of the qubits is called the left (right) leg of
the ladder.

The qubit parameters are assumed to be homogeneous
along the leg. Then, the bare Hamiltonian without driving
fields can be generally given by

Ĥb =
R∑

d=L

∑
l

h̄

2
ωd σ̂

(d,l )
z

−
∑

d=L,R

∑
l

h̄g0σ̂
(d,l )
− σ̂

(d,l+1)
+ + H.c.,

−
∑

l

h̄K0σ̂
(L,l )
− σ̂

(R,l )
+ + H.c. (1)

Here, according to the homogeneous assumption, all qubits
along the d leg have the identical frequency ωd , where d = L
or d = R is the abbreviation of left or right. The bare intra-
leg coupling strength on the left (L) or right (R) leg can be
given by gd = Md I2

pd/h̄ with d = L, R, Md being the mutual
inductance between adjacent qubits (e.g., ∼10 pH), Ipd the
persistent current (e.g., ∼0.1 μA), and h̄ the reduced Plank
constant. The persistent current and the qubit frequency can
be tuned via designing the area ratio α between the small and
large junctions [54]. Therefore we can make the qubits on

053722-2



VORTEX-MEISSNER PHASE TRANSITION INDUCED BY A … PHYSICAL REVIEW A 102, 053722 (2020)

different legs of distinct qubit frequencies. This also leads to
IpL �= IpR, despite which, however, via careful design of Md ,
we can also make gL = gR = g0 (e.g., 1 ∼ 300 MHz × 2π ).
Thus, in Eq. (1), the intraleg coupling strengths on both legs
are g0. Besides, K0 denotes the interleg coupling strength,
which is determined by the interleg mutual inductance M and
also the persistent currents of the flux qubit circuits on both
legs, i.e., K0 = MIpLIpR.

To engineer the effective magnetic flux from the bare
Hamiltonian Ĥb, we will first show that the qubit frequency
can be periodically modulated via the assist of classical driv-
ing fields, as will be discussed below.

B. Periodical modulation of the qubit frequency

We now demonstrate the periodical modulation of the qubit
frequency through two-tone drives. In our treatment, the flux
qubit circuit is modelled as an ideal two-level system because
of the high anharmonicity [55–57] it possesses. In this man-
ner, the individual flux qubit at the d leg and lth rung with
two-tone drives can be characterized by the Hamiltonian

Ĥd,l = h̄

2
ωd σ̂

(d,l )
z + h̄

2

2∑
j=1

[
σ̂

(d,l )
+ �

(d,l )
j e−iω(d )

j t + H.c.
]
, (2)

in the qubit basis, where the jth driving field ( j = 1, 2) pos-
sesses the complex driving strength �

(d,l )
j at the frequency

ω
(d )
j . However, the transmon qubit [58,59] has a worse an-

harmonicity than the flux qubit and thus, the detailed model
should include the higher energy levels (e.g., the second
excited state) if the qubit frequency is to be periodically mod-
ulated using two-tone drives (see Appendix A).

In Eq. (2), the driving field is determined by the inci-

dent current I (d,l )
j (t ) through the relation Re{ h̄

2 �
(d,l )
j e−iω(d )

j t } =
−Md Ipd I (d,l )

j (t ). The detunings of the driving frequencies ω
(d )
j

from the qubit frequencies ωd are kept identical for both
ladder legs, i.e., δ j ≡ ω

(d )
j − ωd despite d taking labels L

or R. In fact, this can be achieved via tuning the driving
frequencies ω

(d )
j for the given qubit frequencies ωd . Besides,

we assume δ1 and δ2 are close to each other, i.e., |δ| �
|δ1|, |δ2| with δ = δ2 − δ1 = ω

(d )
2 − ω

(d )
1 . Also, we consider

the large-detuning regime |�(d,l )
j /δ j |2 � 1 and homogeneous

(inhomogeneous) driving strengths (phases), i.e., �
(d,l )
1 = �1

and �
(d,l )
2 = �2e−iφd,l with positive � j . Then, via the second-

order perturbative method, the effective Hamiltonian can be
yielded as (see Appendix A)

Ĥ (eff)
d,l = h̄

2
ωd σ̂

(d,l )
z − h̄

2
[ωs + � cos(δt + φd,l )]σ̂

(d,l )
z , (3)

where ωs = ∑2
j=1

� j
2

2δ j
is the Stark shift and � = |�1�2

δ1
|. The

phase φd,l can be tuned by the driving field at the site (d, l ),
which will not be specified at present.

In Eq. (3), we find that the qubit frequency is periodically
modulated with the strength �, the frequency δ, and the
phase φd,l . Under our assumption, the parameters can be typ-
ically, δ

(d )
1 /2π = 1GHz, δ

(d )
2 /2π = 1.1 GHz, and �1/2π =

�2/2π = 178 MHz, in which case, the Stark shift ωs/2π =
30.24 MHz, the modulation strength is �/2π = 31.7 MHz

and the modulation frequency δ/2π = 100 MHz. The qubit
frequency ωd/2π can be about 2 GHz, which, together with
the driving frequencies ω

(d )
j , is left to be exactly determined

in the following.
Note that one driving field will only arouse transitions be-

tween qubit bases [see the individual driving term in Eq. (2)].
That’s why we apply two-tone driving fields to achieve the
periodical modulation of the qubit frequency.

We must also mention that the method introduced here
is applicable for all qubit circuits (of course, with nonzero
anharmonicity), and not merely confined to the flux qubit
(see Appendix A). Its validity does not require a negligi-
bly small anharmonicity of the qubit circuit as that for the
transmon circuit in Ref. [22]. Since nonlinearity is a key fac-
tor for demonstrating quantum phenomena [6], periodically
modulating the qubit frequency while maintaining enough
anharmonicity can be significant for exploring nonequilibrium
quantum physics.

C. Engineering effective magnetic flux

Based on the periodical modulation of the qubit frequency
in Sec. II B, we now continue to demonstrate how to engineer
the effective magnetic flux. We assume each qubit in Fig. 1
is driven by two-tone fields such that the qubit frequency can
be modulated as in Eq. (3). To include the nearest qubit-qubit
couplings, the full Hamiltonian can be represented as

Ĥf = Ĥb −
R∑

d=L

∑
l

h̄

2
[ωs + � cos(δt + φd,l )]σ̂

(d,l )
z . (4)

Note that Ĥb is the bare Hamiltonian given in Eq. (1), ωs

is the Stark shift, and �, δ, and φd,l are respectively the
periodical modulation strength, frequency, and phase of the
qubit at (d, l ).

To eliminate the time-dependent terms in Eq. (4), we now
apply to Eq. (4) a unitary transformation

ÛD(t ) = ∏
l

∏
d=L,R

exp

[
i
1

2
σ̂ (d,l )

z Fd,l (t )

]
, (5)

where the expression of Fd,l (t ) is explicitly given by

Fd,l (t ) = �

δ
sin (δt + φd ,l ) + (ωs − ωd ) t . (6)

We mention again that the parameter φd,l , which is the phase
of the second driving field at the site (d, l ), and, δ, which is the
detuning between the two driving frequencies at the site (d, l ),
can both be artificially tuned by the driving fields. Thus we can
in particular assume that the phase φd,l linearly depends on
the rung index l , i.e., φd,l = φd − φl with φL = −φR = φ0,
and the detuning δ matches the qubit frequency difference,
i.e., δ = ωR − ωL. Here, φ is the phase difference between
adjacent sites along an individual leg and φd is the driving
phase at the site (d, 0). Then, we only keep the resonant terms
but neglect the fast-oscillating ones, after which follows a

unitary transformation U ′
f,I = exp[

∑
l i σ̂ (R,l )

z

2
π
2 ], thus leading to

the following qubit ladder Hamiltonian (see Appendix B for
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-1 0 1

-2

0

2

FIG. 2. Tunable interleg coupling strength K plotted vs the phase
φ0: K = 3g sin φ0, where, for simplicity, we have set the intraleg
coupling strength g = 1. Here, we note that φ0 is determined by the
phases of driving fields. Thus we can in principle control the interleg
coupling strength K via external driving fields.

details):

Ĥ ′
f = −

R∑
d=L

∑
l

h̄gσ̂ (d,l )
− σ̂

(d,l+1)
+ + H.c.

−
∑

l

h̄K σ̂
(L,l )
− σ̂

(R,l )
+ exp (iφl ) + H.c. (7)

Here, the intraleg coupling strength g = g0J0(ηx ), and the
interleg coupling strength K = K0J1(ηy), which are in princi-
ple tunable via modifying � considering ηx = 2�

δ
sin( φ

2 ) and
ηy = 2�

δ
sin (φ0). The symbol Jn(x) represents the nth Bessel

function of the first kind.
For the typical parameters given previously, which yields

�/2π = 31.7 MHz and δ/2π = 100 MHz, we can further
set g0/2π = 3.5 MHz, and K0/2π = 33 MHz. Then, the
condition |ηx/y/2|2 � 1 is fulfilled, which makes g ≈ g0 and
K ≈ ηy

2 K0 = �
δ

K0 sin (φ0). In this case, the intraleg coupling
strength is fixed at g0, but the interleg coupling strength can
also be equivalently represented as

K ≈ 3g sin φ0. (8)

This implies that for given g, K can be tuned via φ0 in the
range −3g � K � 3g. Thus we are enabled to study the phase
transition by adjusting K . In Fig. 2, we have plotted K for φ0

ranging from −π to π , which is one period for the relation
in Eq. (8). For simplicity, we have specified g = 1, and it
can be found that K can be sinusoidally modulated by φ0

in the regime −3 � K � 3. This manifests that the interleg
coupling strength can be controlled by the phases of driving
fields. The condition δ = ωR − ωL can be satisfied with mak-
ing the qubit frequencies ωL/2π = 1.9 GHz and ωR/2π =
2 GHz such that δ/2π = 100 MHz. Furthermore, the driv-
ing frequencies should be ω

(L)
1 /2π = 2.9 GHz, ω

(L)
2 /2π =

3 GHz, ω
(R)
1 /2π = 3 GHz, and ω

(R)
2 = 3.1 GHz, since

we have assumed δ1/2π = (ω(d )
1 − ωd )/2π = 1 GHz and

δ2/2π = (ω(d )
2 − ωd )/2π = 1.1 GHz.

So far, we have determined nearly all the necessary param-
eters of the qubit and driving fields, except for the phases in
the driving fields φ and φ0. Here, the former parameter φ acts
as the effective magnetic flux per plaquette, while the latter φ0

is used to tune the interleg coupling strength K .

D. Fermionic ladder in the effective magnetic flux

To transform the qubit ladder into the fermionic ladder, we
now make a Jordan-Wigner transformation [60], which is of
the form as

σ̂
(L,l )
− = b̂L,l

l−1∏
l ′=1

exp(iπ b̂†
L,l ′ b̂L,l ′ ), (9)

σ̂
(R,l )
− = b̂R,l

l∏
l ′=1

exp(iπ b̂†
L,l ′ b̂L,l ′ )

l−1∏
l ′=1

exp(iπ b̂†
R,l ′ b̂R,l ′ ). (10)

Here, b̂d,l (b̂†
d,l ) is the fermionic annihilation (creation) opera-

tor at the site (d, l) and thus the fermionic anticommutation
relations {b̂d,l , b̂†

d ′,l ′ } = δdd ′δll ′ and {b̂d,l , b̂d ′,l ′ } = 0 are ful-
filled. Note that δdd ′ and δll ′ represent the Kronecker delta
functions. Moreover, the relation σ̂ (d,l )

z = 2b̂†
d,l b̂d,l − 1 can be

verified to hold. Using the transformation in Eqs. (9) and (10),
the qubit ladder Hamiltonian Ĥ ′

f in Eq. (7) can be transformed
into the Hamiltonian of the fermionic ladder, i.e.,

Ĥld = −
R∑

d=L

∑
l

h̄gb̂d,l b̂
†
d,l+1 + H.c.

−
∑

l

h̄Kb̂L,l b̂
†
R,l exp (iφl ) + H.c., (11)

which describes the motion of “fermionic” particles governed
by the effective magnetic flux φ. We note that the above
fermionic ladder model with effective magnetic flux can also
be interpreted as one-dimensional spin-orbit-coupled model
[21,48], which may thus inspire the research towards the real-
ization of quantum spin Hall effect [47].

III. VORTEX-MEISSNER PHASE TRANSITION

A. Infinite-length ladder

Now, we seek the energy spectrum of the ladder Hamilto-
nian Ĥld in the infinite chain case [see Eq. (11)], i.e., the lattice
site (or rung) number N approaches infinity. To do this, we
straightforwardly assume that the single-particle eigenstate
at the energy h̄ω is |ω〉 = ∑

d,l ψd,l |d, l〉. Here, the notation

|d, l〉 = b̂†
d,l |0〉 represents the single-particle state at the site

(d, l ) and |0〉 is the ground state. The stationary Shrödinger
equation for the state |ω〉 is Ĥld|ω〉 = h̄ω|ω〉, which can be
written as

−g(ψL,l−1 + ψL,l+1) − Ke−iφlψR,l = ωψL,l , (12)

−g(ψR,l−1 + ψR,l+1) − KeiφlψL,l = ωψR,l , (13)

To solve the above equations, we first remove the dependence
on l in the coefficients e±iφl , which can be realized via the
transformation ψL,l = ψ ′

L,l e
−i φ

2 l and ψR,l = ψ ′
R,l e

i φ

2 l . Then,
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Eqs. (12) and (13) are transformed into the equations for ψ ′
d,l ,

i.e.,

−g
(
ei φ

2 ψ ′
L,l−1 + e−i φ

2 ψ ′
L,l+1

) − Kψ ′
R,l = ωψ ′

L,l , (14)

−g
(
e−i φ

2 ψ ′
R,l−1 + ei φ

2 ψ ′
R,l+1

) − Kψ ′
L,l = ωψ ′

R,l . (15)

The above equations can be regarded as the difference equa-
tions with constant coefficients for the two-component wave
function ψ ′

l = (ψ ′
L,l , ψ

′
R,l )

ᵀ. Such equations can be solved
with the ordinary method of letting ψ ′

l ≡ ψ ′
l (z) = ψ ′

0zl , where
z is called the characteristic constant. Using this method,
Eqs. (14) and (15) can be reduced to(

ω + gZ (φ) K

K ω + gZ (−φ)

)(
ψ ′

L,0

ψ ′
R,0

)
= 0, (16)

where Z (φ) is the function of φ: Z (φ) = ze−i φ

2 + z−1ei φ

2 . The
vector ψ ′

0 = (ψ ′
L,0, ψ

′
R,0) should be nonzero, thus requiring the

determinant of the coefficient matrix to be zero, i.e.,

[ω + gZ (φ)][ω + gZ (−φ)] − K2 = 0. (17)

After ω is solved from Eq. (17), we can obtain the disper-
sion relation, which can be viewed as a two-band spectrum,
i.e.,

ω = ω±(z) = −2gz2
p cos

φ

2
±

√
K2 − 4g2z2

m sin2 φ

2
. (18)

Here, ω = ω+(z) [ω = ω−(z)] is called the high-energy
(low-energy) band, and the intermediate parameters zp =
(z + z−1)/2 and zm = (z − z−1)/2. When ω = ω+(z) or ω =
ω−(z) according to Eq. (18), only one equation is independent
in Eq. (16). We might as well solve the second equation, that
is, Kψ ′

L,0 + [ω + gZ (−φ)]ψ ′
R,0 = 0, and then we can obtain

the solution of ψ ′
0:

ψ ′
L,0(z) = ω + gZ (−φ) and ψ ′

R,0(z) = −K, (19)

where a global normalizing constant has been discarded. Thus
the single-particle eigenstate for ω = ω±(z) can finally be
represented as

ψL,l = ψ ′
L,0zle−i φ

2 l and ψR,l = ψ ′
R,0zlei φ

2 l . (20)

To lay a foundation for the open-boundary ladder dis-
cussed afterwards, we mainly concentrate on three cases of
z (see Appendix C for details), i.e., (i) z = exp (iq), (ii) z =
exp (λ), and (iii) z = − exp (λ), where q and λ must be in
the regime −π � q � π and − ln � � λ � ln �, with the

parameter � = K/(2g sin φ

2 ) +
√

K2/(4g2 sin2 φ

2 ) + 1. Here,
the case (i) gives a transmission state, the case (ii) a decay
state, and the case (iii) a staggered decay state. In the case (i),
the value of K can control the number of the minimums of
ω−, for which, there exists a critical interleg coupling strength
with the analytical form

Kc = 2g tan
φ

2
sin

φ

2
. (21)

The relation K = Kc actually yields the vortex-Meissner tran-
sition boundary discussed afterwards. In detail, if K < Kc,

-1 0 1
-4

-2

0

2

4 (a)
-0.1 0 0.1

-1 0 1

(b)
-0.5 0 0.5

-1 0 1

-1 0 1

(c)

FIG. 3. Single-particle spectrum of the ladder model at the inter-
leg coupling strength K = (a) 0.2, (b)

√
2, and (c) 2.5, respectively.

Here, the effective magnetic flux φ = π

2 , and the intraleg coupling
strength is set as unity: g = 1, implying the critical interleg coupling
strength Kc = √

2. The case (i): the solid (dashed) black curve means
ω = ω+ (ω−), and z = exp(iq); the case (ii): the solid (dashed) blue
curve marked with “�” means ω = ω+ (ω−), and z = exp(λ); the
case (iii): the solid (dashed) blue curve marked with “◦” means
ω = ω+(ω−), and z = − exp(λ).

the lower band ω− has two minimums, while, otherwise, the
minimum number is one. This can be clearly found from the
dashed black curve in Figs. 3(a)–3(c) for K taking values 0.5,√

2, and 2.5, respectively, where we have specified g = 1 and
φ = π

2 such that Kc = √
2. As K is increased, the band gap

between the two transmission bands ω+ and ω− will also
be broadened. In Fig. 3, where the energy bands ω± for the
decay and staggered decay states have been shown as well,
we also find that a given single-particle energy will always
correspond to four degenerate states. This is critical for the
existence of the single-particle eigenstates under the open
boundary condition, which can in principle be constructed by
the linear superposition of these four degenerate states. Only
when the decay and staggered decay states are included, can
one definitely ensure the equality between the number of the
independent coefficients and that of the boundary conditions,
considering that there are four terminals of the ladder. How-
ever, in the simplest one-dimensional chain, which has only
two terminals, the single-particle eigenstates under the open
boundary condition is only the superposition of two trans-
mission states, which differs from the quasi-two-dimensonal
ladder model this present paper concentrates on.

B. Open-boundary ladder with finite qubit number

Now we investigate the open-boundary conditions for the
ladder model. In cold atom systems, the ideal open-boundary
effect is a hard wall, which is very hard to realize [61],
and thus, the open-boundary condition is approximately en-
gineered by an external power law potential. However, in
superconducting qubit systems, the open-boundary condition
is very convenient to realize, since the ladder length is finite in
experiment. Suppose the ladder length is N , then the fermionic
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Hamiltonian in Eq. (11) becomes

Ĥ (N )
ld = −

N−1∑
l=1

R∑
d=L

h̄gb̂d,l b̂
†
d,l+1 + H.c.

−
N∑

l=1

h̄Kb̂L,l b̂
†
R,l exp (iφl ) + H.c., (22)

where the eigenstates are different from those of the
infinite-length ladder, and therefore must be revisited. In
Figs. 3(a)–3(c), we find that in infinite-length case, a defi-
nite ω corresponds to four states, which we denote by the
characteristic constants z = z1, z2, z3, and z4, respectively.
If the the frequency of interest, ω, lies in the high-energy
band, the characteristic constant z should fulfill ω = ω+(z),
while if ω lies in the low-energy band, ω = ω−(z) should be
fulfilled. Thus all the possible characteristic constants z for a
particular ω can be solved through the equation ω = ω±(z),
which finally gives the following solution as (see Appendix C
for derivation details)

z1,2 ≡ z1,2(ω) = 1

2
(R− ∓

√
R2− − 4), (23)

z3,4 ≡ z3,4(ω) = 1

2
(R+ ∓

√
R2+ − 4). (24)

Here, the compact symbols R±, determined by ω, are repre-
sented in the form of

R± = −ω

g
cos

φ

2
±

√
−ω2

g2
sin2 φ

2
+ K2

g2
+ 4 sin2 φ

2
. (25)

For the open-boundary ladder with finite qubit number, the
single-particle eigenstate at the energy h̄μ can be assumed as

|μ〉 =
R∑

d=L

N∑
l=1

χd,l |d, l〉. (26)

Here, the eigenwave function χd,l ≡ χd,l(μ) must be the linear
superposition of the four degenerate states at the energy ω =
μ of the infinite-length ladder, respectively denoted as ψ

( j)
d,l ≡

ψd,l (z j (μ)) [see Eqs. (20), (23), and (24)], i.e.,

χd,l =
4∑

j=1

Ajψ
( j)
d,l . (27)

Then, by substituting the state vector expansion |μ〉 in Eq. (26)
into the eigenequation

Ĥ (N )
ld |μ〉 = h̄μ|μ〉, (28)

where the coefficients Aj must be constrained nonzero, the
eigenenergies can in principle be discretized as μ = h̄μn

(n = 1, 2, . . . , 2N) with μn � μn+1, and the corresponding
eigenstates can be assumed of the form

|μn〉 =
R∑

d=L

N∑
l=1

χ
(n)
d,l |d, l〉. (29)

Here, the lowest energy eigenstate |μ1〉 is called the single-
particle ground state, which is the state of interest we will
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FIG. 4. Probability amplitude |χ (n)
d,l | for the lowest two states χ

(n)
d,l

(n = 1, 2, and d = L,R) for the energy h̄μn in the open-boundary
condition. Here, n denotes the index of the energy level, d the
ladder leg, and l the rung index. The “◦” marks the direct numerical
diagonalization result, and the solid curve is the fitted result using
the expansion equation χ

(n)
d,l = ∑4

j=1 A(n)
j χ

(n, j)
d,l , where χ

(n, j)
d,l is the

jth transmission or decay state in the infinite-length condition for
the energy h̄μn. In (a)-(d), the interleg coupling strength K = 0.5,
while in (e)-(h), K = 2.5. The intraleg coupling strength g = 1, the
effective magnetic flux per plaquette φ = π

2 , for which Kc = √
2, and

the ladder length N = 20.

mainly study. The eigenwave function χ
(n)
d,l can also be ex-

panded as the linear superposition of ψ
(n, j)
d,l ≡ ψd,l (z j (μn)),

the degenerate states in the infinite-length case, i.e.,

χ
(n)
d,l =

4∑
j=1

A(n)
j ψ

(n, j)
d,l . (30)

However, straightforwardly solving Eq. (28) is difficult, since
a transcendental equation will be involved. Thus, in this paper,
the determination of A(n)

j is achieved by fitting Eq. (30) with
the results obtained from direct numerical diagonalization of
Eq. (28).

In Fig. 4, the wave functions of the single-particle ground
state |μ1〉 and single-particle excited state |μ2〉 (μ1 < μ2)
have been shown for K taking values 0.5 [see Figs. 4(a)–4(d)]
and 2.5 [see Figs. 4(e)–4(h)], respectively, where the other
parameters are g = 1, N = 20, and φ = π

2 such that Kc = √
2.

The discrete circles represent the results from the direct nu-
merical diagonalization using Eq. (28), while the solid curves
the fitting results using the expansion equation in Eq. (30).
Both results can be found to fit each other exactly. Also, the
wave functions at K = 2.5 > Kc appear smoother than those
at K = 0.5 < Kc. Besides, when K = 2.5, |χ (2)

d,l | exhibits an
obvious dip near the middle lattice site, which nevertheless
does not occur when K = 0.5.

Then, we investigate the properties of the single-particle
ground state χ

(1)
d,l using the expansion coefficients A(n)

j from
fitting. From the discussions in Sec. III A, we know that if
K is less than Kc, all the four characteristic constants z j corre-
sponding to ω = μ1 are complex numbers on the unit circle,
while, if K exceeds Kc, z3 and z4 will become real, which
will only contribute to the population at the edges. Besides,
due to the effective magnetic flux, a complex characteristic
constant z j = exp (iq j ) corresponds to a plane wave with the
quasimomentum qj − φ/2 (q j + φ/2) in the wave function of
the L (R) ladder leg [see Eq. (20)].
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FIG. 5. Quasimomentum qj ± φ/2 in the single-particle ground
state wave function χ

(1)
d,l for different interleg coupling strength K .

Here, the effective magnetic flux φ = π/2, the intraleg coupling
strength g = 1, and the ladder length N = 20. The color indicates the
relative distribution intensity of the wave function on the quasimo-
mentum component. Here, the quasimomentum qj − φ/2 (qj + φ/2)
only occurs on the L (R) ladder leg.

In Fig. 5, we have plotted the quasimomentum qj ∓ φ/2
versus the interleg coupling strength K with φ = π/2 and
N = 20, where the color represents the relative distribution in-
tensity on a particular quasimomentum component [obtained
by rescaling |A(1)

j ψ
(1, j)
d,0 |, with d taking the label L (R) for

q j − φ/2 (q j + φ/2)]. We can also see that if φ = π/2, and K
is less than Kc, the particle corresponding to the characteristic
constant z1,3 (z2,4) is more likely to be populated on the L (R)
leg. However, if K exceeds Kc, only z1 and z2 remain complex,
and the particles corresponding to z1,2 are approximately pop-
ulated uniformly on both legs.

Lastly, we mention that once the single-particle eigen-
states χ

(n)
d,l are obtained, one can make the transformation

b̂†
n = ∑R

d=L

∑N
l=1 χ

(n)
d,l b̂†

d,l , which can finally transform the
Hamiltonian in Eq. (22) into the independent fermionic
modes, i.e.,

Ĥ (N )
ld =

2N∑
n=1

h̄μnb̂†
nb̂n. (31)

Here, b̂n and b̂†
n meet the fermionic anticommutation rela-

tions, i.e., {b̂n, b̂†
n′ } = δnn′ . Compared with the infinite-length

scenario, we note that the eigenenergies are discretized, with
the eigenstates being the superposition of the ones in the
infinite-length scenario.

C. Chiral current

The current operator can be derived from the following
continuity equation

d

dt
(b̂†

d,l b̂d,l ) = [b̂†
d,l b̂d,l , Ĥld]

ih̄
= ĵ (d )

l−1,l + ĵ (d )
l+1,l + ĵl,d̄d , (32)

where d, d̄ ∈ {L, R} and d̄ �= d . Here, ĵ (d )
l,l+1 denotes the par-

ticle current flowing from the site l to l + 1 on the d ladder,
while ĵl,d̄d the particle current flowing from the d̄ ladder to
d ladder at the lth site. The physical meaning is that the

FIG. 6. Chiral current strengths jC as a function of the effective
magnetic flux φ and the interleg coupling K with N = 20 sites,
g = 1, and open boundary conditions. The solid curve is the criti-
cal boundary separating the Meissner and vortex phase where K =
2g tan φ

2 sin φ

2 is fulfilled. The right graph shows the chiral current
against K at φ = π/2, while the bottom shows the chiral current
against φ at K = √

2. In the right one, the chiral current first in-
creases with K in the vortex phase and then remains unchanged once
the critical value Kc is met, which signifies the Meissner phase. In
the bottom one, the chiral current first rises with φ in the Meissner
phase until a critical value φc is reached, after which the vortex phase
is entered.

time-varying rate of the particle number at one individual site
is determined by the current that flows into it. The resulting
current operator can be explicitly represented as

ĵ (d )
l,l+1 = ig(b̂†

d,l+1b̂d,l − b̂†
d,l b̂d,l+1), (33)

ĵl,LR = iK (b̂†
R,l b̂L,l e

iφl − b̂†
L,l b̂R,l e

−iφl ). (34)

For the specific single-particle ground state |μ1〉 =∑R
d=L

∑N
l=1 χ

(1)
d,l |d ,l〉, the average particle current can be

respectively given by

j (d )
l,l+1 = ig

(
χ

(1)∗
d,l+1χ

(1)
d,l − χ

(1)
d,l+1χ

(1)∗
d,l

)
(35)

which describes the flow from the site l to l + 1 on the d
ladder, and

jl,LR = iK
(
χ

(1)∗
R,l χ

(1)
L,l eiφl − χ

(1)
R,lχ

(1)∗
L,l e−iφl

)
, (36)

which describes the flow from the L to R ladder at the lth site.
The presence of the effective magnetic flux will make the

system exhibit the property of chirality. In detail, the particle
currents on both legs differ from each other. To quantify the
difference, we define the chiral particle current as

jC = jL − jR. (37)

Here, jd = (N − 1)−1 ∑N−1
l=1 j (d )

l,l+1 with d = L, R is the site-
averaged current on the particular d leg. In Fig. 6, the chiral
current strength is plotted as a function of the flux φ and
interleg coupling strength K . The Meissner and vortex phase
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FIG. 7. Current patterns and particle densities for different values of the interleg coupling K . Here, the intraleg coupling g = 1, the flux
φ = π/2 for the left column and −π/2 for the right one, the site number N = 20. The current strength, properly rescaled for visualization at
each K , is denoted by the thickness and length of the arrows. The shade of the color represents the particle density, which has been rescaled into
the range 0 to 1 at each K . The flux φ = ±π/2 makes the critical value of the interleg coupling Kc = √

2, the value that separates the vortex
and Meissner phases. In the first row, K = 2.5, and the currents mainly flow around the edges of the ladder, which, forming one large vortex,
exhibit the Meissner phase. In the second row, K = √

2, which is the phase transition point, and the current patterns also exhibit the Meissner
phase. From the third to fourth row where K = 1 and 0.5 successively, the decreasing of K induces the increasing of the vortex number and
such current patterns manifest the vortex phase. Furthermore, we find that when φ is flipped from π/2 to −π/2, the currents also change their
directions.

are separated by a critical boundary, where K = 2g tan φ

2 sin φ

2
[see Eq. (21)] is fulfilled. This boundary corresponds to the
degeneracy transition of the single-particle ground state in the
infinite-length case [see Figs. 3(a)–3(c)]. For given K = √

2,
the chiral current first increases as φ until reaching its max-
imum at φc = π

2 and then goes down towards zero, while,
for given φ = π

2 , the chiral current also first increases as K

until reaching its maximum at Kc = √
2 but never changes

afterwards. The current patterns of the Meissner and vortex
phase will be discussed below.

D. Current patterns in the vortex and Meissner phases

The difference between vortex and Meissner phases can
be intuitively seen from their individual current patterns in
Fig. 7. The current pattern is obtained by plotting the particle
currents j (d )

l,l+1 [see Eq. (35)] and jl,LR [see Eq. (36)] between
two adjacent sites, with proper rescaling for visualization. In
the vortex phase, currents flow around particular kernels, the
number of which is what we define as the vortex number. In
the Meissner phase, the currents only flow along the edges
of the ladder, which can be therefore regarded as a single
large vortex. In Fig. 7, the flux φ = π/2 for the left column
and −π/2 for the right column, the intraleg coupling g = 1,
the site number N = 20, and the corresponding critical in-
terleg coupling is Kc = √

2. When K goes down from 2.5
to the critical value

√
2, we see no more vortex to occur

except the only one circulating around the edges. However,
if K continues to decrease to 1 and furthermore 0.5, we see
that more vortices come into being. At the side (d, l ), the
particle density is characterized by |χ (1)

dl |2, which has been
rescaled into the range zero to one in Fig. 7. We can find
that, before K becomes smaller than

√
2, the particle density

shows no periodical modulation, while, until K reaches
√

2,
more modulation periods appear as K is further decreased.
This is consistent with the profile of the probability amplitude

in Fig. 4. For example, the Meissner phase [see Fig. 7(a)] is
related to a smooth probability amplitude [see Figs. 4(e) and
4(f)], while the vortex phase [see Fig. 7(d)] is related to a
coarse one [ see Figs. 4(a) and 4(b) ], which interprets the
periodical modulation of the particle density. We mention that
due to the effect of the open boundary, the particle density
approaches zero near the chain ends. We also see the change
of current directions when the flux φ is flipped from π/2 [see
Figs. 7(a)–7(d)] to −π/2 [see Figs. 7(e)–7(h)].

To numerically quantify the vortex density, i.e., the average
vortex number per lattice site, we now make one count of vor-
tex for a particular plaquette once such a current pattern as the
clockwise or anticlockwise type is present. Thus, if the total
vortex number is NV, the vortex density is then DV = NV/N .
In Fig. 8, we have plotted the vortex density DV against the
flux φ for different values of K with N = 20, g = 1, and the
open boundary conditions. For each given K , there is a critical
value of the flux φc. Below φc, the system is in the Meissner
phase, possessing a constant vortex density 1/N = 0.05, while
above φc, the system is in the vortex phase, where the vortex
density increases with the flux φ. Since the vortex number
must be integers, the increase of vortex density with φ is in
steps. Besides, the critical flux φc shifts to the right gradually
when K is increased.

IV. EXPERIMENTAL DETAILS

A. Generating the single-particle ground state

To observe the chiral particle current discussed above, we
need to generate the single-particle ground state, i.e., the
lowest single-particle energy state |μ1〉. In principle, the cold
atoms can be condensed into one common single-particle state
via laser cooling, thus forming the so-called Bose-Einstein
condensate. However, since the number of particles here is
not conserved as that of atoms, the ladder model realized by
superconducting qubit circuits will decay to the ground state
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FIG. 8. Vortex density DV as a function of the effective flux φ

for different interleg coupling strength K with N = 20 sites, g = 1,
and the open boundary condition. For each determined K , there
is a critical value of the flux φc. Below φc, the system is in the
Meissner phase, possessing a constant vortex density 1/N = 0.05,
while above φc, the system is in the vortex phase, where the vortex
density increases with the flux φ.

(with no particles present) through sufficient cooling of the
conventional dilution refrigerator. Hence, in the following, we
will demonstrate how to generate the single-particle ground
state from the ground state.

We now discuss a general method that generates the
single-particle ground state from the ground state |0〉, and
simultaneously causes no unwanted excitations. In detail, we
classically drive the qubits at all the sites, which appears in
Eq. (4) as an additional term

Ĥg = h̄

2

R∑
d=L

N∑
l=1

σ̂
(d,l )
+ Bd,l exp (−iνdt ) + H.c. (38)

When we further go to Eq. (11), Ĥg is transformed into

Ĥld,g = h̄

2

R∑
d=L

N∑
l=1

σ̂
(d,l )
+ B′

d,l exp (−iεt ) + H.c. (39)

Here, the driving strength B′
d,l = Bd,l J0( �

δ
) ≈ Bd,l , since

|�/δ|2 � 1 is satisfied by the parameters in Sec. II, and
the detuning ε ≡ νd − ωd for d = L, R can be achieved via
carefully tuning νd . In Fig. 9, it can be found that the eigen-
states are approximately degenerate in pairs when K < Kc (the
critical interleg coupling strength), although the approximate
degeneracy becomes broken when K > Kc. Therefore, when
we excite the single-particle ground state |μ1〉 from ground
state with ε = μ1, at least the single-particle state |μ2〉 could
also be excited and so might the other single-particle states.

To overcome this problem, we now make a unitary
transformation of the single-particle creation operator, i.e.,
σ̂

(d,l )
+ = ∑2N

n=1 χ
(n)∗
d,l �̂+

n , and thus the interaction Hamiltonian
in Eq. (39) becomes

Ĥld,g = h̄

2

2N∑
n=1

Cn�̂
+
n exp (−iεt ) + H.c. (40)

-4.5

-3.5

-2.5

-1.5
(a)

1 2 3
0

0.1

0.2

0.3
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FIG. 9. (a) Ground state frequency vs the interleg coupling K .
(b) Lowest six eigenfrequencies vs K in reference to the ground
state frequency. Here, the flux φ = π/2, the site number N = 20, the
intraleg coupling g = 1, and the open boundary condition is assumed.
One finds that, below the critical interleg coupling strength Kc, the
eigenfrequencies are nearly degenerate in pairs. Above Kc, however,
this approximate degeneracy is broken.

Here, the Pauli operator �̂+
n represents the collective ex-

citations of the qubits, and the driving strength Cn =∑R
d=L

∑N
l=1 χ

(n)∗
d,l B′

d,lcan be controlled by the amplitude B′
d,l

(or equivalently, Bd,l ). To remove the excitations on the single-
particle excitation states (i.e., the states |μn〉 with n � 2),
we should make Cn = 0 for n � 2, which yields the required
driving strength

B′
d,l =

2N∑
n=1

χ
(n)
d,l Cn = χ

(1)
d,l C1 (41)

using the orthonormal condition of χ
(n)
d,l . Obviously, the

driving fields B′
d,l must possess the same profile as the single-

particle ground state χ
(1)
d,l except for a scaling factor, i.e., the

Rabi frequency C1. Then, Eq. (40) can be simplified into

Ĥ ′
ld,g = h̄

2
C1 exp (−iεt )�̂+

1 + H.c., (42)

where we assume C1 is tuned positive. From Eqs. (9) and (10),
we know that σ̂

(d,l )
+ |0〉 = b̂†

d,l |0〉, thus yielding

�̂+
1 |0〉 =

R∑
d=L

N∑
l=1

χ
(1)
d,l σ̂

(d,l )
+ |0〉

=
R∑

d=L

N∑
l=1

χ
(1)
d,l b̂†

d,l |0〉 = |μ1〉. (43)
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FIG. 10. Driving strength |B′
d,l |/2π and phase arg{B′

d,l}/2π at
the site (d, l ) which is needed to reach the Rabi frequency C1/2π =
1 MHz for generating the single-particle ground state. The solid red
(dashed blue) curves marked with triangles (squares) mean d = L
(d = R). Here, the intraleg coupling strength g/2π = 3.5 MHz, the
interleg coupling strength K/2π = 1.75 MHz (such that K/g = 0.5),
the ladder length N = 20, and the flux φ = π/2 are assumed.

Since the single-particle ground state is generated from the
ground state, we then have

Ĥ ′
ld,g = h̄

2
C1 exp (−iεt )|μ1〉〈0| + H.c. (44)

Thus the unwanted excitations characterized by Cn for n � 2
are all removed via properly adjusting B′

d,l . If the detun-
ing is further taken as ε = μ1 as expected, the system will
evolve to the state cos (C1t/2)|0〉 − i sin (C1t/2)|μ1〉 in a time
duration t . Assuming a π pulse, i.e., C1t = π , the single-
particle ground state |μ1〉 can be achieved in just one step.
If we specify the intraleg coupling strength g/2π = 3.5 MHz,
the interleg coupling strength K/2π = 1.75 MHz, the ladder
length N = 20, the flux φ = π/2, and the detuning ε/2π =
μ1/2π = −210.4 MHz, the driving strength B′

d,l required
to reach the desired Rabi frequencies C1/2π = 1 MHz and
Cn/2π = 0 (n � 2) can be shown in Fig. 10, which implies a
generation time of 0.5 μs. Besides, we can verify that |B′

d,l |
[see Fig. 10(a)] shares the same profile as |χ (1)

d,l | [see Figs. 4(a)
and 4(b)] except for a scaling factor.

Having obtained the target Hamiltonian in Eq. (44), we
now investigate the effect of the environment on the state
generation process, which is described by the Lindblad master
equation

d ρ̂

dt
= 1

ih̄

[
Ĥ (N )

ld + Ĥ ′
ld,g, ρ̂

] + Lμ1[ρ̂]. (45)

Here, ρ̂ is the density operator of the ladder, Lμ1[ρ̂] represents
the Lindblad dissipation terms as

Lμ1[ρ̂] = −γ1|μ1〉〈μ1|〈μ1|ρ̂|μ1〉 + γ1|0〉〈0|〈0|ρ̂|0〉

− �1

2
|μ1〉〈0|〈μ1|ρ̂|0〉 − �1

2
|μ1〉〈0|〈μ1|ρ̂|0〉,

(46)

and γ1 (�1) is the relaxation (dephasing) rate of the single-
particle ground state |μ1〉. From Eq. (45), we can in fact obtain
the exact solution of 〈μ1|ρ̂(t )|μ1〉, which is the fidelity of the

0

0.5 (a)

0

0.5 (b)

0 0.5 1 1.5 2
0

0.5
(c)

FIG. 11. Single-particle ground state fidelity 〈μ1|ρ̂|μ1〉 evolving
vs the time t under the effects of environment for the dephasing rate
�1 taking values (a) 10C1, (b) C1, and (c) 0.1C1, respectively. Here,
C1/2π = 1 MHz is the Rabi frequency. The relaxation rate takes
γ1 = 0.5�1 in all plots. The solid red (dashed blue) curve denotes
the exact solution (the approximate one in the strong-coupling limit
C1 � γ1, �1).

single-particle ground state at the time t (see Appendix D).
Despite this, in the strong-coupling limit (C1 � γ1, �1), the
generation fidelity can also be approximated as

〈μ1|ρ̂|μ1〉 = 1

2

[
1 − e− 1

2 (γ1+ �1
2 )t cos (C1t )

]
. (47)

Suppose the relaxation (dephasing) rate of the qubit at the site
(d, l ) is γd,l (�d,l ), then γ1 and �1 can be estimated by

γ1 =
∑
d,l

∣∣χ (1)
d,l

∣∣2
γd,l and �1 =

∑
d,l

∣∣χ (1)
d,l

∣∣2
�d,l . (48)

We consider homogeneous qubit decay rates, e.g., γd,l/2π ≡
0.05 MHz and �d,l/2π ≡ 0.1 MHz, while other parameters
remain unchanged. Then, after a π pulse, the fidelity is about
〈μ1|ρ̂( π

C1
)|μ1〉 = 0.9273. In Fig. 11, we have shown the exact

solution and the approximate one for the weak (�1 = 10C1),
critical (�1 = C1), and strong (�1 = 0.1C) coupling, where
good agreement is found in the last case.

B. Measurement scheme

To observe the vortex-Meissner phase transition, one in-
dispensable issue is to measure the particle currents between
a pair of adjacent sites. In superconducting quantum circuits,
the qubit state can be dispersively read out by a microwave
resonator, which enables us to extract the particle current from
the Rabi oscillation between the pair of adjacent sites. To
achieve this, we can tune the energy levels of the flux qubits
that connect to the pair of sites we concentrate on such that
both sites are decoupled from the others. For example, to
investigate the Rabi oscillation between (L, l ) and (L, l + 1),
we can tune the flux qubits at the sites (L, l − 1), (L, l + 2),
(R, l ), and (R, l + 1) such that they are decoupled from the
ones at (L, l ) and (L, l + 1). Then, the bare Hamiltonian that
governs the evolution of the adjacent sites (L, l ) and (L, l + 1)
can be given by ĤL,l = −h̄gσ̂ (L,l+1)

+ σ̂
(L,l )
− + H.c. Differently

from the cold atoms in optical lattices, the particles stored in
the flux qubits suffer the relaxation rates γd,l and dephasing
rates �d,l for the site (d, l ). Thus the interaction between the
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qubits at (L, l ) and (L, l + 1) should also be described by the
Lindblad master equation, i.e.,

d ρ̂L,l

dt
= [ĤL,l , ρ̂L,l ]

ih̄
+ LL,l [ρ̂L,l ] + LL,l+1[ρ̂L,l ]. (49)

Here, ρ̂L,l = P̂ρ̂P̂ with P̂ = ∑l+1
l ′=l |L,l ′〉〈L,l ′| + |0〉〈0| de-

notes the subspace truncation of the global density operator
ρ̂. The symbol LL,l ′ [ρ̂L,l ] represents the Lindblad dissipation
terms which takes the explicit form

LL,l ′ [ρ̂L,l ] = −γL,l |L, l ′〉〈L, l ′|〈L, l ′|ρ̂L,l |L, l ′〉

+ γL,l |0〉〈0|〈0|ρ̂L,l |0〉 − �L,l

2
|0〉〈L, l ′|〈0|ρ̂L,l

× |L, l ′〉 − �L,l

2
|L, l ′〉〈0|〈L, l ′|ρ̂L,l |0〉. (50)

In the limit of strong coupling (i.e., g � γL,l , �L,l ), the pop-
ulation difference between (L, l + 1) and (L, l ), defined by
PL,l (t ) = 〈L, l + 1|ρ̂L,l+1|L, l + 1〉 − 〈L, l|ρ̂L,l |L, l〉, can be
obtained using the Lindblad master equation as

PL,l (t ) = e−γ̃L,l t

[
cos (g̃t )PL,l (0) + sin (g̃t )

j (L)
l,l+1

g

]
, (51)

where γ̃L,l = (γL,l + γL,l+1 + �L,l + �L,l+1)/4 and g̃ = 2g.
Now, we can confidently assert that the particle current j (L)

l,l+1
can be extracted from the population difference after fitting
the measured data using Eq. (51). The discussions made above
can also apply to extracting the particle current on the R
leg, for which, the population difference between (R, l ) and
(R, l + 1) is namely Eq. (51) with the subscript or superscript
L replaced with R. Similarly, the population difference be-
tween (R, l ) and (L, l ) is

PLR,l (t ) = e−γ̃LR,l t
[
cos(K̃t )PLR,l (0) + sin(K̃t )

jLR,l

K

]
, (52)

where γ̃LR,l = (γL,l + γR,l + �L,l + �R,l )/4, K̃ = 2K , and
strong interleg coupling (i.e., K � γL,l , �L,l ) has been as-
sumed.

To investigate the accuracy of the analytical solution in
Eq. (51) [Eq. (52)], we have plotted the time evolution
of the population difference PL,l (t ) [PLR,l (t )] in Fig. 12(a)
[Fig. 12(b)], where both the analytical result in the strong-
coupling-limit approximation (solid yellow) and the numer-
ical one using the exact master equation (dotted blue) are
presented for intuitive comparison. Here, the rung index l
takes the value N/2, with the chain length N = 20, the intra-
leg coupling strength g/2π = 3.5 MHz, the interleg coupling
strength K/2π = 1.75 MHz (such that K/g = 0.5), the effec-
tive magnetic flux φ = π/2, and the decay rates γd,l ′/2π ≡
0.05 MHz and �d,l ′/2π ≡ 0.1 MHz. The corresponding par-
ticle current is j (L)

l,l+1 = 0.43 MHz and jLR,l = −0.5785 MHz.
We find that, in the strong-coupling limit, the approximate an-
alytical solutions (solid yellow ) agree very well with the exact
numerical simulation results ( dotted blue ), especially in the
first few periods. However, when time goes longer, some devi-
ation is exhibited from the approximate and numerical results.
Thus, to improve accuracy of measurement, we advice to fit
the data from the first few oscillation periods. We also see that
the oscillation period in Fig. 12(b) is twice that in Fig. 12(a).

-0.02

0

0.02 (a)

0 1 2

-0.04

0

0.04 (b)

FIG. 12. Population difference (a) PL,l (t ) between the site (L, l +
1) and (L, l), and (b) PLR,l (t ) between the site (R, l) and (L, l)
evolving against the time t . The solid yellow ( dotted blue) curves
represents the exact numerical simulation results (approximate so-
lutions) in the strong coupling limit. Here, we specify the chain
length N = 20, the lattice index l = N/2 = 10, the intraleg coupling
strength g/2π = 3.5 MHz, the interleg coupling strength K/2π =
1.75 MHz, and the decay rates at the site (d, l ′) γd,l ′/2π ≡ 0.05 MHz
and �d,l ′/2π ≡ 0.1 MHz. The corresponding particle current is
(a) j (L)

l,l+1 = 0.43 MHz and (b) jLR,l = −0.5785 MHz.

This can be explained by the oscillation frequencies of PLR,l (t )
and PL,l (t ), which are respectively K̃ = 2K [see Eq. (52)]
and g̃ = 2g [see Eq. (51)]. In our parameter setup, we have
assigned g/2π = 3.5 MHz and K/2π = 1.75 MHz, and thus
K̃/g̃ = 0.5 can be obtained, which exactly interprets the dou-
bling of the oscillation period.

Having measured the particle currents between adjacent
sites, we can then calculate the chiral current given in Eq. (37),
which enables us to obtain the vortex-Meissner phase tran-
sition diagram for different interleg coupling strength K and
effective magnetic flux φ (see Fig. 6). The current patterns
(see Fig. 7) can also be obtained from the particle currents,
which enables us to calculate the vortex density for different
K and φ (see Fig. 8). In a word, the vortex-Meissner phase
transition can be determined from the measured data of parti-
cle currents between adjacent sites.

V. CONCLUSION

We have introduced a circuit scheme on how to construct
the two-leg fermionic ladder with X-shape gradiometer su-
perconducting flux qubits. In such a scheme, we have shown
that with two-tone driving fields, an artificial effective mag-
netic flux can be generated for each plaquette, which can be
felt by the “fermionic” particle and thus affects its motion.
Compared with the previous method for generating effective
magnetic flux without the aid of couplers [22], our method
does not require the qubit circuit possess a sufficiently weak
anharmonicity. Instead, the analytical expression it gives is
particularly simple within the strong-anharmonicity regime.
Note that the maintenance of adequate anharmonicity (or non-
linearity) is crucial, since it is indispensable for demonstrating
quantum behaviors [6].

Via modifying the interleg coupling strength or the effec-
tive magnetic flux, both tunable via adjusting the phases of the
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classical driving fields, the vortex-Meissner phase transition
can in principle be observed in the single-particle ground
state, which originates from the competition between the two
parameters. In the vortex phase, the number of vortex kernels
is more than one, while in the Meissner phase, there is only
one large vortex, with the currents mainly flowing around
the boundaries of the ladder. The phase transition boundary
has been analytically provided. Besides, the wave functions,
current patterns, and quasimomentum distributions in both
phases have been exhaustively investigated. Moreover, the
vortex densities for different parameters have also been pre-
sented.

Since the vortex and Meissner phases are discussed in the
single-particle ground state, instead of the (global) ground
state, we have proposed a method on how to generate the
single-particle ground state from the ground state with just a
one-step π pulse, which can be realized by simultaneously
driving all the qubits and meanwhile causes no undesired
excitations. The required driving fields should share the same
profile as the wave function of the single-particle ground state
except for a scaling factor, the Rabi frequency throughout the
generation process.

As has also been demonstrated, the particle currents be-
tween the two adjacent sites can in principle be extracted
from the Rabi oscillations between them, on condition that the
other sites connected to them are tuned to decouple. To this
end, we have analytically given a formula that can be used
to fit the measured data in experiment. The particle-current
measurement between adjacent sites will further enable the
calculation of chiral particle currents, a critical step to deter-
mine the vortex-Meissner phase transition.

For strictness, the effects of the environment are also con-
sidered for both the single-particle-ground-state generation
and particle-current measurement between adjacent sites. To
guarantee the generation fidelity and measurement accuracy,
we suggest that the sample reach the strong-coupling regime,
implying that the coupling strength should be much larger
than the decay rates. This condition, we think, should not be
very difficult to met, since the ultrastrong coupling [62–64]
and decoherence time about tens of microseconds [51,65]
have both been reported in flux qubit systems.
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APPENDIX A: PERIODICAL MODULATION OF THE
QUBIT FREQUENCY

Now, for a general superconducting qubit circuit (e.g., flux
qubit circuit, transmon qubit circuit, etc.) with multiple energy
levels, we will investigate how to periodically modulate its
frequencies (or in other words, energy intervals). The generic
Hamiltonian of the superconducting qubit circuit with two-
tone driving fields can be represented as

Ĥq = Ĥ0 + h̄

2

N−1∑
n

2∑
j=1

(σ̂n+1,n� jne−iω̃ j t + H.c.). (A1)

Here, Ĥ0 = ∑
n h̄ωqnσ̂nn denotes the free Hamiltonian and

σ̂nn = |n〉〈n| (σ̂n+1,n = |n + 1〉〈n|) is the projection (ladder)
operator. In the interaction picture defined by Û0(t ) = e−iĤ0t ,
the Hamiltonian Ĥq is transformed into

ĤI(t ) = h̄

2

N−1∑
n

2∑
j=1

(σ̂n+1,n� jne−iδ jnt + H.c.), (A2)

where δ jn = ω̃ j − (ωq,n+1 − ωq,n) is the detuning between the
driving field and the applied energy levels.

To derive the effective Hamiltonian, we employ the
second-order perturbation theory in the large-detuning regime
|� jn/δ j′n|2 � 1, thus resulting in the evolution operator in the
interaction as

ÛI(t ) ∼= 1 + 1

ih̄

∫ t

0
dt ′ĤI(t

′)

+ 1

(ih̄)2

∫ t

0
dt ′ĤI(t

′)
∫ t ′

0
ĤI(t

′′)dt ′′. (A3)

In the timescale t � 1
|� jn| , which satisfies t � 1

|δ jn| , the fast-
oscillating term (i.e., the first-order perturbative term) in
Eq. (A3) can be neglected, thus leading to

ÛI
∼=1 + 1

i2

N−1∑
n=0

∫ t

0
dt ′

2∑
j=1

|� jn|2
4

(
σ̂n+1,n+1

iδ jn
− σ̂n,n

iδ jn

)

+ 1

4i2

N−1∑
n=0

∫ t

0
dt ′

(
On

iδ1n
σ̂n+1,n+1 − O∗

n

iδ1n
σ̂n,n

)

+ 1

4i2

N−1∑
n=0

∫ t

0
dt ′

(
O∗

n

iδ2n
σ̂n+1,n+1 − σ̂n,n

On

iδ2n

)
, (A4)

where the symbol On ≡ On(t ) = �∗
1n�2ne−iδ̃t and the detun-

ing δ̃ = δ2n − δ1n = ω̃2 − ω̃1. Assuming |δ̃| � |δ jn|, which
implies δ1n ≈ δ2n, we can obtain the effective Hamiltonian
using the relation HI,eff = ih̄∂tUI(t ), thus yielding

ĤI,eff =
2∑

j=1

h̄|� j0|2
4δ j0

σ̂00

+
N−1∑
n=0

2∑
j=1

(
h̄|� j,n+1|2

4δ j,n+1
− h̄|� jn|2

4δ jn

)
σ̂n+1,n+1
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−
N−1∑
n=0

h̄

2

|�1n�2n|
δ1n

σ̂n+1,n+1 cos(δ̃t + φn)

+
N−1∑
n=0

h̄

2

|�1n�2n|
δ1n

σ̂nn cos(δ̃t + φn), (A5)

where we have defined φ1n − φ2n ≡ φn. Omitting an irrelevant
constant, the effective Hamiltonian can be further represented
as

ĤI,eff =
N∑

n=1

h̄[νn + ηn cos (δ̃t + φn−1)]σ̂n,n. (A6)

Here, νn is the Stark shift and ηn is the periodical modulation
strength, which are of the detailed forms as

νn =
2∑

j=1

|� jn|2
4δ jn

− |� j,n−1|2
4δ j,n−1

− |� j0|2
4δ j0

, (A7)

ηn = 1

2

( |�1n�2n|
δ1n

− |�1,n−1�2,n−1|
δ1,n−1

− |�10�20|
δ10

)
. (A8)

Returning to the original frame, the effective Hamiltonian
is transformed into the form

Ĥeff
∼=

N∑
n=1

h̄[ω̃qn + ηn cos(δ̃t + φn−1)]σ̂n,n, (A9)

where ω̃qn = ωqn + νn. In the large-detuning regime, the Stark
shift νn is a small quantity compared to ωqn.

If the qubit circuit possesses adequate anharmonicity, and
all the control pulses involved are carefully designed to avoid
the excitation to higher energy levels, then the Hamiltonian
can be confined to the single-particle case, thus leading to

Ĥeff = h̄ωq1σ̂11 + h̄η1 cos (δ̃t + φ0) σ̂11. (A10)

If we further focus on the flux qubit circuit which is typically
treated as an ideal two-level system where δ11 = ∞, we have a
simple result η1 ≈ −|�10�20|

δ10
. We can verify that the expression

of Ĥeff is consistent with Eq. (3).
Now, we discuss the limit that the anharmonicity of the

qubit is so weak that Eq. (A1) becomes the form of a driven
resonator. In this case, the parameters can be represented
as ωn = nω̄, � jn = √

n + 1�̄ j , and δ jn = Const, where ω̄

is the resonator frequency and �̄ j is the driving strength
on the resonator. Using such parameters, one can obtain
that the Stark shift νn = 0 and ηn = 0, and thus the period-
ical modulation of the qubit frequency vanishes. Therefore,
to achieve the periodical modulation using two-tone driv-
ing fields, the superconducting qubit circuit should maintain
a nonzero anharmonicity. In principle, the periodical mod-
ulation effect shall exist only if the anharmonicity of the
interested qubit circuit is nonzero. This character permits
a wider anharmonicity range of the qubit circuit than in
Ref. [22], where the anharmonicity of the transmon qubit
circuit needs to be negligibly small. Since the nonlinearity
is a key factor for demonstrating quantum phenomena [6],
we think periodically modulating the qubit circuit with bet-
ter anharmonicity is significant for exploring nonequilibrium
quantum physics.

APPENDIX B: TREATMENT INTO THE INTERACTION
PICTURE

The full Hamiltonian with periodically modulated qubit
frequency is given by

Ĥf =
∑

l

∑
d=L,R

[
h̄

2
(ωd − ωs)σ̂ (d,l )

z − h̄

2
� cos (δt + φd ,l )σ̂

(d,l )
z

]

−
∑

l

∑
d=L,R

h̄g0σ̂
(d,l )
− σ̂

(d,l+1)
+ + H.c.,

−
∑

l

h̄K0σ̂
(L,l )
− σ̂

(R,l )
+ + H.c. (B1)

where the subscript L and R represent the left and right legs of
the ladder, l the lattice site, ωd (d = L, R) the qubit frequency
on the leg d , g0 the bare intraleg coupling strength, and K0 the
interleg coupling strength. To eliminate the time-dependent
terms in Eq. (B1), we now apply to Eq. (B1) a unitary trans-
formation ÛD(t ) = ∏

l

∏
d=L,R

exp [i 1
2 σ̂ (d,l )

z Fd,l (t )] with

Fd,l (t ) = �

δ
sin (δt + φd ,l ) + (ωs − ωd )t, (B2)

in which manner, we now enter the interaction picture, and
obtain the effective Hamiltonian as

Ĥf,I = −
∑

l

[
h̄g0σ̂

(L,l )
− σ̂

(L,l+1)
+ eiαL,l (t ) + H.c.

]

−
∑

l

[
h̄g0σ̂

( R ,l )
− σ̂

( R ,l+1)
+ eiαR,l (t ) + H.c.

]

−
∑

l

[
h̄K0σ̂

(L,l )
− σ̂

(R,l )
+ eiβl (t ) + H.c.

]
. (B3)

Here, the phase parameters αd,l (t ) = Fd,l (t ) − Fd,l+1(t ) and
βl (t ) = FL,l (t ) − FR,l (t ), which can be simplified into

αd,l (t ) =
[

2�

δ
sin φ

(−)
d,l

]
cos

[
δt + φ

(+)
d,l

]
, d = L,R (B4)

βl (t ) =
[

2�

δ
sin φ

(−)
l

]
cos

[
δt + φ

(+)
l

] + �t, (B5)

where φ
(±)
d,l = (φd ,l ± φd ,l+1)/2, φ

(±)
l = (φL,l ± φR,l )/2, and

� = ωR − ωL is the qubit frequency difference between dif-
ferent legs. Recall that φd ,l is the phase of the second driving
field at the site (d, l ), which can thus be artificially tuned.
In particular, we assume the driving phases along the d leg
is tuned to linearly depend on the rung index, i.e., φd ,l =
φd − φl with φL = −φR = φ0, which hence yields

φ
(−)
d,l = φ

2
, φ

(+)
d,l = φd − lφ − 1

2
φ, (B6)

φ
(−)
l = φ0, φ

(+)
l = −lφ, (B7)

Here, φ is the phase difference between adjacent sites along
an individual leg and φd is the driving phase at the site (d, 0).
Then, following Refs. [66,67], we use the relation

eix sin θ =
∞∑

n=−∞
Jn(x)einθ , (B8)
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or equivalently,

eix cos θ =
∞∑

n=−∞
inJn(x)einθ , (B9)

to obtain the Fourier expansions of eiαd,l (t ) and eiβl (t ) in
Eq. (B3), where Jn(x) is the nth Bessel function of the first
kind. For example, to expand eiαd,l (t ) [eiβl (t )] into Fourier
series, we can let x = 2�

δ
sin φ

(−)
d,l and θ = δt + φ

(+)
d,l [x =

2�
δ

sin φ
(−)
l and θ = δt + φ

(+)
l ] in Eq. (B9). This Fourier trans-

formation changes the Hamiltonian Ĥf,I into the form

Ĥf,I = −
∑

ln

h̄g0σ̂
(L,l )
− σ̂

(L,l+1)
+ J (L)

xnl (t ) + H.c.

−
∑

ln

h̄g0σ̂
(R,l )
− σ̂

(R,l+1)
+ J (R)

xnl (t ) + H.c.

−
∑

ln

h̄K0σ̂
(L,l )
− σ̂

(R,l )
+ Jynl (t ) + H.c. (B10)

Here, the parameters J (d )
xnl (t ) and Jynl (t ) can be explicitly given

by

J (d )
xnl = inJn(ηx ) exp

[
in

(
δt + φd − lφ − φ

2

)]
, (B11)

Jynl = inJn(ηy) exp [in(δt − φl ) + i�t]. (B12)

where d = L,R, ηx = 2�
δ

sin ( φ

2 ) and ηy = 2�
δ

sin (φ0). We
now assume the detuning δ, which is the detuning between the
two driving frequencies at the site (d, l ), is tuned to match the
qubit frequency difference �, i.e., δ = � = ωR − ωL, such
that, only keeping the resonant terms [i.e., the terms with J (d )

x0l
and Jy,−1,l ] but neglecting the fast-oscillating ones, we can
obtain the effective Hamiltonian

Ĥ ′
f,I = −

∑
l

∑
d=L,R

h̄gσ̂ (d,l )
− σ̂

(d,l+1)
+ + H.c.

−
∑

l

h̄K σ̂
(L,l )
− σ̂

(R,l )
+ exp

(
iφl + i

π

2

)
+ H.c., (B13)

where the intraleg coupling strength g = g0J0(ηx ) and the
interleg coupling strength K = K0J1(ηy) can be tunable in
principle via modifying the two-tone driving strength �. The
phase π

2 besides K can be removed via a unitary transfor-

mation U ′
f,I = exp[

∑
l i σ̂ (R,l )

z

2
π
2 ], thus yielding the qubit ladder

Hamiltonian

Ĥ ′
f = −

∑
l

∑
d=L,R

h̄gσ̂ (d,l )
− σ̂

(d,l+1)
+ + H.c.

−
∑

l

h̄K σ̂
(L,l )
− σ̂

(R,l )
+ exp (iφl ) + H.c. (B14)

To gain a deep insight in physics, we now demonstrate
that the interleg/intraleg tunneling, especially the presence of
the phase φ [see Eq. (B14)], is the natural result of energy
conservation. For example, when obtaining the interleg tun-
neling, we only keep the resonant terms in the Fourier series
of exp [iβl (t )] [see Eq. (B12)]. We will prove the resulting co-
efficient K exp (iφl ) corresponds to a few energy-conserving
processes. To do this, we calculate the resonant terms in
another way but the result should be identical. First, we still

employ the definition βl (t ) = FL,l (t ) − FR,l (t ), but express
Fd,l (t ) in another manner by recovering the original mean-
ing of δ, i.e., δ = ω

(d )
2 − ω

(d )
1 . Recall that ω

(d )
j is the driving

frequency of the jth driving field at an arbitrary site on the
d leg. Then, we have Fd,l (t ) = �

δ
sin[(ω(d )

2 − ω
(d )
1 )t + φd ,l ] +

(ωs − ωd )t , and furthermore

βl (t ) = �t + �

ω
(L)
2 − ω

(L)
1

sin
[(

ω
(L)
2 − ω

(L)
1

)
t + φL,l

]

− �

ω
(R)
2 − ω

(R)
1

sin
[(

ω
(R)
2 − ω

(R)
1

)
t + φR,l

]
. (B15)

Then, without making further simplification of β(t ), we will
also expand exp [iβ(t )], which is now of the form

eiβl (t ) = ei�t exp

{
i�

ω
(L)
2 − ω

(L)
1

sin
[(

ω
(L)
2 − ω

(L)
1

)
t + φL,l

]}

× exp

{
− i�

ω
(R)
2 − ω

(R)
1

sin
[(

ω
(R)
2 − ω

(R)
1

)
t + φR,l

]}
,

(B16)

into the Fourier series. In detail, we apply Eq. (B8) to the
second and third lines of Eq. (B16), that is,

eiβl (t ) = ei�t
∑

nL

JnL

(
�

ω
(L)
2 − ω

(L)
1

)
einL[(ω(L)

2 −ω
(L)
1 )t+φL,l]

×
∑
nR

JnR

(
�

ω
(R)
2 − ω

(R)
1

)
e−inR[(ω(R)

2 −ω
(R)
1 )t+φR,l].

(B17)

The resonant terms in Eq. (B17) should fulfill the condi-
tion nL(ω(L)

2 − ω
(L)
1 ) − nR(ω(R)

2 − ω
(R)
1 ) + � = 0. Still noting

the definition � = ωR − ωL, we can obtain that any possi-
ble pair nL and nR should satisfy nLω

(L)
2 + nRω

(R)
1 + ωR =

nLω
(L)
1 + nRω

(R)
2 + ωL. This equation in fact means energy

conservation: to achieve one photon tunneling between inter-
leg adjacent sites, there should be nd photons of frequencies
ω

(d )
1 and ω

(d )
2 (d = L,R) to participate such that the interleg en-

ergy difference � can be compensated. When the photons of
classical fields assist the tunneling process, the phases of them
(say, φd,l ) will also be acquired by the tunneling photon. The
total phase acquired is nLφL,l − nRφR,l for the process with nL

and nR, which can be seen from the exponents in Eq. (B17).
We mention again that φd,l is the phase of the second driving
field at site (d, l ). Nevertheless, the phase of the first driving
field at (d, l ) is absent in Eq. (B17). This is because it has been
assumed zero (see Sec. II B), otherwise it will also appear
explicitly. Now, we return to our assumption that the driving
fields are tuned to fulfill ω

(L)
2 − ω

(L)
1 ≡ ω

(R)
2 − ω

(R)
1 = δ, and

then the energy conservation condition becomes (nL − nR)δ +
� = 0. In particular, if δ = �, as we have assumed in de-
riving Eq. (B14), there must be nR = nL + 1 for the resonant
terms, and the corresponding phase acquired by the tunneling
photon becomes nLφL,l − nRφR,l = (2nL + 1)φ0 + φl , where
we have also used the assumption φd ,l = φd − φl with φL =
−φR = φ0. Therefore all the resonant terms in Eq. (B17),
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which we denote by El , should be of the following form:

El =
∞∑

nL=−∞
JnL

(
�

δ

)
JnL+1

(
�

δ

)
ei[(2nL+1)φ0+φl]. (B18)

On the other hand, the resonant terms under the condition
δ = � can also be derived from Eq. (B12) as already demon-
strated, which gives Jy,−1,l = iJ1(ηy)eiφl . The resonant terms
obtained from the two different ways should be the same,
implying that the relation El = iJ1(ηy)eiφl should hold. Also
noting K = K0J1(ηy), we can easily obtain

Keiφl ≡ −iK0

∞∑
nL=−∞

JnL

(
�

δ

)
JnL+1

(
�

δ

)
ei[(2nL+1)φ0+φl].

(B19)
This equation thus describes that the interleg tunneling, char-
acterized by Keiφl , is a combinational effect of a series of
energy-conserving processes assisted by controllable clas-
sical fields: nLω

(L)
2 + nRω

(R)
1 + ωR ←→ nLω

(L)
1 + nRω

(R)
2 +

ωL, where nR = nL + 1 as already discussed. We mention that
similar analyses also apply to the intraleg tunneling character-
ized by g.

APPENDIX C: DERIVATION OF THE CHARACTERISTIC
CONSTANTS

Using the form of ω±(z) in Eq. (18), the characteristic con-
stant z that fulfill ω = ω±(z) can be solved from the following
equation, i.e.,

ω = ω±(z) = −2gz2
p cos

φ

2
±

√
K2 − 4g2z2

m sin2 φ

2
, (C1)

Noting that zp/m = 1
2 (z ± z−1), we have z2

m = z2
p − 1, and thus

the above equation becomes

ω = −2gzp cos
φ

2
±

√
K2 − 4g2

(
z2

p − 1
)

sin2 φ

2
. (C2)

Now, regarding zp as the unknown variable, we can further
obtain the equation about it, i.e.,(

ω + 2gzp cos
φ

2

)2

= K2 − 4g2
(
z2

p − 1
)

sin2 φ

2
. (C3)

Equation (C3) can also be reduced to the quadratic form, that
is,

4g2z2
p + 4gω cos

φ

2
zp + ω2 − 4g2 sin2 φ

2
− K2 = 0. (C4)

The roots of the above equation can be straightforwardly
solved as

zp = R±(ω)

2
, (C5)

Here, we have used the compact symbol R ≡ R(ω), which
takes the expression

R±(ω) = −ω

g
cos

φ

2
±

√
4 sin2 φ

2
+ K2

g2
− ω2

g2
sin2 φ

2
. (C6)

Again, noting that zp = 1
2 (z + z−1), Eq. (C5) then becomes

the equation about z, i.e.,

z2 − R±(ω)z + 1 = 0, (C7)

The above equation means that there should be four roots of z
in all, which can be solved as

z1 = 1

2
(R−(ω) −

√
R2−(ω) − 4), (C8)

z2 = 1

2
(R−(ω) +

√
R2−(ω) − 4), (C9)

z3 = 1

2
(R+(ω) −

√
R2+(ω) − 4), (C10)

z4 = 1

2
(R+(ω) +

√
R2+(ω) − 4). (C11)

Now, we have obtained all the four characteristic constants
corresponding to a definite ω.

Then, we concentrate on a special case that R±(ω) is real,
which can be easily achieved by the condition

4 sin2 φ

2
+ K2

g2
− ω2

g2
sin2 φ

2
� 0. (C12)

The condition above in fact defines a regime (or band) of ω,
that is,

−ζ1 � ω � ζ1, (C13)

where the compact symbol ζ1 is of the following form as

ζ1 =
√

4g2 + K2

sin2 φ

2

. (C14)

Now we assume that ω belongs to the regime given in
Eq. (C13), which guarantees the reality of both R+ and R−.
In particular, if there is |R−(ω)| � 2 [|R+(ω)| � 2], the char-
acteristic constants z1 and z2 (z3 and z4) can be verified to
lie on the unit circle of the complex plane. Thus, they can be
represented in the form

z = eiq (C15)

with q being real, which indeed describe the transmission
states. On the other hand, if |R−(ω)| > 2 [|R+(ω)| > 2], z1

and z2 (z3 and z4) should be real. Hence, they can be repre-
sented as

z = ±eλ (C16)

with λ being real, which actually describe the decay states.
The conclusion is that if ω belongs to the regime defined
by Eq. (C13), the corresponding characteristic constant z can
be either eiq or ±eλ where both q and λ are real. Due to
the periodicity, the range of q can be constrained to −π �
q � π . However, when z = ±eλ, K2 − 4g2z2

m sin2 φ

2 � 0 must
be fulfilled such that ω±(z) can be guaranteed to be real.
This requires − ln � � λ � ln �, where the parameter � =
K/(2g sin φ

2 ) + [K2/(4g2 sin2 φ

2 ) + 1]
1/2

.
We should point out that all the transmission states lie

in the energy band −ζ1 � ω � ζ1. To demonstrate this, we
assume z j corresponds to a transmission state with energy
h̄ω. Without loss of generality, we take j = 1 and thus there
must be z1 = eiq with q real. Then, from Eq. (C8), we can
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obtain R−(ω) = 2 cos q. This means that R−(ω) is real and
hence, so is R+(ω). Therefore Eq. (C13) must be satisfied,
which implies that the transmission state lies in the energy
band −ζ1 � ω � ζ1.

We will not discuss the regime of ω that makes R±(ω)
imaginary, because when the open-boundary condition is ap-
plied, the energy spectrum should lie in the two transmission
bands ω = ω+(eiq ) and ω = ω−(eiq ) (corresponding to the
so-called bulk states in solid-state physics) or, if the lad-
der is topologically nontrivial, the band gap between them
[68,69]. Therefore merely considering the regime in Eq. (C13)
is sufficient for the subsequent discussion on the practical
open-boundary ladder.

APPENDIX D: EXACT SOLUTION OF THE FIDELITY
WITH THE ENVIRONMENT

As the main text demonstrates, the effect of the environ-
ment on the state generation process can be described by the
Lindblad master equation

d ρ̂

dt
= 1

ih̄

[
Ĥ (N )

ld + Ĥ ′
ld,g, ρ̂

] + Lμ1[ρ̂]. (D1)

Here, ρ̂ is the density operator of the ladder, Lμ1[ρ̂] represents
the Lindblad dissipation terms as

Lμ1[ρ̂] = −γ1|μ1〉〈μ1|〈μ1|ρ̂|μ1〉 + γ1|0〉〈0|〈0|ρ̂|0〉

− �1

2
|μ1〉〈0|〈μ1|ρ̂|0〉 − �1

2
|μ1〉〈0|〈μ1|ρ̂|0〉, (D2)

and γ1 (�1) is the relaxation (dephasing) rate of the single-
particle ground state |μ1〉. Solving Eq. (D1), where the Hilbert
space is {|0〉, |μ1〉}, we can obtain the population on |μ1〉 after
some time t , i.e.,

ρ11 = 〈μ1|ρ̂|μ1〉

= r0 − r0 Re

{(
1 − iγ ′

1

2C′
1

)
e− 1

2 γ ′
1t exp (itC′

1)

}
. (D3)

Here, the intermediate parameters are explicitly given as fol-
lows:

r0 =
C2

1
2

C2
1 + γ1�1

2

, (D4)

C′
1 =

√
C2

1 − 1

4

(
γ1 − �1

2

)2

, (D5)

γ ′
1 = γ1 + �1

2
, (D6)

and ρ11 is also called the fidelity of |μ1〉. In the limit of strong
coupling (C1 � γ1, �1), r0 = 1

2 , C′
1 = C1, and γ ′

1/C′
1 = 0, thus

yielding

ρ11 = 1

2

[
1 − e− 1

2 γ ′
1t cos (C1t )

]
, (D7)

which indicates ρ11 = 1
2 in the steady state (t = ∞).

[1] J. D. Jackson, Classical Electrodynamics (Wiley, United States
of America, 1999).

[2] M. K. Gaillard, P. D. Grannis, and F. J. Sciulli, The stan-
dard model of particle physics, Rev. Mod. Phys. 71, S96
(1999).

[3] M. Z. Hasan and C. L. Kane, Colloquium: Topological insula-
tors, Rev. Mod. Phys. 82, 3045 (2010).

[4] Y. Makhlin, G. Schön, and A. Shnirman, Quantum-state engi-
neering with josephson-junction devices, Rev. Mod. Phys. 73,
357 (2001).

[5] J. Q. You and F. Nori, Superconducting circuits and quantum
information, Phys. Today 58(11), 42 (2005).

[6] G. Wendin and V. S. Shumeiko, Quantum bits with josephson
junctions (review article), Low Temp. Phys. 33, 724 (2007).

[7] J. Clarke and F. K. Wilhelm, Superconducting quantum bits,
Nature (London) 453, 1031 (2008).

[8] R. J. Schoelkopf and S. M. Girvin, Wiring up quantum systems,
Nature (London) 451, 664 (2008).

[9] I. Buluta, S. Ashhab, and F. Nori, Natural and artificial atoms
for quantum computation, Rep. Prog. Phys. 74, 104401 (2011).

[10] J. Q. You and F. Nori, Atomic physics and quantum optics using
superconducting circuits, Nature (London) 474, 589 (2011).

[11] Z.-L. Xiang, S. Ashhab, J. You, and F. Nori, Hybrid quantum
circuits: Superconducting circuits interacting with other quan-
tum systems, Rev. Mod. Phys. 85, 623 (2013).

[12] X. Gu, A. F. Kockum, A. Miranowicz, Y.-X. Liu, and F. Nori,
Microwave photonics with superconducting quantum circuits,
Phys. Rep. 718-719, 1 (2017).

[13] J. Koch, A. A. Houck, K. L. Hur, and S. M. Girvin,
Time-reversal-symmetry breaking in circuit-QED-based photon
lattices, Phys. Rev. A 82, 043811 (2010).

[14] A. Nunnenkamp, J. Koch, and S. M. Girvin, Synthetic gauge
fields and homodyne transmission in jaynes-cummings lattices,
New J. Phys. 13, 095008 (2011).

[15] D. Marcos, P. Rabl, E. Rico, and P. Zoller, Superconducting
Circuits for Quantum Simulation of Dynamical Gauge Fields,
Phys. Rev. Lett. 111, 110504 (2013).

[16] Z.-H. Yang, Y.-P. Wang, Z.-Y. Xue, W.-L. Yang, Y. Hu, J.-H.
Gao, and Y. Wu, Circuit quantum electrodynamics simulator
of flat band physics in a lieb lattice, Phys. Rev. A 93, 062319
(2016).

[17] P. Roushan, C. Neill, A. Megrant, Y. Chen, R. Babbush, R.
Barends, B. Campbell, Z. Chen, B. Chiaro, A. Dunsworth,
A. Fowler, E. Jeffrey, J. Kelly, E. Lucero, J. Mutus, P. J. J.
O’Malley, M. Neeley, C. Quintana, D. Sank, A. Vainsencher,
J. Wenner, T. White, E. Kapit, H. Neven, and J. Martinis, Chi-
ral ground-state currents of interacting photons in a synthetic
magnetic field, Nat. Phys. 13, 146 (2017).

[18] M. Aidelsburger, M. Atala, S. Nascimbène, S. Trotzky, Y. A.
Chen, and I. Bloch, Experimental Realization of Strong Effec-
tive Magnetic Fields in an Optical Lattice, Phys. Rev. Lett. 107,
255301 (2011).

[19] M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B. Paredes,
and I. Bloch, Realization of the Hofstadter Hamiltonian with
Ultracold Atoms in Optical Lattices, Phys. Rev. Lett. 111,
185301 (2013).

053722-16

https://doi.org/10.1103/RevModPhys.71.S96
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.73.357
https://doi.org/10.1063/1.2155757
https://doi.org/10.1063/1.2780165
https://doi.org/10.1038/nature07128
https://doi.org/10.1038/451664a
https://doi.org/10.1088/0034-4885/74/10/104401
https://doi.org/10.1038/nature10122
https://doi.org/10.1103/RevModPhys.85.623
https://doi.org/10.1016/j.physrep.2017.10.002
https://doi.org/10.1103/PhysRevA.82.043811
https://doi.org/10.1088/1367-2630/13/9/095008
https://doi.org/10.1103/PhysRevLett.111.110504
https://doi.org/10.1103/PhysRevA.93.062319
https://doi.org/10.1038/nphys3930
https://doi.org/10.1103/PhysRevLett.107.255301
https://doi.org/10.1103/PhysRevLett.111.185301


VORTEX-MEISSNER PHASE TRANSITION INDUCED BY A … PHYSICAL REVIEW A 102, 053722 (2020)

[20] H. Miyake, G. A. Siviloglou, C. J. Kennedy, W. C. Burton,
and W. Ketterle, Realizing the Harper Hamiltonian with Laser-
Assisted Tunneling in Optical Lattices, Phys. Rev. Lett. 111,
185302 (2013).

[21] M. Atala, M. Aidelsburger, M. Lohse, J. T. Barreiro, B. Paredes,
and I. Bloch, Observation of chiral currents with ultracold
atoms in bosonic ladders, Nat. Phys. 10, 588 (2014).

[22] H. Alaeian, C. W. S. Chang, M. V. Moghaddam, C. M. Wilson,
E. Solano, and E. Rico, Creating lattice gauge potentials in
circuit Qed: The bosonic creutz ladder, Phys. Rev. A 99, 053834
(2019).

[23] R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey,
T. C. White, J. Mutus, A. G. Fowler, B. Campbell, Y. Chen,
Z. Chen, B. Chiaro, A. Dunsworth, C. Neill, P. O’Malley, P.
Roushan, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N.
Cleland, and J. M. Martinis, Superconducting quantum cir-
cuits at the surface code threshold for fault tolerance, Nature
(London) 508, 500 (2014).

[24] Y. Zheng, C. Song, M.-C. Chen, B. Xia, W. Liu, Q. Guo, L.
Zhang, D. Xu, H. Deng, K. Huang, Y. Wu, Z. Yan, D. Zheng,
L. Lu, J.-W. Pan, H. Wang, C.-Y. Lu, and X. Zhu, Solving
Systems of Linear Equations with a Superconducting Quantum
Processor, Phys. Rev. Lett. 118, 210504 (2017).

[25] C. Song, K. Xu, W. Liu, C.-p. Yang, S.-B. Zheng, H. Deng, Q.
Xie, K. Huang, Q. Guo, L. Zhang, P. Zhang, D. Xu, D. Zheng,
X. Zhu, H. Wang, Y. A. Chen, C. Y. Lu, S. Han, and J.-W. Pan,
10-Qubit Entanglement and Parallel Logic Operations with a
Superconducting Circuit, Phys. Rev. Lett. 119, 180511 (2017).

[26] M. Gong, M.-C. Chen, Y. Zheng, S. Wang, C. Zha, H. Deng, Z.
Yan, H. Rong, Y. Wu, S. Li, F. Chen, Y. Zhao, F. Liang, J. Lin, Y.
Xu, C. Guo, L. Sun, A. D. Castellano, H. Wang, C. Peng, C.-Y.
Lu, X. Zhu, and J.-W. Pan, Genuine 12-Qubit Entanglement on
a Superconducting Quantum Processor, Phys. Rev. Lett. 122,
110501 (2019).

[27] P. J. Leek, J. M. Fink, A. Blais, R. Bianchetti, M. Göppl, J. M.
Gambetta, D. I. Schuster, L. Frunzio, R. J. Schoelkopf, and A.
Wallraff, Observation of berry’s phase in a solid-state qubit,
Science 318, 1889 (2007).

[28] S. Berger, M. Pechal, S. Pugnetti, A. A. Abdumalikov, L.
Steffen, A. Fedorov, A. Wallraff, and S. Filipp, Geometric
phases in superconducting qubits beyond the two-level approx-
imation, Phys. Rev. B 85, 220502(R) (2012).

[29] S. Berger, M. Pechal, A. A. Abdumalikov, C. Eichler, L.
Steffen, A. Fedorov, A. Wallraff, and S. Filipp, Exploring the
effect of noise on the Berry phase, Phys. Rev. A 87, 060303(R)
(2013).

[30] M. D. Schroer, M. H. Kolodrubetz, W. F. Kindel, M. Sandberg,
J. Gao, M. R. Vissers, D. P. Pappas, A. Polkovnikov, and K. W.
Lehnert, Measuring a Topological Transition in an Artificial
Spin-1/2 System, Phys. Rev. Lett. 113, 050402 (2014).

[31] Z. Zhang, T. Wang, L. Xiang, J. Yao, J. Wu, and Y. Yin, Mea-
suring the Berry phase in a superconducting phase qubit by a
shortcut to adiabaticity, Phys. Rev. A 95, 042345 (2017).

[32] P. Roushan, C. Neill, Y. Chen, M. Kolodrubetz, C. Quintana, N.
Leung, M. Fang, R. Barends, B. Campbell, Z. Chen, B. Chiaro,
A. Dunsworth, E. Jeffrey, J. Kelly, A. Megrant, J. Mutus, P. J.
O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. White, A.
Polkovnikov, A. N. Cleland, and J. M. Martinis, Observation of
topological transitions in interacting quantum circuits, Nature
(London) 515, 241 (2014).

[33] E. Flurin, V. V. Ramasesh, S. Hacohen-Gourgy, L. S. Martin,
N. Y. Yao, and I. Siddiqi, Observing Topological Invariants
Using Quantum Walks in Superconducting Circuits, Phys. Rev.
X 7, 031023 (2017).

[34] V. V. Ramasesh, E. Flurin, M. Rudner, I. Siddiqi, and N. Y. Yao,
Direct Probe of Topological Invariants using Bloch Oscillating
Quantum Walks, Phys. Rev. Lett. 118, 130501 (2017).

[35] X. Tan, Y. Zhao, Q. Liu, G. Xue, H. Yu, Z. D. Wang, and Y.
Yu, Realizing and manipulating space-time inversion symmet-
ric topological semimetal bands with superconducting quantum
circuits, npj Quantum Mater. 2, 60 (2017).

[36] X. Tan, D. W. Zhang, Q. Liu, G. Xue, H. F. Yu, Y. Q. Zhu, H.
Yan, S. L. Zhu, and Y. Yu, Topological Maxwell Metal Bands in
a Superconducting Qutrit, Phys. Rev. Lett. 120, 130503 (2018).

[37] Y. P. Zhong, D. Xu, P. Wang, C. Song, Q. J. Guo, W. X.
Liu, K. Xu, B. X. Xia, C. Y. Lu, S. Han, J. W. Pan, and
H. Wang, Emulating Anyonic Fractional Statistical Behavior
in a Superconducting Quantum Circuit, Phys. Rev. Lett. 117,
110501 (2016).

[38] X.-Y. Guo, C. Yang, Y. Zeng, Y. Peng, H.-K. Li, H. Deng,
Y.-R. Jin, S. Chen, D. Zheng, and H. Fan, Observation of a
Dynamical Quantum Phase Transition by a Superconducting
Qubit Simulation, Phys. Rev. Appl. 11, 044080 (2019).

[39] F. Mei, J.-B. You, W. Nie, R. Fazio, S.-L. Zhu, and L. C. Kwek,
Simulation and detection of photonic Chern insulators in a one-
dimensional circuit-QED lattice, Phys. Rev. A 92, 041805(R)
(2015).

[40] J. Tangpanitanon, V. M. Bastidas, S. Al-Assam, P. Roushan, D.
Jaksch, and D. G. Angelakis, Topological Pumping of Photons
in Nonlinear Resonator Arrays, Phys. Rev. Lett. 117, 213603
(2016).

[41] P. Roushan, C. Neill, J. Tangpanitanon, V. M. Bastidas,
A. Megrant, R. Barends, Y. Chen, Z. Chen, B. Chiaro, A.
Dunsworth, A. Fowler, B. Foxen, M. Giustina, E. Jeffrey, J.
Kelly, E. Lucero, J. Mutus, M. Neeley, C. Quintana, D. Sank, A.
Vainsencher, J. Wenner, T. White, H. Neven, D. G. Angelakis,
and J. Martinis, Spectroscopic signatures of localization with
interacting photons in superconducting qubits, Science 358,
1175 (2017).

[42] X. Gu, S. Chen, and Y. Liu, Topological edge states and
pumping in a chain of coupled superconducting qubits,
arXiv:1711.06829v1.

[43] K. Xu, J.-J. Chen, Y. Zeng, Y.-R. Zhang, C. Song, W. Liu, Q.
Guo, P. Zhang, D. Xu, H. Deng, K. Huang, H. Wang, X. Zhu, D.
Zheng, and H. Fan, Emulating Many-Body Localization with
a Superconducting Quantum Processor, Phys. Rev. Lett. 120,
050507 (2018).

[44] Z. Yan, Y.-R. Zhang, M. Gong, Y. Wu, Y. Zheng, S. Li, C. Wang,
F. Liang, J. Lin, Y. Xu, C. Guo, L. Sun, C.-Z. Peng, K. Xia,
H. Deng, H. Rong, J. Q. You, F. Nori, H. Fan, X. Zhu, and
J.-W. Pan, Strongly correlated quantum walks with a 12-qubit
superconducting processor, Science 364, 753 (2019).

[45] Y. Ye, Z.-Y. Ge, Y. Wu, S. Wang, M. Gong, Y.-R. Zhang, Q.
Zhu, R. Yang, S. Li, F. Liang, J. Lin, Y. Xu, C. Guo, L. Sun, C.
Cheng, N. Ma, Z. Y. Meng, H. Deng, H. Rong, C.-Y. Lu, C.-Z.
Peng, H. Fan, X. Zhu, and J.-W. Pan, Propagation and Localiza-
tion of Collective Excitations on a 24-Qubit Superconducting
Processor, Phys. Rev. Lett. 123, 050502 (2019).

[46] F. Arute, K. Arya, R. Babbush, D. Bacon, J. Bardin, R. Barends,
R. Biswas, S. Boixo, F. G. S. L. Brandao, and D. J. N. Buell,

053722-17

https://doi.org/10.1103/PhysRevLett.111.185302
https://doi.org/10.1038/nphys2998
https://doi.org/10.1103/PhysRevA.99.053834
https://doi.org/10.1038/nature13171
https://doi.org/10.1103/PhysRevLett.118.210504
https://doi.org/10.1103/PhysRevLett.119.180511
https://doi.org/10.1103/PhysRevLett.122.110501
https://doi.org/10.1126/science.1149858
https://doi.org/10.1103/PhysRevB.85.220502
https://doi.org/10.1103/PhysRevA.87.060303
https://doi.org/10.1103/PhysRevLett.113.050402
https://doi.org/10.1103/PhysRevA.95.042345
https://doi.org/10.1038/nature13891
https://doi.org/10.1103/PhysRevX.7.031023
https://doi.org/10.1103/PhysRevLett.118.130501
https://doi.org/10.1038/s41535-017-0062-3
https://doi.org/10.1103/PhysRevLett.120.130503
https://doi.org/10.1103/PhysRevLett.117.110501
https://doi.org/10.1103/PhysRevApplied.11.044080
https://doi.org/10.1103/PhysRevA.92.041805
https://doi.org/10.1103/PhysRevLett.117.213603
https://doi.org/10.1126/science.aao1401
http://arxiv.org/abs/arXiv:1711.06829v1
https://doi.org/10.1103/PhysRevLett.120.050507
https://doi.org/10.1126/science.aaw1611
https://doi.org/10.1103/PhysRevLett.123.050502


ZHAO, XU, WANG, LIU, AND LIU PHYSICAL REVIEW A 102, 053722 (2020)

Quantum supremacy using a programmable superconducting
processor, Nature (London) 574, 505 (2019).

[47] S.-Q. Shen, Topological Insulator: Dirac Equation in Con-
densed Matters (Springer-Verlag, Berlin-Heidelberg, 2012).

[48] L. F. Livi, G. Cappellini, M. Diem, L. Franchi, C. Clivati, M.
Frittelli, F. Levi, D. Calonico, J. Catani, M. Inguscio, and L.
Fallani, Synthetic Dimensions and Spin-Orbit Coupling with
an Optical Clock Transition, Phys. Rev. Lett. 117, 220401
(2016).

[49] A. Blais, R.-S. Huang, A. Wallraff, S. Girvin, and R. J.
Schoelkopf, Cavity quantum electrodynamics for superconduct-
ing electrical circuits: An architecture for quantum computa-
tion, Phys. Rev. A 69, 062320 (2004).

[50] Z. R. Lin, K. Inomata, K. Koshino, W. D. Oliver, Y. Nakamura,
J. S. Tsai, and T. Yamamoto, Josephson parametric phase-
locked oscillator and its application to dispersive readout of
superconducting qubits, Nat. Commun. 5, 4480 (2014).

[51] F. Yan, S. Gustavsson, A. Kamal, J. Birenbaum, A. P. Sears,
D. Hover, T. J. Gudmundsen, D. Rosenberg, G. Samach, S.
Weber, J. L. Yoder, T. P. Orlando, J. Clarke, A. J. Kerman, and
W. D. Oliver, The flux qubit revisited to enhance coherence and
reproducibility, Nat. Commun. 7, 12964 (2016).

[52] Y. Wu, L.-P. Yang, M. Gong, Y. Zheng, H. Deng, Z. Yan, Y.
Zhao, K. Huang, A. D. Castellano, W. J. Munro, K. Nemoto,
D.-N. Zheng, C. P. Sun, Y.-x. Liu, X. Zhu, and L. Lu, An ef-
ficient and compact switch for quantum circuits, npj Quantum.
Inform. 4, 50 (2018).

[53] R. Barends, J. Kelly, A. Megrant, D. Sank, E. Jeffrey, Y. Chen,
Y. Yin, B. Chiaro, J. Mutus, C. Neill, P. O’Malley, P. Roushan, J.
Wenner, T. C. White, A. N. Cleland, and J. M. Martinis, Coher-
ent Josephson Qubit Suitable for Scalable Quantum Integrated
Circuits, Phys. Rev. Lett. 111, 080502 (2013).

[54] X. Zhu, A. Kemp, S. Saito, and K. Semba, Coherent opera-
tion of a gap-tunable flux qubit, Appl. Phys. Lett. 97, 102503
(2010).

[55] T. P. Orlando, J. E. Mooij, L. Tian, C. H. van der Wal, L. S.
Levitov, S. Lloyd, and J. J. Mazo, Superconducting persistent-
current qubit, Phys. Rev. B 60, 15398 (1999).

[56] Y.-X. Liu, J. Q. You, L. F. Wei, C. P. Sun, and F. Nori, Optical
Selection Rules and Phase-Dependent Adiabatic State Control
in a Superconducting Quantum Circuit, Phys. Rev. Lett. 95,
087001 (2005).

[57] T. L. Robertson, B. L. T. Plourde, P. A. Reichardt, T. Hime,
C. E. Wu, and J. Clarke, Quantum theory of three-junction flux

qubit with non-negligible loop inductance: Towards scalability,
Phys. Rev. B 73, 174526 (2006).

[58] J. Koch, M. Y. Terri, J. Gambetta, A. A. Houck, D. Schuster,
J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, and R. J.
Schoelkopf, Charge-insensitive qubit design derived from the
cooper pair box, Phys. Rev. A 76, 042319 (2007).

[59] D. T. Sank, Fast, accurate state measurement in superconduct-
ing qubits, Ph.D. thesis, University of California, Santa Barbara,
2014.

[60] F. Mei, V. M. Stojanovic, I. Siddiqi, and L. Tian, Analog super-
conducting quantum simulator for holstein polarons, Phys. Rev.
B 88, 224502 (2013).

[61] M. E. Atala, Measuring topological invariants and chiral
meissner currents with ultracold bosonic atoms, Ph.D. thesis,
Ludwig-Maximilians-Universität, 2014.

[62] T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J.
Schwarz, J. J. Garcia-Ripoll, D. Zueco, T. Hümer, E. Solano,
A. Marx, and R. Gross, Circuit quantum electrodynamics in the
ultrastrong-coupling regime, Nat. Phys. 6, 772 (2010).

[63] P. Forn-Díaz, J. J. García-Ripoll, B. Peropadre, J. L. Orgiazzi,
M. A. Yurtalan, R. Belyansky, C. M. Wilson, and A. Lupascu,
Ultrastrong coupling of a single artificial atom to an electro-
magnetic continuum in the nonperturbative regime, Nat. Phys.
13, 39 (2016).

[64] F. Yoshihara, T. Fuse, S. Ashhab, K. Kakuyanagi, S. Saito, and
K. Semba, Superconducting qubit–oscillator circuit beyond the
ultrastrong-coupling regime, Nat. Phys. 13, 44 (2017).

[65] L. V. Abdurakhimov, I. Mahboob, H. Toida, K. Kakuyanagi,
and S. Saito, A long-lived capacitively shunted flux qubit em-
bedded in a 3D cavity, Appl. Phys. Lett 115, 262601 (2019).

[66] Y.-J. Zhao, Y.-L. Liu, Y.-X. Liu, and F. Nori, Generating
nonclassical photon states via longitudinal couplings between
superconducting qubits and microwave fields, Phys. Rev. A 91,
053820 (2015).

[67] Y. X. Liu, C. X. Yang, H. C. Sun, and X. B. Wang, Coexistence
of single- and multi-photon processes due to longitudinal cou-
plings between superconducting flux qubits and external fields,
New J. Phys. 16, 015031 (2014).

[68] Y. Hatsugai, Edge states in the integer quantum hall effect and
the riemann surface of the bloch function, Phys. Rev. B 48,
11851 (1993).

[69] J. K. Asbóth, L. Oroszlány, and A. Pályi, A Short Course
on Topological Insulators, Lecture Notes in Physics Vol. 919
(Springer International Publishing, Cham, 2016).

053722-18

https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1103/PhysRevLett.117.220401
https://doi.org/10.1103/PhysRevA.69.062320
https://doi.org/10.1038/ncomms5480
https://doi.org/10.1038/ncomms12964
https://doi.org/10.1038/s41534-018-0099-6
https://doi.org/10.1103/PhysRevLett.111.080502
https://doi.org/10.1063/1.3486472
https://doi.org/10.1103/PhysRevB.60.15398
https://doi.org/10.1103/PhysRevLett.95.087001
https://doi.org/10.1103/PhysRevB.73.174526
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1103/PhysRevB.88.224502
https://doi.org/10.1038/nphys1730
https://doi.org/10.1038/nphys3905
https://doi.org/10.1038/nphys3906
https://doi.org/10.1063/1.5136262
https://doi.org/10.1103/PhysRevA.91.053820
https://doi.org/10.1088/1367-2630/16/1/015031
https://doi.org/10.1103/PhysRevB.48.11851

