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Monitoring and manipulation of vacuum-induced coherences in frequency-resolved correlation
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The frequency-resolved correlations of the fluorescence emitted by a four-level system in the J = 1/2 to
J = 1/2 transition driven by a linearly polarized laser field are theoretically investigated. In the cross two-photon
correlation of the π and σ+ transitions, we show that VICs can induce the interference of time orderings between
the two-photon paths with different dipole moments, which can serve as a good scheme to exhibit the effects
of vacuum-induced coherences (VICs). An external magnetic field can cause frequency differences between
two-photon paths with different time orderings. When the differences can be distinguished by detectors, the
effects of VICs are destroyed and time asymmetry of the two-photon correlations appears due to the reveal of
“which path” information. However, the which path information can be erased by tuning the filtering frequencies
so the perfect interference effects of time orderings and time symmetry are restored.
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I. INTRODUCTION

Vacuum was always viewed as the origin of the destruc-
tion of the quantum coherence intuitively until the effects
of vacuum-induced coherences (VICs) were first proposed
and discussed in the V-shaped system [1,2]. Subsequently,
a large number of effects caused by VICs were reported in
V-shaped and �-shaped systems, such as ultrasharp spectral
lines [3], enhancement of squeezing [4,5], and lasing with-
out inversion [6]. Relevant progress in experiments is being
made [7–10] and VICs have been observed in multiple plat-
forms, such as a single InGaAs quantum dot [8], and an
ensemble of 57Fe nuclei [9]. Unfortunately, it is considered
quite difficult to meet the conditions for the appearance of
VICs in real atomic systems, which involve a variety of im-
portant platforms in the fields of quantum technologies such
as cold atoms, trapped ions, and atomic gases, and thus there
is rarely related experimental observation reported in these
systems. Meanwhile, Evers et al. [11] and Agarwal et al. [12]
proposed theory schemes for monitoring the effects of VICs
contained in the fluorescence emitted by a four-level system
in the J = 1/2 to J = 1/2 transition which is realizable, for
example, in trapped 198Hg+ [13] and 138Ba+ [14,15] ions.
Nevertheless, the corresponding experimental implementation
has not been reported yet. Worth noting, in contrast to the
various effects of VICs found in the three-level systems [3–6],
more and further studies on VICs based on this four-level sys-
tem are needed to exploit the potential of VICs as a quantum
resource with a noticeable robustness in real environments.

On the other hand, the photon correlation has been a
central quantity in quantum optics since it was proposed by
Glauber [16,17]. As an extension of the frequency-blind cor-
relation which only reflects the overall statistical property of
the radiation field, the frequency-resolved correlation [18–21]
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reveals the correlations between specific spectral components
and then can provide deeper insight into the statistical prop-
erty of emitted radiation. Due to the rapid development of
quantum technologies, the frequency-resolved correlation has
received renewed attention in recent years, and the corre-
lations only between the spectral peaks are extended to all
the possible frequencies [22,23], which greatly facilitates re-
search on the frequency-resolved correlation. The relevant
research proves that the frequency-resolved correlation is a
treasure. A variety of nontrivial phenomena in quantum op-
tics contained in spectral components of fluorescence were
revealed, such as anticorrelations [24], the violation of clas-
sical inequalities [25–27], and the effects of antibunching and
bunching [23,28], and new schemes of quantum sources were
proposed [25–29], such as single-photon sources, two-photon
sources, and source of entangled photon pairs.

In contrast to the abundant quantum effects revealed, the
frequency-filtered correlation measurement scheme can be
conveniently implemented experimentally by inserting filters
between the emitter and the broadband detectors [30–35].
Naturally, related experimental research has developed rapidly
in recent years [24–26,36–39]. For instance, Muller et al. [25]
reported the measurement of the two-photon spectrum, and
observed successfully the violation of Cauchy-Schwarz in-
equality and the strong photon correlations originated from
the so-called leapfrog processes predicted in Refs. [23,28].
Noticeably, it was proved recently [26] that entangled pho-
ton pairs can be generated via the external frequency-filtered
manipulation of the resonance fluorescence from a two-level
quantum dot. This work confirms a new way to generate
entangled photon pairs besides parametric process [40,41] and
cascaded emission in a multilevel atom [42] or a biexciton
structure of a quantum dot [31,43].

Considering the advantages in revealing and analyzing
quantum optical effects contained in the spectral components
of fluorescence and the potential in manipulating emitted ra-
diation, we try utilizing the frequency-resolved correlation to
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explore the expected effects of VICs contained in fluores-
cence. In addition, we know that the destruction on quantum
coherence caused by vacuum reservoir is often viewed as
a main obstacle that needs to be overcome in the field of
quantum technologies. VICs, however, indicate that vacuum
reservoir can induce quantum coherence and then lead to a
variety of interesting effects [3–6]. Therefore, this coherence
can serve as a potential quantum resource with good perfor-
mance in manipulation and robustness in real environments.
Given this, it is only the first step to monitor VICs under ideal
measurement conditions, such as the infinite resolution in
frequency or time [11,12]. Furthermore, it is worth exploring
the performance of VICs on a more general optical target.
In fact, the optical target with a finite frequency resolution is
always encountered in quantum information applications such
as distance quantum communication [44], optical quantum
computation [45], and solid-state quantum networks [46,47].
Therefore, there is considerable interest to explore how to
reveal and even manipulate VICs by the optical target under
the above conditions.

In this paper, we follow the theoretical method developed
in Ref. [22] for the frequency-resolved correlation, where, to
simulate the filtering process, quantized sensors are included
in a theoretical model. The application of this method can
make the calculations of the frequency-resolved correlation
straightforward and simple because complicated convolution
can be avoided. Besides the frequency filter, the sensor can
also be theoretically viewed as a detector or even a general
optical target with a finite linewidth in the field of quantum
technologies, so the investigations on the detection and the
manipulation of the emitted radiation can also be involved
based on this theoretical method. Therefore, the purpose of
this paper is not only to propose a new scheme to monitor
VICs based on the frequency-filtered correlation measure-
ment, but also to explore the possibilities of monitoring
directly and even manipulating this potential quantum source
by the optical target with a finite linewidth.

The possibility to research effects of VICs in the J = 1/2
to J = 1/2 transition of a real atomic system is indicated in
Refs. [11,12]. For a further investigation, we also choose the
J = 1/2 to J = 1/2 transition as the quantum emitter and
analyze the frequency-resolved correlations between the π

and σ+ transitions mainly in the large detection linewidth
and strong excitation regime. We demonstrate that VICs can
induce the interference between different time orderings of
emission with different combinations of dipole moments, and
this kind of physical origin is significantly different from that
in the conventional interference of time orderings [48,49]. To
be specific, in the conventional interference of time order-
ings, the two two-photon paths involved originate from the
same dipole moment in the two-level system [48] or the same
combination of dipole moments in the multilevel system [49].
However, in this paper, the two two-photon paths involved are
based on different combinations of dipole moments, between
which the interference is induced by VICs arising between
the two spontaneous decay channels of the π transitions. In
the absence of VICs, the above-mentioned interference of
time orderings would not appear. Next, we find that the exter-
nal magnetic field can cause a frequency difference between
the specific coherent two-photon transition paths. When the

FIG. 1. (a) Schematic diagram of the coupling between the quan-
tum emitter and sensors. Each sensor is represented by a two-level
system with the annihilation operator [22] and can simulate the
filtering and detection processes. According to the sensor method,
the frequency-resolved correlations of the emitted photons can be
computed conveniently. (b) Level scheme of the J = 1/2 to J = 1/2
transition. The transitions |e1〉 ↔ |g1〉 and |e2〉 ↔ |g2〉 driven by a
π polarized laser, and the external static magnetic field in the direc-
tion of the quantization axis can cause the Zeeman splitting of the
magnetic sublevels.

frequency difference can be distinguished by the detector,
“which path” information of the two-photon transitions is
revealed, which can cause the interference between different
time orderings of emission induced by VICs to disappear and
the time symmetry of the correlation once appearing in the
case of degenerate system to be broken. However, inspired by
Refs. [28,31,50–52], we demonstrate that which path infor-
mation can be erased by the external manipulation of filters,
so the perfect interference of time orderings and the time
symmetry of the correlation can recover again.

The paper is organized as follows. In Sec. II, the theo-
retical model of the system is introduced. In Sec. III, we
analyze the different spectral components of the two-photon
transitions consisting of the σ+ and π transitions and obtain
the general analytical expression of the frequency-resolved
correlation between all possible frequencies. In Sec. IV, we
specifically discuss the two-photon correlation function at
zero and nonzero delays in the case of degenerate system and
note that the interference between different time orderings of
emission induced by VICs can be clearly indicated. Then,
in the case of nondegenerate system, the influences of an
external magnetic field and the manipulation of filters on the
interference effects of time orderings are explored. The last
section is a summary.

II. THEORETICAL MODEL

We consider a J = 1/2 to J = 1/2 transition driven by a
linearly polarized laser of the frequency ω as the quantum
emitter. The level scheme is shown in Fig. 1(b) and can
be achieved, for example, in the 6s 2S1/2–6p 2P1/2 transition
of trapped 198Hg+ [13] and 138Ba+ [14,15] ions. It can be
seen that the emitted (or absorbed) photon is π polarized in
the transitions |e1〉 ↔ |g1〉 and |e2〉 ↔ |g2〉, σ+ polarized in
the transition |e2〉 ↔ |g1〉, and σ− polarized in the transition
|e1〉 ↔ |g2〉. The quantization axis (z axis) is set along the po-
larization direction of the laser, and then only the π transitions
|e1〉 ↔ |g1〉 and |e2〉 ↔ |g2〉 are driven. Within the rotating
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wave approximation, the Hamiltonian of the quantum emitter
in the frame rotating at the driving laser frequency can be
given by

Hσ = − [
�σe1e1 + (� − δ)σe2e2 − BL

(
σe2e2 + σg2g2

)]
+ (

Ve1g1σe1g1 + Ve2g2σe2g2 + H.c.
)
. (1)

Here the transition operators are defined as σmn ≡ |m〉〈n|.
� = ω1 − ωL is the detuning of the transition |e1〉 ↔ |g1〉
frequencies from the laser and ω1 represents the resonance
frequency of the transition |e1〉 ↔ |g1〉. Ve1g1 and Ve2g2 , re-
spectively, represent the Rabi frequencies of the transitions
|e1〉 ↔ |g1〉 and |e2〉 ↔ |g2〉, and we can define � = Ve1g1 =
−Ve2g2 according to Appendix. A. Since the magnetic quan-
tum numbers of the four sublevels are nonzero, the external
static magnetic field in the direction of the quantization axis
can cause a frequency splitting BL between the sublevels with
different magnetic quantum numbers. In addition, due to the
difference between the Landé g factors of the ground state and
the excited state, a splitting δ between the transition frequen-
cies of |e1〉 ↔ |g1〉 and |e2〉 ↔ |g2〉 occurs.

The time evolution of the quantum emitter is governed by
the master equation

ρ̇σ = −i[Hσ , ρσ ] + Lσ ρσ , (2)

where the dissipation term Lσ ρσ of the emitter takes the form

Lσ ρσ = γ1

2
D

[
σg1e1

]
ρσ + γ2

2
D

[
σg2e2

]
ρσ + γ3

2
D

[
σg2e1

]
ρσ

+ γ4

2
D

[
σg1e2

]
ρσ + γ21

2

(
2σg2e2ρσσe1g1

)

+ γ12

2

(
2σg1e1ρσσe2g2

)
. (3)

Here the first four terms denote the spontaneous decay
of the system with the Lindblad superoperator D[σmn]ρ ≡
2σmnρσnm − ρσnmσmn − σnmσmnρ (m, n = g1, g2, e1, e2). The
last two terms origin from the vacuum-induced interfer-
ence due to the nonorthogonal dipole moments of the two
transitions |e1〉 → |g1〉 and |e2〉 → |g2〉. According to Ap-
pendix A, we have γ1 = γ2 = γ /3, γ3 = γ4 = 2γ /3, γ12 =
γ21 = −γ /3, where γ represents total spontaneous decay rate
of the transition J = 1/2 to J = 1/2.

In this paper, we use the so-called sensor method proposed
by Ref. [22] to investigate the frequency-resolved correlations
of the quantum emitter. Accordingly, the Hamiltonian term∑

i Hsi and the dissipation term
∑

i Lκiρ describing the sen-
sors are added to the original main equation of the emitter
system, and the number of sensors depends on the order of
the correlation functions. The Hamiltonian of each sensor is
Hsi = ωsi a

†
si

asi + (ga†
si
σAi + H.c.), where the first term repre-

sents the free Hamiltonian and the second term represents
the interaction between the sensors and quantum emitter. asi

is the annihilation operator of the sensor, ωsi is the free fre-
quency which can be set to match the emission frequency
to be measured, σAi represents the transition operator of the
emitter coupled to sensor asi , and g is the coupling coefficient.
The dissipation of each sensor is in Lindblad form Lκiρs =
κiD[asi ]ρs. The decay rate κi of the sensor determines the
frequency resolution (κi) and then the time resolution (κ−1

i ),

which reflects that the time and frequency cannot be measured
with arbitrary precision simultaneously.

Specifically, we mainly focus on the case where two sen-
sors (labeled by the annihilation operators a, b) couple to σ+
and π -polarized components of the emitted radiation, respec-
tively, in this paper. The schematic diagram of the combined
system is shown in Fig. 1(a). Therefore, the corresponding
Hamiltonian describing the sensors and their coupling to the
emitter in the frame rotating at the driving laser frequency is
given by

Hs =�aa†a + �bb†b + (
gσ σe2g1 a + H.c.

)
+ (

gπ1σe1g1 b + gπ2σe2g2 b + H.c.
)
, (4)

where �a = ωa − ωL and �b = ωb − ωL represent the detun-
ings between the sensors and the laser. It should be noted that
since the π transitions contains two components |e1〉 → |g1〉
and |e2〉 → |g2〉, these two transitions couple to sensor b
simultaneously. Moreover, since the dipole moments of the
two π transitions are antiparallel, their coupling coefficients
with sensor b are of opposite signs, i.e., gπ2 = −gπ1 . The
corresponding dissipation term Lsρ takes the form

Lsρs = κaD[a]ρs + κbD[b]ρs. (5)

Therefore, the master equation of the combined system com-
posed of the quantum emitter and the sensors can be obtained:

ρ̇ = −i[Hσ + Hs, ρ] + Lσ ρ + Lsρ. (6)

Here ρ = ∑
ψ,φ〈ψ |ρ|φ〉|ψ〉〈φ| is the density operator of the

combined system, where |ψ〉, |φ〉 = |m〉 ⊗ |na〉 ⊗ |nb〉 are the
basis states in the Hilbert space of the combined system, (|m〉
is the state of the emitter, and |na〉, |nb〉 are the number states
of sensors a and b, respectively). Theoretically, the role of the
sensor can be considered from two aspects. On the one hand,
the sensor can model the filter which is theoretically specified
by the central frequency and linewidth, and the light emitted
by the quantum emitter can be filtered and manipulated by
adjusting these two parameters of the filter. On the other hand,
the sensor can also be viewed as a simple quantized model
of the detector, and therefore the emitter and detector are
both involved in the combined system as quantized objects,
which ensures that the uncertainty principle is intrinsically
accounted for in the theoretical model applied here.

Following the formalism in Ref. [22], the cross-frequency-
resolved two-photon correlation of σ+ and π transitions reads

g(2)(ωa, ωb, τ ) = G (2)(ωa, ωb, τ )

〈na(t )〉〈nb(t + τ )〉 , (7)

where G (2)(ωa, ωb, τ ) = 〈a†(t )b†(t + τ )b(t + τ )a(t )〉 is the
unnormalized two-photon correlation function and nς (t ) =
ς†(t )ς (t ) is the population operator of the sensor.

III. GENERAL SOLUTION FOR MASTER EQUATION

First, we point out two concepts which are often involved
in the frequency-filtered correlation measurement, that is, the
time ordering of emission and the time ordering of detection.
The time ordering of emission is the actual order of the
physical process happening in the quantum emitter and the
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FIG. 2. The dressed-state diagram of the level scheme shown in
Fig. 1(b). The two transitions |e1〉 ↔ |g1〉 and |e2〉 ↔ |g2〉 driven by
the π polarized laser, respectively, correspond to the effective Rabi
frequencies �̄1 and �̄2.

time ordering of detection is set by the observer. The con-
ventional frequency-blind correlation corresponds to the case
where the detection linewidth is infinite, and then these two
kind of time orderings are generally consistent in this case.
However, the finite linewidth can give rise to an indeterminacy
in the time resolution of detection according to the time-
energy uncertainty relation. Therefore, in a frequency-filtered
correlation measurement, different time orderings of emission
may contribute to a certain time ordering of detection if the
time difference of successive emission events is less than this
indeterminacy.

A. Dressed-state representation

In this paper, we mainly focus on the parameter condition
� � κi � γ applied in Ref. [48], and we temporarily assume
κi = κ in the following discussion. Therefore, to explore the
origin of the correlation process conveniently, we can intro-
duce the dressed-state representation of the quantum emitter.
The dressed states shown in Fig. 2, defined as the eigenstates
of the emitter Hamiltonian Hσ , are given by [3]

|A〉 = c1|g1〉 − eiφs1|e1〉,
|B〉 = e−iφs1|g1〉 + c1|e1〉,
|C〉 = c2|g2〉 + eiφs2|e2〉,
|D〉 = − e−iφs2|g2〉 + c2|e2〉, (8)

where c1 = cos θ1 =
√

�̄1−�

2�̄1
, s1 = sin θ1 =

√
�̄1+�

2�̄1
, c2 =

cos θ2 =
√

�̄2−(�−δ)
2�̄2

, s2 = sin θ2 =
√

�̄2+(�−δ)
2�̄2

. The effective

Rabi frequency �̄1 =
√

�2 + 4|�|2 is the splitting between
the neighboring dressed states |a〉 and |b〉, and the effective
Rabi frequency �̄2 =

√
(� − δ)2 + 4|�|2 is the splitting be-

tween the neighboring dressed states |c〉 and |d〉. In the strong
excitation regime, the Rabi frequencies satisfy �̄1, �̄2 �
γ , therefore the different dressed states can be well distin-
guished. The energies of the dressed states in Eq. (8) can be
expressed, respectively, as

EA = (−� − �̄1)/2,

EB = (−� + �̄1)/2,

EC = (2B + δ − � − �̄2)/2,

ED = (2B + δ − � + �̄2)/2. (9)

The transition operators of the emitter in the bare-state
representation can be decomposed into the following forms:

σg1e1 = − eiφc1s1σAA + eiφc1s1σBB − e2iφs2
1σBA + c2

1σAB,

σg2e2 = eiφc2s2σCC − eiφc2s2σDD − e2iφs2
2σDC + c2

2σCD,

σg1e2 = eiφc1s2σAC + eiφc2s1σBD + e2iφs1s2σBC + c1c2σAD,

σg2e1 = − eiφc2s1σCA − eiφc1s2σDB + e2iφs1s2σDA + c1c2σCB.

(10)

The terms on the right of the equal sign correspond to the tran-
sitions of different spectral components of Mollow triplets.
The first two terms correspond to the Rayleigh line (R), the
third term corresponds to the lower sideband, i.e., the fluores-
cence line (F), and the fourth term corresponds to the higher
sideband, i.e., the three-photon line (T). In the frame rotating
at the driving laser frequency, the frequencies of the different
spectral components of the σ+ transition can be expressed as

�σ+,R1 = EC − EA,

�σ+,R2 = ED − EB,

�σ+,F = EC − EB,

�σ+,T = ED − EA. (11)

Similarly, the frequencies of the different spectral components
of the π transitions can be expressed as

�π,R = 0,

�π,F1 = EA − EB,

�π,F2 = EC − ED,

�π,T1 = EB − EA,

�π,T2 = ED − EC . (12)

Meanwhile, we define the detunings between the sensors and
spectral components of Mollow triplets

δa,l = �a − �σ+,l ,

δb,l = �b − �π,l , (13)

where �σ+,l and �π,l are the frequencies of the different
spectral components of the σ+ transition and the π transition
defined in Eqs. (11) and (12), respectively, and l denotes the
corresponding subscript used in Eqs. (11) and (12).

B. Two-photon transition paths with different time orderings

For the detection scheme of the two-photon correlation we
focus on here, two different time orderings of two-photon
cascaded emission are involved, that is, a σ+ photon fol-
lowed by a π photon [denoted by (σ+, π )], and the opposite
emission ordering [denoted by (π, σ+)]. In the strong exci-
tation regime, the dressed states are well distinguished, so it
is advantageous to consider these emission processes in the
dressed-state representation. Therefore, the two-photon cas-
caded emission with the time ordering (σ+, π ) and (π, σ+)
can be, respectively, decomposed according to Eq. (10) into
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FIG. 3. The dressed-state diagram of the transition paths involved in the two-photon cascade emission of the σ+ and π transitions. (a)–(j)
correspond to different two-photon frequency and interference combinations as shown in Eqs. (14) and (15). It can be seen that σ+, π photons
in (a) are, respectively, from F and R lines labeled by the frequencies (F σ+

, Rπ ); in (b) are, respectively, from R and F lines labeled by the
frequencies (Rσ+

, Fπ ); in (c) are, respectively, from T and R lines labeled by the frequencies (T σ+
, Rπ ); in (d) are, respectively, from R and

T lines labeled by the frequencies (Rσ+
, T π ); in (e), (f) are both from R lines labeled by the frequencies (Rσ+

, Rπ ); in (g), (h) are both from
F and T lines labeled by the frequencies (F σ+

, T π ); in (i), (j) are both from T and F lines labeled by the frequencies (T σ+
, Fπ ). Obviously,

the interference between two-photon transition paths with different time orderings occurs only between two-photon transition paths shown in
(a)–(f).

the following forms:

(σg1e1 − σg2e2 )σg1e2

= σg1e1σg1e2

= (−eiφc1s1σAA − e2iφs2
1σBA

)
(eiφc1s2σAC + c1c2σAD)

+ (
c2

1σAB + eiφc1s1σBB
)
(e2iφs1s2σBC + eiφc2s1σBD),

(14)

σg1e2 (σg1e1 − σg2e2 )

= −σg1e2σg2e2

= −(eiφc1s2σAC + e2iφs1s2σBC )
(
eiφc2s2σCC + c2

2σCD
)

− (eiφc2s1σBD + c1c2σAD)
( − eiφc2s2σDD − e2iφs2

2σDC
)
.

(15)

Here only the transition paths which can physically arise
remain and then each of the two-photon emission contains
eight possible two-photon transition paths. It can be de-
duced that the destructive interference between all two-photon
paths with different frequencies in Eqs. (14) or (15) result in
the total antibunching, i.e., (σg1e1 − σg2e2 )σg1e2 = σg1e2 (σg1e1 −
σg2e2 ) = 0.

In this paper, we mainly focus on the physical processes of
two-photon transitions with specific frequency combinations.
And, according to the frequency combination of the two pho-
tons, the above 16 two-photon transition paths can be divided
into ten groups as shown in Fig. 3. If the two-photon transition
paths with different time orderings have the same initial and
final states, interference between these paths can arise when

the time delay between the two successive photon emissions is
less than the indeterminacy in the time resolution of detection
according to Ref. [48]. This condition can be satisfied in
the two-photon paths shown in Figs. 3(a)–3(f), all of which
involve photons from the R line. A parallelogram closed loop
consisting of two two-photon transition paths with opposite
time orderings corresponds to a combination of interference.

It can be seen that each of the four interference com-
binations Figs. 3(a)–3(d) includes a Rayleigh photon and a
sideband photon, which is the same as the case in the Mollow
triplet of two-level system [48]. In addition, it should be noted
that in the frequency combinations where the two photons
are both from R lines, the corresponding interferences be-
tween two opposite time orderings can also arise as shown in
Figs. 3(e) and 3(f), which does not occur in the interference of
time orderings in a conventional two-level system. The reason
for the appearance of the interference effect between R lines
is that in the level structure we consider, the polarization of
two successive transitions are different and then the distinc-
tion between two-photon transition paths is not only in the
time orderings of frequency but also in the time orderings of
polarization.

Remarkably, in terms of the physical origin of the inter-
ference of time orderings, there is a significant difference
between the case studied here and the conventional interfer-
ence of time orderings [48,49]. In the latter case, the photons
with the same frequencies involved in the two-photon transi-
tions are emitted from the same transition channels, and thus
the two two-photon transition paths between which interfer-
ence of time orderings occurs are both based on the same
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(a) (b)

FIG. 4. The dressed-state diagram of the two-photon cascade
transitions involved in interference of time orderings. (a) corresponds
to the case in the two-level system [48], where the two photons
involved are from R and F lines, respectively. (b) corresponds to the
case in the �-shaped system [49], where the two photons involved
are from R and low-frequency inner sideband (labeled by S1) lines,
respectively.

dipole moment or the same combination of dipole moments.
For instance, in the interference of time orderings in a two-
level system [48] as shown in Fig. 4(a), the two two-photon
transition paths with opposite time orderings of emission are
composed of a Rayleigh photon and a sideband photon. Both
Rayleigh (sideband) photons in these two paths origin from
the transition between the excited state and the ground state,
thus the interference of time orderings occurs are based on
the same dipole moment. In addition, multiple interferences
of time orderings are discussed in a �-shaped system in
Ref. [49]. Similarly to the case in the two-level system, both
Rayleigh (sideband) photons involved in the interference be-
tween the two-photon transition paths are also emitted from
the same transition channels as shown in Fig. 4(b), and then

the two two-photon paths involved in the interferences of
time orderings are based on the same combination of dipole
moments.

However, in the case studied here, it can be seen from
Eqs. (14) and (15) that although the two-photon emissions
involved in the interferences are both composed of a π photon
and a σ+ photon, the π photons in the two time orderings of
emission originate from two different transition channels, i.e.,
transitions |e1〉 ↔ |g1〉 and |e2〉 ↔ |g2〉, respectively. Since
the dipole moments of these two π transition components
are antiparallel, the so-called VICs arise in the corresponding
spontaneous emission events, which also explains the phys-
ical origin of the unusual interference of time orderings in
this paper. In addition, we point out that in the extraordinary
biexciton structure of a quantum dot, the interference between
different combinations of dipole moments can also be in-
volved [31,50,52]. However, the interference in the biexciton
structure originates from the fact that the detector does not dis-
tinguish the polarization of emission, which is fundamentally
different from the VICs between the two antiparallel dipole
moment components of the π transition focused on here. Be-
sides, the which-path information of the two two-photon paths
in the biexciton structure depends on the polarizations rather
than the time orderings of emission. As the main focus of this
paper, next we will discuss this interference of time orderings
induced by VICs with the help of analytical expressions in
detail.

C. Solution of two-photon correlations

In this section, we focus on the detailed expressions of
the frequency-resolved correlations. To write the analytical
results compactly, we first define the evolution factors for
positive time ordering and negative time ordering of emission
as [49]

F+[ωo, ωe; ωτ , τ ] = 1

κ + 2iωe

(
1

κ + 2iωo
− e−i(ωτ + κ

2 )τ

2κ + 2i(ωo + ωe)

)
, (16)

F−[ωo, ωe; ωτ , τ ] = 1

κ + 2iωe

e−i(ωτ + κ
2 )τ

2κ + 2i(ωo + ωe)
, (17)

respectively. The evolution factor for positive emission or-
dering F+[ωo, ωe; ωτ , τ ] describes the situation that the time
ordering of two-photon emission is the same as the given
detection ordering and increases with the increase of the
delay τ . The evolution factor for negative emission order-
ing F−[ωo, ωe; ωτ , τ ] describes the situation that the time
ordering of two-photon emission is opposite to the given de-
tection ordering, and decays exponentially to zero with the
delay τ with a rate determined by the linewidth (and then
the time resolution) of detection. And we point that, for the
sake of brevity, the default forms of the evolution factors, i.e.,

F±[ωo, ωe], are applied in the case of zero delay in the later
sections.

For the cross two-photon correlation between modes a
and b mainly discussed in this paper, two different detection
orderings of two-photon correlation are involved, that is, the
detection of the a photon followed by the detection of the b
photon [denoted by (a, b)], and the opposite detection order-
ing [denoted by (b, a)]. According to the theoretical methods
introduced in Appendix B, the analytical expressions of the
frequency-resolved two-photon correlations for the detection
orderings (a, b) and (b, a) in the limit of short delay are given,
respectively, by

G (2)
ab (τ ) =ρCC

∣∣R[F σ+
, Rπ ; τ ]e−iEBτ + R[Rσ+

, Fπ ; τ ]e−iEAτ
∣∣2

+ ρDD

∣∣R[T σ+
, Rπ ; τ ]e−iEAτ + R[Rσ+

, T π ; τ ]e−iEBτ
∣∣2
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+ ρCC

∣∣R1[Rσ+
, Rπ ; τ ]e−iEAτ + R1[F σ+

, T π ; τ ]e−iEBτ + R2[T σ+
, Fπ ; τ ]e−iEAτ

∣∣2

+ ρDD

∣∣R2[Rσ+
, Rπ ; τ ]e−iEBτ + R2[F σ+

, T π ; τ ]e−iEBτ + R1[T σ+
, Fπ ; τ ]e−iEAτ

∣∣2
, (18)

G (2)
ba (τ ) =ρCC

∣∣R[Rπ , F σ+
; τ ]e−iECτ + R[Fπ , Rσ+

; τ ]e−iEDτ
∣∣2

+ ρDD

∣∣R[Rπ , T σ+
; τ ]e−iEDτ + R[T π , Rσ+

; τ ]e−iECτ
∣∣2

+ ρCC

∣∣R1[Rπ , Rσ+
; τ ]e−iECτ + R1[T π , F σ+

; τ ]e−iECτ + R2[Fπ , T σ+
; τ ]e−iEDτ

∣∣2

+ ρDD

∣∣R2[Rπ , Rσ+
; τ ]e−iEDτ + R2[T π , F σ+

; τ ]e−iECτ + R1[Fπ , T σ+
; τ ]e−iEDτ

∣∣2
, (19)

where the subscript in the left of the equal sign represents the
specific time ordering of detection, and ρdd (d = A, B,C, D)
represents the steady population of the dressed state |d〉 of
the emitter defined in Eq. (8), whose analytical expression
can be obtained in the secular approximation (not shown
here). On the right of the equal signs in Eqs. (18) and (19),
R[L1, L2; τ ] represents the amplitude of the two-photon emis-
sion corresponding to the frequencies (L1, L2) shown in Fig. 3
(L1 and L2 represent the symbols of the spectral lines ap-
plied in Fig. 3), and the ordering of L1 and L2 denotes the
detection orderings. Therefore, the meanings of the terms in
the two-photon correlation G (2)

ab (τ ) in Eq. (18) are given as
follows. R[F σ+

, Rπ ; τ ] represents the amplitude of the two-
photon emission corresponding to the frequencies (F σ+

, Rπ )
shown in Fig. 3(a); R[Rσ+

, Fπ ; τ ] represents the amplitude
of the two-photon emission corresponding to the frequen-
cies (Rσ+

, Fπ ) shown in Fig. 3(b); R[T σ+
, Rπ ; τ ] represents

the amplitude of the two-photon emission corresponding to
the frequencies (T σ+

, Rπ ) shown in Fig. 3(c); R[Rσ+
, T π ; τ ]

represents the amplitude of the two-photon emission corre-
sponding to the frequencies (Rσ+

, T π ) shown in Fig. 3(d);
R1[Rσ+

, Rπ ; τ ] and R2[Rσ+
, Rπ ; τ ] represent the amplitudes

of the two-photon emissions corresponding to the frequen-
cies (Rσ+

, Rπ ) shown in Figs. 3(e) and 3(f), respectively;
R1[F σ+

, T π ; τ ] and R2[F σ+
, T π ; τ ] represent the amplitudes

of the two-photon emissions corresponding to the frequen-
cies (F σ+

, T π ) shown in Figs. 3(g) and 3(h), respectively;
R1[T σ+

, Fπ ; τ ] and R2[T σ+
, Fπ ; τ ] represent the amplitudes

of the two-photon emissions corresponding to the frequencies
(T σ+

, Fπ ) shown in Figs. 3(i) and 3(j), respectively. For the
two-photon correlation G (2)

ba (τ ) in Eq. (19), the two-photon
emission amplitudes have one-to-one correspondences with
the ones in Eq. (18), and the only difference between them
is that the ordering of the detected frequencies in the brack-
ets in Eq. (19) is opposite to the counterparts in Eq. (18),
which implies the opposite detection ordering as mentioned
earlier. For the sake of compactness, the explicit analytic
expressions of the probability amplitudes for the different
spectral components of the two-photon transitions are shown
in Appendix C. In addition, the explicit analytic expres-
sions of the average populations of sensors a, b are given in
Appendix D. Therefore, the normalized frequency-resolved
two-photon correlation can be obtained according to Eq. (7).

Naturally, the two-photon correlations in Eqs. (18) and (19)
are equal in the case of zero delay, that is, G (2)

ab (0) = G (2)
ba (0),

since every two-photon transition amplitude involved is equal
to the corresponding term with the opposite detection order-

ing at τ = 0. Furthermore, we can see from the analytical
expressions in Appendix C that the amplitude of each two-
photon interference combination contains two terms of the
two opposite time orderings, which correspond to the two
two-photon transition paths interfering with each other (see
Fig. 3). Therefore, the component of the correlation function
corresponding to each interference combination can be di-
vided into three parts. The first term is proportional to |gπ1 |2,
which corresponds to the individual contribution of the two-
photon transition path with the time ordering (σ+, π ). The
second term is proportional to |gπ2 |2, which corresponds to the
individual contribution of the two-photon transition path with
the time ordering (π, σ+). The third term is proportional to
|gπ1 gπ2 |, which corresponds to the contribution of the interfer-
ence between two two-photon transition paths with opposite
time orderings to the two-photon correlation.

As for the detailed physical meaning contained in the third
term, on the one hand, since the two two-photon transition
paths involved here correspond to two opposite emission
orderings, this term reflects the interference effect of time
orderings [48,49]. On the other hand, as previously mentioned
in Sec. III B, the physical origin of this interference of time or-
derings is significantly different from that in the conventional
studies [48,49]. In the latter case, the two-photon transition
paths between which interference of time orderings occurs are
based on the same dipole moment [48] or the same combi-
nation of dipole moments [49]. However, in the case studied
here, we can see from Figs. 3(a)–3(f) that the π photons in the
two emission orderings origin from two different transition
channels, i.e., transitions |e1〉 → |g1〉 and |e2〉 → |g2〉, respec-
tively. And, since the dipole moments of these two different
π transitions are antiparallel, the effects of VICs between
these two transition channels arise in the fluorescence, which
induces interference between these different time orderings
in the third term. Within the framework of the conventional
theory, the effects of VICs can be reflected in the cross term
of nonorthogonal transmit field operators [12] or filtered field
operators. However, in this paper, the filtering and detection
of the fluorescence are also considered in the system as the
subjects of the theoretical study, such that the effects of VICs
are formally represented as the term proportional to |gπ1 gπ2 |
in Eqs. (18) and (19). From the view of understanding, if
the form of the frequency-resolved correlation function in
the sensor method in Eq. (7) was restored to the one in the
conventional theory [21], this correspondence would be more
clearly manifested. We can see that in the absence of VICs,
the above-mentioned interference of time orderings would not
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appear. Thus, this interference can be viewed as a demon-
stration of VICs. In the following sections, we will discuss
the interference of time orderings induced by VICs in detail
according to specific situations.

IV. INTERFERENCE OF TIME ORDERINGS

In this section, we mainly focus on the theoretical discus-
sion of the effects of VICs that arise in the frequency-resolved
two-photon correlations between the spectral components of
the fluorescence triplets from σ+ and π transitions, respec-
tively. Before this, we recall that the effects of VICs can
also arise in the two-photon correlations of π transitions as
mentioned in Ref. [12]. However, for the establishment of
this interference effect, the spontaneous emission from the σ

transition was needed as the bridge between the two different
π transitions. Therefore, the contribution of VICs to the cor-
relation can be significant only when the delay between two
successive transitions is at a timescale of the order of γ3 (or
γ4). In this paper, we choose the cross correlation of σ+ and
π transitions as the research object. We analyze the properties
of the correlations between different spectral components, and
find that the effects of VICs can also arise in the frequency-
resolved correlations (even at a timescale much smaller than
the lifetime of the level system).

A. Degenerate system

First, we consider the case of the degenerate system (BL =
δ = 0), where the frequencies of the two π transitions are
equal, and two effective Rabi frequencies of dressed states are
also equal, i.e., �̄1 = �̄2, so the two two-level folds in Fig. 2
are symmetrical. In the strong excitation regime, the different
dressed states can be well distinguished and the frequencies
of the emissions are concentrated near the lines of the Mollow
triplet. We note that the following discussion will mainly
focus on this case.

In Fig. 5, we show the two-photon correlation function at
zero delay (i.e., τ = 0) as a function of the setting frequency
of the sensor (or the filter). Figures 5(a)–5(c) correspond to
the cases where sensor b is tuned to the F line, R line and T
line, respectively, and then contain the information of the cor-
relation functions of all the frequency combinations shown in
Fig. 3. It can be seen that the analytical expressions Eqs. (18)
and (19) of the two-photon correlation functions are in good
agreement with the exact numerical results.

To explore the detailed information of spectral components
contained in correlations, we focus on a specific situation
where the sensors are tuned near the frequencies (Rσ+

, Fπ ).
Therefore, in the strong excitation regime, only the two tran-
sition paths shown in Fig. 3(b) really need to be considered.
And for the degeneracy of the system, we can define δa,R =
δa,R1 = δa,R2 and δb,F = δb,F1 = δb,F2 [the definitions of δa,Ri

and δb,Fi are given in Eq. (13)]. Therefore, within the rotat-
ing wave approximation, the analytical expressions Eqs. (18)
and (19) of the frequency-resolved two-photon correlations
for the detection orderings (a, b) and (b, a) in the limit of short

FIG. 5. For the degenerate system (BL = δ = 0), the frequency-
resolved two-photon correlation at zero delay is plotted as a function
of the detunning �a scaled by γ for �b = −�̄1 in (a), �b = 0
in (b), and �b = �̄1 in (c). Therefore, all two-photon interference
combinations shown in Figs. 3(a)–3(f) are included in (a)–(c). In ad-
dition, at the detected frequencies (Rσ+

, Fπ ), the frequency-resolved
correlation is plotted as a function of the delay τ for δa,R = δb,F = 0
in (d). Other parameters are � = 200γ , κa = κb = 20γ , and � = 0.
The black solid line and the green dotted line, respectively, represent
the analytical and numerical results of the two-photon correlation in
the presence of VICs; the red dashed line and the blue dash-dotted
line, respectively, represent the analytical and numerical results of
the two-photon correlation in the absence of VICs.

delay reduce, respectively, to

G (2)
ab (τ ) =ρCC |R[Rσ+

, Fπ ; τ ]|2
=ρCC |4gσ s1s2(gπ1 c1s1F+[δa,R, δb,F ; δb,F , τ ]

+ gπ2 c2s2F−[δa,R, δb,F ; δb,F , τ ])|2, (20)

G (2)
ba (τ ) =ρCC |R[Fπ , Rσ+

; τ ]|2
=ρCC |4gσ s1s2(gπ1 c1s1F−[δb,F , δa,R; δa,R, τ ]

+ gπ2 c2s2F+[δb,F , δa,R; δa,R, τ ])|2. (21)

It can be seen that the correlation for each detection order-
ing includes the contributions of the two-photon transition
paths with the two emission orderings (σ+, π ) and (π, σ+).
Under the parameter condition focused on in this paper,
these two-photon transition paths both start from the same
initial state where the emitter is in the dressed state |C〉
and the sensors a, b are both in the vacuum states as
shown in Fig. 3(b), which results in the common factor
ρCC in Eqs. (20) and (21). The contributions of the path
with the time ordering (σ+, π ) in the case of two de-
tection orderings, respectively, correspond to the evolution
factors F+[δa,R, δb,F ; δb,F , τ ] and F−[δb,F , δa,R; δa,R, τ ]; the
contributions of the path with the time ordering (π ; σ+)
in the case of two detection orderings, respectively, cor-
respond to the evolution factors F−[δa,R, δb,F ; δb,F , τ ] and
F+[δb,F , δa,R; δa,R, τ ]. And, the cross terms of the two oppo-
site emission orderings in Eqs. (20) and (21) correspond to
the interference of time orderings. As discussed in Sec. III,
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different from the case in the conventional interference of time
orderings [48,49], the two two-photon paths involved here are
based on different combinations of dipole moments as shown
in Fig. 3(b), between which the interference is induced by
VICs arising between the two antiparallel components of the
π transitions.

First, we focus on the two-photon correlations in the case
of zero delay (τ = 0), therefore, Eqs. (20) and (21) are equiv-
alent as mentioned in Sec. III C. We can see from Eq. (20)
[or (21)] that at the one-photon resonance δa,R = δb,F = 0, the
values of the two-photon transition amplitudes of the two op-
posite emission orderings are equal, that is, F+[δa,R, δb,F ] =
F−[δa,R, δb,F ]. However, since the dipole moments of the
two π transitions are antiparallel, the coupling coefficients
of sensor b with π transitions satisfies gπ1 = −gπ2 . There-
fore, complete destructive interference appears between two
two-photon transition paths with different time orderings,
which results in that the normalized two-photon correlation
is equal to zero and a perfect antibunching arises. Obviously,
this effect is different from the antibunching which is caused
by the nonemitting of the final state in the frequency-blind
correlation, and origins from the finite time resolution of
detection. Similarly, it can be found that the perfect anti-
bunching caused by the destructive interference can occur at
the detected frequencies (F σ+

, Rπ ), (T σ+
, Rπ ), and (Rσ+

, T π )
when the corresponding resonance conditions are satisfied as
labeled in Figs. 5(b) and 5(c). In addition, at the detected
frequencies (Rσ+

, Rπ ), the interference effect can also arise,
which exhibits as perfect uncorrelation at resonance as labeled
in Fig. 5(b).

It should be noted that the antibunching caused by the
destructive interference between two-photon transition paths
with different time orderings is also reported in Refs. [48,49],
where the two-photon paths involved origin from the same
dipole moment combination. However, for the system studied
in this paper, it can be seen from Eq. (20) that the π photons in
the transition paths with different time orderings origin from
two different dipole moment combinations. And due to the
VICs between different dipole moments, interference between
different emission orderings can occur.

If the interference between different emission orderings
induced by VICs is ignored, the corresponding two-photon
correlations will be significantly different. To demonstrate this
difference, we show the two-photon correlation that does not
consider the effects of VICs (as shown by the blue dash-dotted
line), that is, assuming that the term proportional to |gπ1 gπ2 |
in Eq. (20) is equal to zero. In this case, we see that obvious
dips still appear due to the resonance effect, but the perfect
antibunching disappears since there is no destructive interfer-
ence. Compared to the perfect antibunching in the presence
of VICs, the value of the normalized two-photon correlation
at resonance is raised to about 1/2 in the absence of VICs.
Therefore, there is no doubt that these dips that reach zero
in the spectrum of the two-photon correlation are the clear
signatures of VICs. Moreover, unlike the work in Ref. [12]
where the effects of VICs on the two-photon correlation can
only be apparent at a timescale of the order of γ −1

σ , the effects
of VICs can obviously arise at zero delay in this work.

Next, we consider the frequency-resolved two-photon cor-
relations in the case of a given time ordering of detection, that

is, τ 	= 0. For the degenerate system (BL = δ = 0) discussed
in this section, it is easy to see that the contributions of the two
emission orderings to the two-photon correlations in Eqs. (20)
and (21) have a good time antisymmetry in the two opposite
detection orderings as shown in Fig. 5(d). In addition, the
correlation function in the absence of VICs is also shown as a
contrast, which allows the effects of VICs to be visualized as a
function of the delay τ between two successive detections. We
can see that when the delay is much smaller than the indeter-
minacy in the time resolution of detection, i.e., τ 
 κ−1, the
two-photon correlation is close to the case at zero delay, and
then VICs and its resulting antibunchling are maintained well.
When the delay τ increases and exceeds this indeterminacy,
the VIC effects decrease and vanish rapidly. This change of
the VIC effects with the delay τ can be well explained by the
analogy with the conventional interference effect of different
time orderings. We can see from Eqs. (20) and (21) that in two
time orderings of detection, the two-photon correlations both
contain the contributions of the positive and negative emission
orderings.

For certain time orderings of detection, the contributions
of the two opposite emission orderings become unequal. This
unequality becomes obvious with the increase of delay τ , and
then the effects of VICs become weak. When the delay τ is
much larger than the indeterminacy in the time resolution of
detection, i.e., τ � κ−1, the contribution of the negative emis-
sion orderings tends to zero according to Eq. (17). In this case,
the time orderings of detection are just the time orderings of
emission, and the interference effects between different time
orderings of emission, that is, the effects of VICs, disappear.
Therefore, we can conclude that to observe the interference
of time orderings induced by VICs described here, it must be
ensured that the delay τ between two successive detections
is shorter than the indeterminacy in the time resolution of
detection.

B. Nondegenerate system

The interference of time orderings studied here arises be-
tween two-photon paths based on different combinations of
dipole moments, which means that the manipulation of the
corresponding interference effects may be realized easily. Fol-
lowing this idea, in this section, we discuss the two-photon
correlations in the case of a nondegenerate system, that is, the
case where an external magnetic field is applied to the emitter.
From the Hamiltonian of the quantum emitter in Eq. (1),
it can be seen that the effect of the external magnetic field
is reflected in the parameters BL and δ. By analyzing the
level structure in the dressed-state representation, we see that
the effect of the parameter BL is only reflected as a trivial
frequency shift of the fold composed of the states C, D as
shown in Eq. (9). However, the parameter δ can change the
effective Rabi frequencies in the dressed-state representation
according to the definitions in Sec. III A. Therefore, as for
the π transitions, a frequency difference occurs between the
same sideband lines which are, respectively, from transitions
|e1〉 → |g1〉 and |e2〉 → |g2〉, that is, �d = �π,T2 − �π,T1 =
�π,F1 − �π,F2 = �̄2 − �̄1 according to Eqs. (11) and (12),
while the frequencies of the R lines are not affected.
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FIG. 6. The dressed-state diagram of the two-photon cascaded
transitions corresponding to the detected frequencies (Rσ+

, Fπ ) in
the case of nondegenerate system. Two two-photon transition paths
with opposite time orderings are involved. The external magnetic
field can cause a detuning �d , which have a significant effect on
the interference between these two opposite time orderings.

Based on the above rules, we consider the effect of the ex-
ternal magnetic field on the two-photon transitions discussed
in Sec. III. We can see that of all interference combinations
of two-photon transition paths with different time orderings
shown in Fig. 3, only the combinations where the π photon
is from sidebands, that is, the detected frequencies (Rσ+

, Fπ )
and (Rσ+

, T π ), include the effect of the detuning δ caused by
the external magnetic field. A significant consequence of the
effect of the external magnetic field on the emitter is that two
two-photon paths with opposite time orderings, which could
not be distinguished in frequencies in the case of the degen-
erate system, become distinguishable by the sensor (or the
detector). Therefore, it can be expected that the interference
effects in the frequency-resolved two-photon correlations can
be significantly changed and we will explore this change in
detail according to the analytical results obtained in Sec. III C.

1. Effect of external magnetic field

As we have mentioned above, the effect of the detuning δ

caused by the external magnetic field can only be reflected at
the detected frequencies (Rσ+

, Fπ ) and (Rσ+
, T π ). To further

understand the effect of the external magnetic field and con-
sidering the similarity of these two interference combinations,
we also choose the detected frequencies (Rσ+

, Fπ ) as the main
research object to discuss the two-photon correlations of the
nondegenerate system in detail, and the corresponding dia-
gram of the two-photon cascaded transitions is shown Fig. 6.
Therefore, within the rotating wave approximation, the analyt-
ical expressions Eqs. (18) and (19) of the frequency-resolved
two-photon correlations for the detection orderings (a, b) and
(b, a) in the limit of short delay reduce, respectively, to

G (2)
ab (τ ) =ρCC |R[Rσ+

, Fπ ; τ ]|2

=ρCC

∣∣4gσ s1s2
(
gπ1 c1s1F+[

δa,R1 , δb,F1 ; δb,F1 , τ
]

+ gπ2 c2s2F−[
δa,R2 , δb,F2 ; δb,F1 , τ

])∣∣2
, (22)

G (2)
ba (τ ) =ρCC |R[Fπ , Rσ+

; τ ]|2

=ρCC

∣∣4gσ s1s2
(
gπ1 c1s1F−[

δb,F1 , δa,R1 ; δa,R2 , τ
]

+ gπ2 c2s2F+[
δb,F2 , δa,R2 ; δa,R2 , τ

])∣∣2
. (23)

Similar to the case of the degenerate system in Sec. IV A, the
correlation for each time ordering of detection also includes
the contributions of the two emission orderings (σ+, π )
and (π, σ+). The contributions of the path with the time
ordering (σ+, π ) in the case of two detection orderings
correspond to the evolution factors F+[δa,R1 , δb,F1 ; δb,F1 , τ ]
and F−[δb,F1 , δa,R1 ; δa,R2 , τ ], respectively; the contributions
of the path with the time ordering (π, σ+) in the case of
two detection orderings correspond to the evolution factors
F−[δa,R2 , δb,F2 ; δb,F1 , τ ] and F+[δb,F2 , δa,R2 ; δa,R2 , τ ], respec-
tively. And, the cross terms of the two opposite emission
orderings in Eqs. (22) and (23) correspond to the interference
of time orderings induced by VICs. Different from the case
of the degenerate system in Eqs. (20) and (21), we see that
the frequencies in the two two-photon paths involved in the
same time orderings of detection are different, which means
that the manipulation of the interference effects of time or-
derings may be realized by adjusting these frequencies. And,
according to the definitions in Sec. III A, we can see that
when the parameter δ is adjusted, the total frequencies of these
two coherent two-photon transitions remain equal, i.e., δa,R1 +
δb,F1 = δa,R2 + δb,F2 . However, the frequency differences be-
tween the one-photon transitions coupled to the same sensors
in these two paths can occur and satisfy �d = δa,R2 − δa,R1 =
δb,F1 − δb,F2 . Then, if one of the two two-photon paths is kept
resonant with the two sensors when adjusting the parameter δ,
the other path must be nonresonant and the detunings are �d .

More specifically, we focus on the two-photon correlations
in the case of zero delay (τ = 0). We assume that when the
effective Rabi frequencies of the dressed states and then the
frequencies of the different triplet components are changed
by the magnetic field, the sensors are always kept resonant
with the two-photon transition path with the emission or-
dering (σ+, π ), i.e., δa,R1 = δb,F1 = 0. Then, the evolution
factors for this emission ordering, i.e., F+[δa,R1 , δb,F1 ] and
F−[δb,F1 , δa,R1 ], always remain a maximum. In contrast, the
frequency difference induced by the parameter δ causes the
evolution factors for the opposite time ordering of emission,
i.e., F−[δa,R2 , δb,F2 ] and F−[δb,F2 , δa,R2 ], to decrease due to
nonresonance. Therefore, compared to the case of the de-
generate system, the interference of time orderings induced
by VICs and then the perfect antibunching caused by the
destructive interference are weakened.

To visually show the effect of adjusting the magnetic field
on the frequency-resolved two-photon correlation, we plot the
correlation as the function of the parameter δ in Fig. 7(a), and
the individual contributions of the two emission orderings to
the two-photon correlation are exhibited simultaneously. We
set the detection linewidths κ = 6γ , and it can be seen that
when the parameter δ reaches about 25γ , the one-photon de-
tuning �d of the above nonresonant two-photon path is close
to the indeterminacy in the time resolution of detection. In this
case, the which-path information of the two-photon transitions
can be well distinguished by the detectors. Therefore, we see
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FIG. 7. The two-photon correlation at the detected frequencies
(Rσ+

, Fπ ) is plotted as a function of the detuning δ scaled by γ

induced by the external magnetic field in (a), and as a function of
the delay τ for δ = 25γ in (b). The sensors are kept resonant with
the two-photon transition path with the emission ordering (σ+, π ),
and other parameters are � = 50γ , κa = κb = 6γ , and � = 0. The
black triangular line and the red solid line, respectively, represent
the analytical and numerical results of the two-photon correlation in
the presence of VICs; the green circular line and the blue dashed
line, respectively, represent the analytical and numerical results of
the two-photon correlation in the absence of VICs; the cyan dotted
line and the magenta dash-dotted, line respectively, represent the
individual contributions of two two-photon transition paths with the
emission orderings (σ+, π ) and (π, σ+).

that the individual contributions of the two emission order-
ings become unequal obviously, so the interference of time
orderings induced by VICs and the resulting antibunching re-
duce significantly and two-photon correlations in the presence
and absence of VICs are close. As the parameter δ increase,
the amplitude of the nonresonant two-photon path disappears
gradually, therefore the two-photon correlation approaches the
case of single transition path without any interference and the
effects of VICs fade away.

Next, we consider the two-photon correlations in the case
of τ 	= 0 maintaining the above setting frequencies of the
sensors. When τ > 0, the time ordering of detection is (a, b)
and the emission ordering of the resonant two-photon path
is the same as this detection ordering, so the correspond-
ing evolution factor F+[δa,R1 , δb,F1 ; δb,F1 , τ ] increases with
the increase of the delay τ according to Eq. (16). How-
ever, the evolution factor for the opposite emission ordering
F−[δa,R2 , δb,F2 ; δb,F1 , τ ] reduces due to nonresonance. There-
fore, the destructive interference effect between two-photon
transition paths with different time orderings is suppressed. In
this case, we see from Fig. 7(b) that, compared to the case
of the degenerate system in Fig. 5(d), the distinction between
two-photon correlations in the presence and absence of VICs
is greatly reduced, and the overall two-photon correlation
becomes much stronger.

When τ < 0, the time ordering of detection is (b, a) and
the emission ordering of the resonant two-photon path is
opposite to this detection ordering, so the corresponding
evolution factor F−[δb,F1 , δa,R1 ; δa,R2 , τ ] reduces with the in-
crease of the delay τ according to Eq. (17). Meanwhile,
the evolution factor for the positive emission time ordering
F+[δb,F2 , δa,R2 ; δa,R2 , τ ] also reduces due to nonresonance. In
this case, the corresponding two-photon correlation is signif-
icantly weaker than one in the case of the degenerate system
discussed in Sec. IV A, and thus is obviously different from
one in the case when τ > 0 as shown in Fig. 7(b).

FIG. 8. The two-photon correlation at the detected frequencies
(Rσ+

, Fπ ) is plotted as a function of the detuning δ scaled by γ

induced by the external magnetic field in (a), and as a function of
the delay τ for δ = 25γ in (b). The filtering frequencies of the two
sensors are respectively tuned to the middle frequencies of two sets
of one-photon transitions coupled to them, that is, δa,R1 = −δb,F1 =
−δa,R2 = δb,F2 = �d

2 , and other parameters are the same as in Fig. 7.
The black triangular line and the red solid line, respectively, represent
the analytical and numerical results of the two-photon correlation in
the presence of VICs; the green circular line and the blue dashed
line, respectively, represent the analytical and numerical results of
the two-photon correlation in the absence of VICs; the cyan dotted
line and the magenta dash-dotted line, respectively, represent the
individual contributions of the two two-photon transition paths with
the emission orderings (σ+, π ) and (π, σ+).

Therefore, we can conclude that in the above system with
one-photon frequency differences between the two-photon
paths with different time orderings, the evolution of the two-
photon correlation function with delay τ can exhibits obvious
asymmetry since the two-photon path with a specific time or-
dering is selected in the detection. A similar time asymmetry
can also arise when the sensors are kept resonant with the
two-photon transition path with the time ordering (π, σ+) (not
shown here). Moreover, according to the analytical expression
obtained in Sec. III C., it can be expected that the laws found
above are also valid for the detected frequencies (Rσ+

, T π ).

2. Manipulation by frequency filtering

In the above section, we point out that for certain two-
photon frequency combinations, the detuning δ induced by the
external magnetic field can break the degeneracy of the one-
photon frequencies in the two-photon transition paths with
different time orderings, so which-path information of the
two-photon transitions can be revealed and the interference of
time orderings and time symmetry are destroyed. On the other
hand, some recent studies [28,31,50–52] based on the biex-
citon structure in a quantum dot show that by adjusting the
filtering frequency externally, the erasure of the which-path
information revealed by the fine-structure splitting can be
realized, and then the entanglement of the quantum source is
restored to the state where the effect of splitting is eliminated.
Inspired by these schemes and considering the similarity be-
tween the biexciton structure in a quantum dot and the level
structure discussed in this paper, we next research the effects
of adjusting the filtering frequency on the frequency-resolved
two-photon correlations.

Similarly, we first focus on the two-photon correlation in
the case of zero delay. We see from Fig. 8(a) that when the
filtering frequencies of the two sensors are, respectively, tuned
to the middle frequencies of two sets of one-photon transitions
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coupled to them, that is, δa,R1 = −δb,F1 = −δa,R2 = δb,F2 =
�d
2 , the broken antibunching effect mentioned in the previous

section restores. We can explain the physical origin of this
phenomenon by means of the analytical expression Eqs. (22)
or (23) for the two-photon correlations. When the filtering fre-
quencies are, respectively, set as mentioned above, the spectral
components containing the which-path information of the
two-photon transitions can be filtered out, so the two-photon
transition paths of the two different time orderings become
indistinguishable by the detectors. According to the analytical
expression Eq. (22), we can derive that the amplitudes of
the two-photon transition paths with different time orderings
almost return to equal value (as shown by the cyan dotted line
and the magenta dash-dotted line), and then the complete de-
structive interference and resulting perfect antibunching effect
recover. We see that the contribution of each two-photon path
is nonzero and increases with the increase of �d due to δ, and
then the corresponding two-photon correlation in the absence
of VICs increases rapidly as shown by the blue dashed line in
Fig. 8(a). However, when the interference of time orderings
induced by VICs is included, the two-photon correlation is
always maintained at near zero. Therefore, the distinction be-
tween the two-photon correlations in the presence and absence
of VICs becomes more and more obvious as the value of
δ increases, which greatly facilitates the observation of the
effects of VICs.

For the case of τ 	= 0, maintaining the above filtering fre-
quencies and other parameters, it can be seen from Fig. 8(b)
that the time symmetry of the correlation restores. For the
two-photon transition paths of the two different time orderings
involved in the detected frequencies selected, the evolution
of the corresponding correlations with the delay depends en-
tirely on the evolution factors, that is, F+[δa,R1 , δb,F1 ; δb,F1 , τ ]
and F−[δb,F1 , δa,R1 ; δa,R2 , τ ] corresponding to the emis-
sion ordering (σ+, π ), and F−[δa,R2 , δb,F2 ; δb,F1 , τ ] and
F+[δb,F2 , δa,R2 ; δa,R2 , τ ] corresponding to the emission order-
ing (π, σ+). It can be seen from Eqs. (22) and (23) that when
tuning the filtering frequency of each sensor to the middle
frequency of the one-photon transitions coupled to them, the
contributions of the two emission orderings to the two-photon
correlations restore the time antisymmetry in the two opposite
detection orderings (as shown by the cyan dotted line and the
magenta dash-dotted line) similar to the case of the degenerate
system, and then the time symmetry of the quantum correla-
tion recovers again. This shows the erasure of the information
of time orderings by the manipulation of frequency filtering.

V. CONCLUSION

The frequency-resolved correlations of the π and σ+ tran-
sitions are theoretically investigated in the J = 1/2 to J = 1/2
system in the large detection linewidth and strong excitation
regime. The quantum emitter and detectors are both treated
as the quantized objects and entirely included in a combined
system, which is more consistent with the consideration of
quantum mechanics. By studying the frequency-resolved cor-
relations in the case of degenerate system, it has been shown
that the interference effects of time orderings between differ-
ent dipole moments can appear due to the effects of VICs,
which can exhibit as perfect antibunching or uncorrelation,

depending on the selected combination of the spectral lines
in the fluorescence triplets. Therefore, the cross frequency-
resolved correlation of the π and σ+ transitions can serve as
a good scheme to observe the effects of VICs. Meanwhile,
the interference effects of time orderings become weak with
the increase of delay of the two-photon correlations. When the
delay is much larger than the indeterminacy in the time reso-
lution of detection, the effects of VICs, that is, the interference
of time orderings, disappear.

In addition, we have found that in the two-photon transi-
tions consisting of a π photon from the T or F line and a σ+
photon from the R line, the external magnetic field can cause
the frequency differences between the one-photon transitions
with the same polarizations. Choosing the two-photon transi-
tions consisting of a π photon from the T line and a σ+ photon
from the R line as the research object, we have discussed
the effect of the external magnetic field on the frequency-
resolved two-photon correlation. It has been shown that when
the single-photon frequency differences caused by the ex-
ternal magnetic field can be distinguished by the detectors,
the ‘which path’ information of the two-photon transitions
is revealed, which causes that the interference of time order-
ings induced by VICs and time symmetry of the two-photon
correlations are destroyed. However, by tuning the filtering
frequencies to the middle frequencies of the one-photon tran-
sitions coupled to them, the which-path information can be
erased, so the perfect interference effects of time orderings
are recovered. Therefore, the system studied in this paper can
be a candidate to demonstrate quantum erasure.
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APPENDIX A: CALCULATION OF SYSTEM PARAMETERS

Within the rotating wave approximation, the interaction
Hamiltonian of the quantum emitter with the driving laser
filed takes the form

HI = Ve1g1σe1g1 e−iωLt + Ve2g2σe2g2 e−iωLt + H.c. (A1)

According to the Wigner-Eckart theorem [53,54], the interac-
tion coefficient can be explicitly given by

Veigi = − 〈Je, mei |d|Jg, mgj 〉 · E

=(−1)Je−mei +1

(
Je 1 Jg

−mei q mgi

)
�L, (A2)

where d is the electric dipole operator, Je and Jg are, re-
spectively, the total angular momentum quantum numbers of
the ground and excited states, E is the electric-field vector,
�L = 〈Je ‖ d ‖ Jg〉E is the Rabi frequency of the light field,
and q = 0 for the π -polarized driving laser applied in this
paper. The 2 × 3 matrices in parentheses are the Wigner 3j
symbols, whose calculation can be conveniently performed
by the built-in function of MATHEMATICA. Substituting the
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specific parameters into Eq. (A2), we can obtain the interac-
tion coefficients as Ve1g1 = �L/

√
6 and Ve2g2 = −�L/

√
6.

In addition, according to Ref. [55], the spontaneous decay
rate is given by

γ
me,m′

e
mg,m′

g
=(−1)2Jg−mg−m′

g (2Je + 1)γ
1∑

q=−1

(
Jg 1 Je

−mg q me

)

(
Jg 1 Je

−m′
g q m′

e

)
, (A3)

where γ represents the total spontaneous decay rate of
the transition J = 1/2 to J = 1/2. Then we can ob-

tain γ1 = γ
− 1

2 ,− 1
2

− 1
2 ,− 1

2

= γ /3, γ2 = γ
1
2 , 1

2
1
2 , 1

2

= γ /3, γ12 = γ
− 1

2 , 1
2

− 1
2 , 1

2

=
−γ /3, γ21 = γ

1
2 ,− 1

2
1
2 ,− 1

2

= −γ /3, γ3 = γ
− 1

2 ,− 1
2

1
2 , 1

2

= 2γ /3, and

γ4 = γ
1
2 , 1

2

− 1
2 ,− 1

2

= 2γ /3.

APPENDIX B: ANALYTICAL METHOD FOR SOLVING
CORRELATION FUNCTIONS

In this Appendix, we present the specific method used to
solve the frequency-resolved two-photon correlation function
analytically. For the calculation of the cross second-order
correlation, two sensors are needed to be included in the
system according to the sensor method [22]. In the limit of the
vanishing coupling between the sensors and quantum emitter,
each sensor can be considered as a two-level system composed
of the ground state |0s〉 and the excited state |1s〉 (s = a, b).
Therefore, the quantum state in the Hilbert space composed of
the emitter and sensors can be expressed as |m, na, nb〉, where
m = A, B,C, D represents the dressed state of the emitter and
ns = 0, 1 represents the excitation number of sensor s.

Considering a measurement where the detection of sensor
b takes place after a delay τ with respect to the detection of
sensor a which takes place in the steady-state limit of the sys-
tem. We choose the time when the detection of sensor a takes
place as the starting point of time, therefore the two-photon
correlation function can be expressed as

G (2)
ab (τ ) = Tr[a†(0)b†(τ )b(τ )a(0)ρst]

= Tr[b†bρc(τ )], (B1)

where ρst represents the steady-state density operator of the
combined system, and ρc represents the conditional state of
the combined system, which are prepared by the preselection
of mode a on the steady state of the system, that is,

ρc = a(0)ρst a
†(0). (B2)

At the time range we are concerned with, it can be assumed
that mode a is always maintained in vacuum state after prese-
lection, and thus ρc can be factorized as

ρc = ρc
E ,b ⊗ ρc

a, (B3)

where ρc
a = |0a〉〈0a| represents the vacuum state of mode a.

It can be obtained that the subsystem composed of the emitter
and sensor b is in an incoherent superposition state

ρc
E ,b(τ ) = |ψa(τ )〉〈ψa(τ )| + |ψb(τ )〉〈ψb(τ )|, (B4)

with

|ψa(τ )〉 = CA,0b (τ )|A, 0b〉 + CA,1b (τ )|A, 1b〉, (B5)

|ψb(τ )〉 = CB,0b (τ )|B, 0b〉 + CB,1b (τ )|B, 1b〉. (B6)

According to Eqs. (B2) and (B3), we can obtain that the initial
conditions of the evolution of the conditional state as

CA,0b (0) = CA,1a,0b,

CA,1b (0) = CA,1a,1b,

CB,0b (0) = CB,1a,0b,

CB,1b (0) = CB,1a,1b, (B7)

where CA,1a,0b, CA,1a,1b, CB,1a,0b , and CB,1a,1b are the probability
amplitudes of the combined system composed of sensors a, b
and the emitter under steady-state conditions.

The evolution of ρc
E ,b with the delay τ is determined by

ρ̇c
E ,b = −i

[
H ′, ρc

E ,b

]
, (B8)

with

H ′ = Hb + (
gπ1σe1g1 b + gπ2σe2g2 b + H.c.

)
, (B9)

where Hb = (�b − i κb
2 )b†b represents the non-Hermitian

Hamiltonian of sensor b. The above equation can be eas-
ily solved using the perturbation theory, and the analytical
expression of the frequency-resolved correlation can be ob-
tained according to Eq. (7). According to the same theoretical
method, the analytical expression of the two-photon correla-
tion for the opposite detection ordering can also be obtained.

APPENDIX C: AMPLITUDES OF TWO-PHOTON PATHS

The probability amplitudes of the different spectral com-
ponents of the two-photon transitions involved in Eqs. (18)
and (19) can be expressed as follows.

For the detected frequencies (F σ+
, Rπ ) shown in Fig. 3(a),

the corresponding two-photon emission amplitudes for the
detection orderings (a, b) and (b, a) are respectively given by

R[F σ+
, Rπ ; τ ]

= −4e3iφgσ s1s2
(
gπ1 c1s1F+[δa,F , δb,R; δb,R, τ ]

+ gπ2 c2s2F−[δa,F , δb,R; δb,R, τ ]
)
, (C1)

R[Rπ , F σ+
; τ ]

= −4e3iφgσ s1s2
(
gπ1 c1s1F−[δb,R, δa,F ; δa,F , τ ]

+ gπ2 c2s2F+[δb,R, δa,F ; δa,F , τ ]
)
. (C2)

For the detected frequencies (Rσ+
, Fπ ) shown in Fig. 3(b),

the corresponding two-photon emission amplitudes for the
detection orderings (a, b) and (b, a) are, respectively, given
by

R[Rσ+
, Fπ ; τ ]

= 4e3iφgσ s1s2
(
gπ1 c1s1F+[

δa,R1 , δb,F1 ; δb,F1 , τ
]

+ gπ2 c2s2F−[
δa,R2 , δb,F2 ; δb,F1 , τ

])
, (C3)
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R[Fπ , Rσ+
; τ ]

= 4e3iφgσ s1s2
(
gπ1 c1s1F−[

δb,F1 , δa,R1 ; δa,R2 , τ
]

+ gπ2 c2s2F+[
δb,F2 , δa,R2 ; δa,R2 , τ

])
. (C4)

For the detected frequencies (T σ+
, Rπ ) shown in Fig. 3(c),

the corresponding two-photon emission amplitudes for the
detection orderings (a, b) and (b, a) are respectively given by

R[T σ+
, Rπ ; τ ]

= 4eiφgσ c1c2
(
gπ1 c1s1F+[δa,T , δb,R; δb,R, τ ]

+ gπ2 c2s2F−[δa,T , δb,R; δb,R, τ ]
)
, (C5)

R[Rπ , T σ+
; τ ]

= 4eiφgσ c1c2
(
gπ1 c1s1F−[δb,R, δa,T ; δa,T , τ ]

+ gπ2 c2s2F+[δb,R, δa,T ; δa,T , τ ]
)
. (C6)

For the detected frequencies (Rσ+
, T π ) shown in Fig. 3(d),

the corresponding two-photon emission amplitudes for the
detection orderings (a, b) and (b, a) are, respectively, given
by

R[Rσ+
, T π ; τ ]

= −4eiφgσ c1c2
(
gπ1 c1s1F+[δa,R2 , δb,T1 ; δb,T1 , τ ]

+ gπ2 c2s2F−[δa,R1 , δb,T2 ; δb,T1 , τ ]
)
, (C7)

R[T π , Rσ+
; τ ]

= −4eiφgσ c1c2
(
gπ1 c1s1F−[

δb,T1 , δa,R2 , δa,R2 , τ
]

+ gπ2 c2s2F+[
δb,T2 , δa,R1 ; δa,R2 , τ

])
. (C8)

For the detected frequencies (Rσ+
, Rπ ) shown in Figs. 3(e)

and 3(f), the corresponding two-photon emission amplitudes
for the detection orderings (a, b) and (b, a) are, respectively,
given by

R1[Rσ+
, Rπ ; τ ]

= 4e2iφgσ c1s2
(
gπ1 c1s1F+[

δa,R1 , δb,R; δb,R, τ
]

− gπ2 c2s2F−[
δa,R1 , δb,R; δb,R, τ

])
, (C9)

R1[Rπ , Rσ+
; τ ]

= 4e2iφgσ c1s2
(
gπ1 c1s1F−[

δb,R, δa,R1 ; δa,R1 , τ
]

− gπ2 c2s2F+[
δb,R, δa,R1 ; δa,R1 , τ

])
, (C10)

R2[Rσ+
, Rπ ; τ ]

= 4e2iφgσ c2s1
(−gπ1 c1s1F+[

δa,R2 , δb,R; δb,R, τ
]

+ gπ2 c2s2F−[
δa,R2 , δb,R; δb,R, τ

])
, (C11)

R2[Rπ , Rσ+
; τ ]

= 4e2iφgσ c2s1
(−gπ1 c1s1F−[

δb,R, δa,R2 ; δa,R2 , τ
]

+ gπ2 c2s2F+[
δb,R, δa,R2 ; δa,R2 , τ

])
, (C12)

where Eqs. (C9) and (C10) are corresponding to the ampli-
tudes of the two-photon transitions shown in Fig. 3(e), and
Eqs. (C11) and (C12) are corresponding to the amplitudes of
the two-photon transitions shown in Fig. 3(f).

For the detected frequencies (F σ+
, T π ) shown in Figs. 3(g)

and 3(h), the corresponding two-photon emission amplitudes
for the detection orderings (a, b) and (b, a) are, respectively,
given by

R1[F σ+
, T π ; τ ]

= −4e2iφgσ gπ1 c2
1s1s2F+[

δa,F , δb,T1 ; δb,T1 , τ
]
, (C13)

R1[T π , F σ+
; τ ]

= −4e2iφgσ gπ1 c2
1s1s2F−[

δb,T1 , δa,F ; δa,R1 , τ
]
, (C14)

R2[F σ+
, T π ; τ ]

= −4e2iφgσ gπ2 c2
2s1s2F−[

δa,F , δb,T2 ; δb,R, τ
]
, (C15)

R2[T π , F σ+
; τ ]

= −4e2iφgσ gπ2 c2
2s1s2F+[

δb,T2 , δa,F ; δa,F , τ
]
, (C16)

where Eqs. (C13) and (C14) correspond to the amplitudes of
the two-photon transitions shown in Fig. 3(g), and Eqs. (C15)
and (C16) correspond to the amplitudes of the two-photon
transitions shown in Fig. 3(h).

For the detected frequencies (T σ+
, Fπ ) shown in Figs. 3(i)

and 3(j), the corresponding two-photon emission amplitudes
for the detection orderings (a, b) and (b, a) are, respectively,
given by

R1[T σ+
, Fπ ; τ ]

= 4e2iφgσ gπ1 c1c2s2
1F+[

δa,T , δb,F1 ; δb,F1 , τ
]
, (C17)

R1[Fπ , T σ+
; τ ]

= 4e2iφgσ gπ1 c1c2s2
1F−[

δb,F1 , δa,T ; δa,R2 , τ
]
, (C18)

R2[T σ+
, Fπ ; τ ]

= 4e2iφgσ gπ2 c1c2s2
2F−[

δa,T , δb,F2 ; δb,R, τ
]
, (C19)

R2[Fπ , T σ+
; τ ]

= 4e2iφgσ gπ2 c1c2s2
2F+[

δb,F2 , δa,T ; δa,T , τ
]
, (C20)

where Eqs. (C17) and (C18) are corresponding to the ampli-
tudes of the two-photon transitions shown in Fig. 3(i), and
Eqs. (C19) and (C20) are corresponding to the amplitudes of
the two-photon transitions shown in Fig. 3(j).

APPENDIX D: AVERAGE POPULATIONS OF SENSORS

Under the parameter condition introduced in Sec. III (i.e.,
� � κ � γ ), the average populations of the sensors in a
steady-state condition can be analytically solved using the per-
turbation theory. Therefore, the average population of sensor
a is given by

〈na〉 = 〈na,F 〉 + 〈na,R〉 + 〈na,T 〉. (D1)
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Here 〈na,F 〉, 〈na,R〉, and 〈na,T 〉, respectively, correspond to the
contributions of the F, R, and T lines in σ+ transition, and the
explicit expressions are given by

〈na,F 〉 = g2
σ s2

1s2
2ρCC

(EB − EC + �a)2 + (
κa
2

)2 , (D2)

〈na,R〉 = g2
σ c2

1s2
2ρCC

(EA − EC + �a)2 + (
κa
2

)2

+ g2
σ c2

2s2
1ρDD

(EB − ED + �a)2 + (
κa
2

)2 , (D3)

〈na,T 〉 = g2
σ c2

1c2
2ρDD

(EA − ED + �a)2 + (
κa
2

)2 . (D4)

Similarly, the average population of sensor b is given by

〈nb〉 = 〈nb,F 〉 + 〈nb,R〉 + 〈nb,T 〉. (D5)

Here nb,F , nb,R, and nb,T , respectively, correspond to the con-
tributions of the F, R, and T lines in π transition, and the
explicit expressions are given by

〈nb,F 〉 = g2
π1

s4
1ρAA

(EB − EA + �b)2 + (
κb
2
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