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Directional nonclassicality of resonance fluorescence from a three-body quantum antenna via
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By constructing a quantum filtering system to synthesize the spectral and spatial properties of stimulated
radiation, the directionality of spectrally correlated nonclassical properties of resonance fluorescence from a
three-body quantum antenna is investigated. The quantum antenna consists of three two-level quantum emitters,
two of which are identical and strongly driven by an external laser field to radiate the collective resonance
fluorescence with three distinct spectral components. The collective stimulated radiation is shaped by the
remaining auxiliary emitter via its spontaneous emission, which is assumed to be resonant with the higher-
frequency spectral component of the two identical emitters. Due to the presence of the auxiliary emitter, highly
directional nonclassicality of the spectral correlations can be generated, which is the consequence of the internal
interference of the source and the spatial interference of the radiation field. The electric dipole-dipole interaction
between the undriven emitter and the dressed two-body radiating source plays a crucial role in breaking the
rotational symmetry of nonclassical signals, which is embodied by various photon correlation functions with
a frequency-resolved version for different spectral combinations. By correlating the two opposite sidebands,
the frequency-resolved intensity-intensity correlation functions can signal highly directional nonclassicality,
and the frequency-resolved two-mode entanglement along a specific emission direction can be tested by the
frequency-resolved anomalous correlation function. While the directional nonclassical correlations between
the central-frequency and the three-body collective higher-frequency components can be identified through the
frequency-resolved intensity-field correlation function. These various frequency-resolved correlation functions
characterize the spatial asymmetry of nonclassical properties of the collective stimulated radiation from different
perspectives, including the particle properties and the quantum coherences of the filtered photons. When the
three-body collective higher-frequency sidebands are correlated with the central band and the lower-frequency
sideband, respectively, the schemes of using the auxiliary undriven emitter to generate optimal nonclassical
correlations with well-defined directions are discussed analytically. In addition, the results obtained from the
three-body quantum antenna and a dressed two-body quantum antenna are compared.
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I. INTRODUCTION

The research of multiatom systems has always been one
of the most fascinating fields in quantum optics, atomic
and molecular physics, and condensed matter physics. Since
the theories of superradiance [1,2] and subradiance [3,4],
the landmarks of collective radiation theory, have been dis-
closed in the early days, the extensive interests in radiative
characteristics of multiatom systems can be traced back to
the cooperative dynamics of multiatom systems. Some of
the intriguing cooperative phenomena include the interfer-
ence of two-atom radiation [5], multiatom entanglement [6],
collective Lamb shift [7], hyperradiance [8], birth, death,
and revival of collective spontaneous emissions [9], etc.
Nowadays, with the proliferation of nanophotonics tech-
nologies, one-dimensional waveguides, plasmonic structures,
and metamaterials have served as powerful platforms to
give prominence to the physical potential of multiatom
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systems [10–14]. More practically, the pragmatic value of
multiatom systems has penetrated into the field of quantum
information science [15,16]. Undoubtedly, the abundant phe-
nomena occurring in multiatom systems have been refreshing
our cognitions of atom-photon interactions.

Quantum antenna is a very fashionable topic about mul-
tiatom systems in recent years, which involves the design of
geometrical configuration and the control of radiative prop-
erties of the arrays of quantum emitters. In terms of the ge-
ometrical configurations, current researches mainly focus on
linear arrays [17–24] and two-dimensional arrays [25,26,28–
30] with beautiful radiation patterns. However, even the most
prototypical structure, the two-atom radiating system, can
constantly bring us novel discoveries [31–36]. In the aspect
of space-dependent physical signals, the direction-resolved
higher-order photon correlations may provide opportunities
for tailoring collective radiation effects. For instance, su-
perradiance and subradiance were revisited recently with a
renewal of interest via detecting higher-order photon correla-
tions [18,19], and a variety of schemes of engineering photon
statistics in spatial domain have also been proposed [24,33–
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36]. As for the physical arrangement of quantum antennas,
many collective effects are based on vacuum-mediated photon
exchange in the absence of external driving fields. The main
purpose is to concentrate on the desired atomic superposition
states that are critical for the additional collective effects
related to superradiance or subradiance. Recently, the geomet-
rical dependence of stimulated radiation of quantum antennas
driven by an external laser field has gradually attracted atten-
tion [23,24,31,32,37–39]. However, to our knowledge, only a
few works have been devoted to the spectral-directional com-
prehensive characteristics of stimulated radiation of quantum
antennas driven by a strong laser field, especially including
dipole-dipole interactions. In view of the increasing popu-
larity of the frequency-filtering techniques in recent years,
especially for resonance fluorescence [40–44], more abundant
physical scenarios may be discovered through jointly mon-
itoring the spectral and directional properties of resonance
fluorescence from quantum antennas driven by strong laser
fields.

In this paper, by constructing a quantum filtering system
to synthesize the spectral and spatial properties of stimu-
lated radiation, we propose a theoretical scheme of generating
strongly directional nonclassicality of the frequency-resolved
resonance fluorescence radiated from a strongly driven three-
body quantum antenna. Our main idea is to break the
rotational symmetry of the nonclassicality via dipole-dipole
interactions, which give rise to the internal atomic coher-
ence effects. We find that the internal interference of the
source and the spatial interference of the radiated field
can produce strongly directional nonclassicality between
different spectral components. In addition to the widely
discussed intensity-intensity correlations, we also examine
the intensity-field correlations [45–51] and the anomalous
correlations [52,53] to test the frequency-resolved nonclas-
sicality. Arguably, the concept of intensity-field correlations
is a remarkable breakthrough in the development of quantum
correlations, and anomalous correlations are closely related
to two-mode entanglement. Our results indicate that these
correlation functions can convey the information about the in-
terference effects of internal-state and space that are required
to produce the strongly directional nonclassicality.

As for the configuration design of the quantum filtering
system, on the one hand, the quantum antenna is composed
of three two-level electric dipolar emitters, two of which
are identical and driven by a strong laser field, while the
remaining one is far off-resonant with the former two for shap-
ing the collective resonance fluorescence via its spontaneous
emission. As a quantum antenna, it may be more accessible
for observing directionality when the interatomic distance is
comparable with the resonance wavelength [22]. In this case,
the electric dipole-dipole interactions can be treated as pertur-
bations relative to the strong laser-atom interaction. Thus the
collective resonance fluorescence spectrum in our system is
split into three spectral components that can be individually
addressable. We further specify the transition of the undriven
emitter to be resonant with the higher-frequency sideband.
In this arrangement, both the spectral combination of the
two opposite side-frequency components and the spectral
combination of the central-frequency and the side-frequency
components are involved in the three-body cooperative

photons. For these two spectral combinations, we also discuss
how to use the undriven emitter to generate optimal nonclas-
sical correlation signals with well-defined directions and the
unidirectional nonclassical correlation signals in the direction
of the central vertical line of the driven two-emitter axis. On
the other hand, we establish the filtering dynamics by applying
three single-mode quantum optical cavities to simulate three
Lorentzian filters. The description is in the frame of cascaded
quantum system. As we shall see, it enables us to propose the
analytical approach that are also applicable to other quantum
filtering systems described by the Lorentzian filtering func-
tions.

This paper is organized as follows. In Sec. II, the quantum
filtering system is introduced by deriving the master equation.
In Sec. III, the quantum state of the quantum filtering system
is calculated. The calculations are carried out analytically
in the corresponding Hilbert space of the full system trun-
cated at double-excitation states of the target cavity modes.
In Sec. IV, we correlate different spectral components to
investigate their geometry-dependent nonclassical properties.
For different spectral combinations, we apply different criteria
of nonclassicality of two-mode quantized fields. In addition,
the results are compared with a strongly driven two-emitter
system. Finally, we summarize our results in Sec. V.

II. QUANTUM FILTERING SYSTEM AND MASTER
EQUATION

A. Description of the quantum filtering system

The quantum antenna we consider consists of three electric
dipolar emitters, each of which is modeled by a two-level
system with the ground state |gi〉 and the excited state
|ei〉 (i ∈ {1, 2, 3}), separated by the transition frequency ωi

and connected by the electric dipole moment di. Among
them, the emitters 1 and 2 are selected to constitute the
principle radiating source of resonance fluorescence, which
are assumed to be identical and driven simultaneously
by a monochromatic strong laser field. Their collective
stimulated radiation is regulated by the remaining auxiliary
undriven emitter 3 via its spontaneous emission, which
is assumed to be far off-resonant with the two driven
emitters. In practical terms, the frequency mismatch
always needs to be considered between two nonidentical
quantum dots [54–58], and this driving arrangement can be
achieved, for example, by trapping the two driven emitters
and the undriven emitter at an antinode and a node of a
standing-wave laser field, respectively [59,60]. In some
recent researches of the linear chains of identical two-level
atoms, only one atom is selectively driven by an external
laser field [23,24,59]. As illustrated in Fig. 1, we introduce
the coordinates such that the three emitters are located
at positions r1 = (0,−r12/2, 0), r2 = (0, r12/2, 0), and
r3 = (−r3 sin ϑ3 sin ϕ3, r3 sin ϑ3 cos ϕ3, r3 cos ϑ3), respec-
tively. The spherical angles ϑ3 and ϕ3 will be determined by
the geometrical configuration of the quantum antenna we are
interested in.

The three-body cooperative dynamics is established by a
common electromagnetic reservoir, which not only leads to
the spontaneous decay of individual emitter, characterized by
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FIG. 1. (a) Geometry of the investigated quantum filtering sys-
tem. Three filters are simulated by the three single-mode optical
cavities described by the respective annihilation operators al (l ∈
{1, 2, 3}), each of which is equipped with a photodetector at the far-
field position Rl (only one cavity is sketched in (a) as an example).
The observation direction is determined by (θl , φl ). (b) Geometrical
structure of the three-body quantum antenna, where two identical
quantum emitters (red dots), labeled by 1 and 2, respectively, are
driven by a strong laser field propagating in the direction perpendic-
ular to the y axis, i.e., kL ⊥ r12. The parameter ϑ3 is the elevation
angle of the position of the auxiliary undriven emitter 3 (blue dot).

the spontaneous decay rate γi, but also provides the electric
dipole-dipole interactions via photon exchanges. The coherent
and dissipative coupling rates between any two emitters i
and j (i �= j) are determined by the electromagnetic Green’s
tensor in free space [27,28]

G(ri, r j, ω0) = G(ri j, ω0)

= eik0ri j

4πk2
0r3

i j

{
[(k0ri j )

2 + ik0ri j − 1]I

+ [−(k0ri j )
2 − 3ik0ri j + 3]

ri jri j

r2
i j

}
, (1)

through the relations

	i j = − 3π
√

γiγ j

k0
d̂∗

i · Re[G(ri, r j, ω0)] · d̂ j,

γi j =6π
√

γiγ j

k0
d̂∗

i · Im[G(ri, r j, ω0)] · d̂ j, (2)

respectively. In Eq. (1), ri j = |ri j | with ri j = ri − r j repre-
sents the inter-emitter distance, k0 = 2π/λ0 = ω0/c is the
wave number of the radiation fields related to the resonance
wavelength λ0 and the central frequency of the atomic tran-
sition ω0, and I is the unit tensor. In Eq. (2), d̂i( j) is the unit
vector of the electric dipole moment of the i( j)th emitter. In
our system, all the electric dipole moments are oriented to be
parallel to each other.

In our scheme, the quantum antenna is in the regime of
strong driving. Specifically, it refers to the situation in which
the Rabi frequencies of the quantum emitter-laser interac-
tions are much larger than all the vacuum-induced rates. In
this case, similar to the single-atom Mollow triplet, the two-
emitter collective resonance fluorescence is well split into

three spectral components, and no significant subversion of
the spectral shape caused by the electric dipole-dipole interac-
tions arises. In order to extract different spectral components,
three single-mode quantum optical cavities, described by their
respective bosonic annihilation (creation) operators al (a†

l )
(l ∈ {1, 2, 3}), are arranged at the positions Rl in far-field zone
to filter the higher-frequency, the central-frequency, and the
lower-frequency spectral components of the incident fluores-
cent fields with the propagation vectors kl , respectively. The
position of each cavity can be expressed as Rl = Rlel with
el = (− sin θl sin φl , sin θl cos φl , cos θl ). Based on the main
spirit of filtering mechanism that each filter is weakly coupled
with the source so that there is no back action from the filter
to the source [61], in our scheme, we describe the filtering
dynamics in the frame of cascaded quantum system [62–66].

B. Master equation

The dynamics of the total quantum filtering system, in-
cluding the three-body quantum antenna and the target cavity
modes, is governed by the master equation for the density
operator ρ. In the frame rotating of the frequency of the strong
driving field, the master equation has the form (setting h̄ = 1
throughout the paper) [67–69]

dρ

dt
= −i[H, ρ] + LSρ + LCρ + LSCρ, (3)

with the total Hamiltonian H = HS + HL + Hdd + HC , where

HS = 1

2

3∑
i=1

�iS
z
i , HC =

3∑
l=1

δl a
†
l al ,

HL = 1

2

2∑
i=1

[	(ri )S
+
i + 	∗(ri )S

−
i ],

Hdd = 1

2

3∑
i �= j=1

	i j (S
+
i S−

j + S+
j S−

i ). (4)

The Hamiltonians HS and HC represent, respectively, the free
energies of the three-body quantum antenna and the cavity
modes. The parameters �i = ωi − ωL and δl = νl − ωL are
the detunings of the transition frequency ωi of the ith emitter
and the resonance frequency νl of the lth cavity, respectively,
with respect to the driving frequency ωL, and we have �1 =
�2 = � for the identical emitters 1 and 2. The Hamiltonian
HL describes the semiclassical interactions between the emit-
ters 1 and 2 with the strong classical driving field, where 	(ri )
is the Rabi frequency experienced by the ith emitter. Note that
the Rabi frequency experienced by each of the driven emitters
is dependent on the position vector of the emitter, for exam-
ple 	(ri ) = di · ELei(kL ·ri+φL ) for running-wave driving field,
where EL and kL are, respectively, the amplitudes and the
wave vector of the driving field [60,68]. When the direction of
the wave vector of the strong driving field kL is perpendicular
to the axis between the two identical emitters (d1 = d2), i.e.,
kL · r12 = 0, we can achieve the simple situation 	(r1) =
	(r2) = 	 [68]. The operator Sz

i = |ei〉〈ei| − |gi〉〈gi| is the
energy operator of the ith emitter, and S−

i = |gi〉〈ei| and S+
i =

|ei〉〈gi| are, respectively, the lowering and raising operators of
the ith emitter. The last term of the total Hamiltonian, Hdd ,
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represents all the possible coherent dipole-dipole couplings
with the commutative symmetry 	i j = 	 ji. The damping
terms in Eq. (3) take the forms

LSρ =
3∑

i, j=1

γi j

2
(2S−

i ρS+
j − S+

j S−
i ρ − ρS+

j S−
i ),

LCρ =
3∑

l=1

κl

2
(2alρa†

l − a†
l alρ − ρa†

l al ),

LSCρ = −
3∑

i=1

3∑
l=1

√
μκlγi([a

†
l , S−

i ρ]e−ik0xil + H.c.). (5)

Here the abbreviation “H.c.” is the Hermitian conjugate. The
first damping term, LSρ, describes the internal dissipation
of the quantum antenna, including the spontaneous decay
of each emitter for i = j with γii = γi and the inter-emitter
dissipative dipole-dipole couplings for i �= j with the coupling
rates γi j = γ ji. The second damping term describes the decays
of the cavity modes with their respective decay rates κl . The
filtering dynamics in our system is described by the cascaded
term LSCρ [62–66]. It suggests that each cavity is excited
by the incident fluorescent fields unidirectionally and dissipa-
tively with the spatial phase k0xil = k0|Rl − ri| accumulated
by the propagation of the radiation fields [69]. In far-field
zone, we have k0xil ≈ k0Rl − kl · ri. The coefficient

√
μκlγi

is the dissipative coupling rate between the ith emitter and
the lth target cavity, where the parameter μ is the fraction
of emission reaching the filter per decay event of the single
emitter. For simplicity, we assume κl = κ and γi = γ in the
following.

It is well known that the multipeak pattern of resonance
fluorescence spectrum emerges in the regime of strong driv-
ing [67,70]. In our quantum filtering system, this condition
is specified as 	 
 {	i j, γi j, κ, γ }. Therefore one can ob-
tain a dressed Hilbert space of the three-body quantum
antenna by diagonalizing HS + HL into H̃S , which is spaced
by the dressed-state bases {|k〉} with k ∈ {1, 2, . . . , 8} (see
Appendix A). The eigenvalues of the dressed states allow us
to recognize clearly that the separation between the center
frequencies of two adjacent peaks of the resonance fluores-
cence spectrum of each dressed emitter is 	̄ = √

�2 + 	2.
We further specify the transition frequency of the emitter 3 to
be tuned to resonance with the higher-frequency spectral com-
ponent of the collective resonance fluorescence, i.e., �3 = 	̄.
Therefore the three-body cooperative radiation is concentrated
on this sideband. The condition of sideband resonance en-
ables the three-body cooperative photons to participate in
two different types of spectral combination simultaneously,
one is the combination of the two opposite sidebands, and
the other combination involves the central-frequency and the
side-frequency components. In spectral domain, we aim the
cavities 1, 2, and 3 at the higher-frequency, the central-
frequency, and the lower-frequency components, respectively.
Therefore the total electric dipole radiation operator of the
source resolved by the three-cavity monitoring system can
be reorganized by the dressed-state transition operators σkk′ =

|k〉〈k′| (k, k′ ∈ {1, 2, . . . , 8}) as

σ1 =
3∑

i=1

S(i)
1 e−i(k0R1−k1·ri ),

σ2 =
2∑

i=1

S(i)
2 e−i(k0R2−k2·ri ),

σ3 =
2∑

i=1

S(i)
3 e−i(k0R3−k3·ri ). (6)

Here the operator S(i)
l in Eq. (6) represents the weighted

sum of all the possible higher-frequency (l = 1), the central-
frequency (l = 2), and the lower-frequency (l = 3) internal-
state atomic transition operators of the ith emitter through the
dressed-state transition amplitudes A1 = c2, A2 = s2, B1 =√

2cs, and B2 = 1√
2
(c2 − s2) with c, s =

√
(	̄ ± �)/2	̄.

Obviously, for the condition of higher-frequency sideband
resonance, we have the relation S(3)

1 = S−
3 . However, the op-

erators σl (l ∈ {1, 2, 3}) are not only related to A1,2 and B1,2,
but also to the following geometry factors

f1(kl ) = eikl ·r1 + eikl ·r2 , l ∈ {1, 2, 3},
f2(kl ) = eikl ·r1 − eikl ·r2 , l ∈ {1, 2, 3},
f3(k1) = eik1·r3 , (7)

which are crucial to the spatial regulation of the radiated field.
The specific expansions of σl have been given by Eq. (A10)
in Appendix A. Hence Eq. (6) suggests that the filtered signal
is the consequence of two interference effects, one involving
the internal-state quantum interference in the source, i.e., the
coherent superposition of atomic states, and the other involv-
ing the spatial interference of the radiated fields embodied by
the geometry factors, which is present also in classical light
fields.

Considering that the electric dipole-dipole interactions
can be tackled as perturbations relative to the strong-driving
regime when the inter-emitter distance is of the order of (even
less than) the resonance wavelength, let us perform the unitary
transformation via eiH̃St/h̄ρ(t )e−iH̃St/h̄ to extract the main reso-
nant interactions by neglecting rapidly oscillating terms. After
transforming back to the original picture, the master equation
can be rewritten in terms of the dressed states as

dρ

dt
= −i[H̃0 + H̃I + H̃C, ρ] + L̃Sρ + L̃Cρ + L̃SCρ, (8)

where the transformed Hamiltonians take the forms

H̃0 = h̄
8∑

k=1

	kσkk, H̃C = HC,

H̃I = h̄	
(dd )
+ (σ24 + σ42) − h̄	

(dd )
+ (σ67 + σ76)

+ h̄	
(dd )
− (σ23 + σ32) + h̄	

(dd )
− (σ57 + σ75). (9)

The transformed damping terms of the three-body quan-
tum antenna can be written as L̃Sρ = L̃S1ρ + L̃S2ρ + L̃S3ρ
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with

L̃S1ρ =
3∑

i, j=1

γi j

2

(
2S(i)

1 ρS( j)†
1 − S( j)†

1 S(i)
1 ρ − ρS( j)†

1 S(i)
1

)
,

L̃S2ρ =
2∑

i, j=1

γi j

2

(
2S(i)

2 ρS( j)†
2 − S( j)†

2 S(i)
2 ρ − ρS( j)†

2 S(i)
2

)
,

L̃S3ρ =
2∑

i, j=1

γi j

2

(
2S(i)

3 ρS( j)†
3 − S( j)†

3 S(i)
3 ρ − ρS( j)†

3 S(i)
3

)
, (10)

and the cascaded dissipative coupling term is transformed into
a more transparent form as

L̃SCρ = −√
μκγ

3∑
l=1

([a†
l , σlρ] + [ρσ

†
l , al ]). (11)

In the transformed master equation, the Hamiltonians H̃0 and
H̃I represent the free part and the interaction part of the
dressed two-emitter subsystem, where the energies 	k have
been given by Eqs. (A4)–(A6) in Appendix A, and 	

(dd )
± =

A1√
2
(	13 ± 	23). As for the damping terms, one can see that all

the filtering dynamics are classified by the filtering frequency
νl irrespective of the positions of the quantum emitters.

III. ANALYTICAL FORMALISM AND MAIN EMISSION
MECHANISM

The Hamiltonian and dissipation of the quantum an-
tenna (source) in Eqs. (9) and (10) indicate that, in the
case of higher-frequency sideband resonance, the presence
of the auxiliary emitter provides the atomic coherent effects
for the two sets of degenerate dressed states {|2〉, |3〉, |4〉}
and {|5〉, |6〉, |7〉} [see Eq. (A5)] with the effective coherent
coupling rates 	

(dd )
± = A1√

2
(	13 ± 	23) and the effective dis-

sipative coupling rates γ
(dd )
± = A1

2
√

2
(γ13 ± γ23). In physical

terms, these two sets of coupling rates are originated from the
processes that the two driven emitters exchange photons col-
lectively with the third one in phase and in an opposite phase,
respectively. Furthermore, when the two driven emitters are
axially symmetrical with respect to the auxiliary emitter,
we have 	13 = 	23 and γ13 = γ23. Thus the opposite-phase
photon exchange disappears due to the complete destructive
interference, i.e., 	

(dd )
− = γ

(dd )
− = 0. Whereas the in-phase

process couples the dressed states |2〉 with |4〉, and |6〉 with
|7〉, through the effective coupling rates 	

(dd )
+ = √

2A1	r and
γ

(dd )
+ = A1√

2
γr with 	r = 	13 = 	23 and γr = γ13 = γ23. For

clarity of analytical investigation but without losing gener-
ality, let us concentrate on this typical configuration, which
contains all the physical mechanisms we are interested in.
This isosceles triangle configuration can be structured by set-
ting ϕ3 = π/2 or 3π/2.

A. Diagonalized atomic representation

Based on the spirit of filtering dynamics that the internal-
state quantum dynamics of quantum radiating source is not
affected by the presence of filters [61], we can first derive
and solve the equations of motion for the degrees of freedom

of the three-body quantum antenna, i.e., the reduced density
matrix elements of the source ρk′k = 〈σkk′ 〉, from the cascaded
master equation given by Eqs. (8)–(11). In the considered
isosceles triangle configuration, the atomic coherent effects
caused by the dipole-dipole interaction between the dressed
two-body radiating source and the auxiliary emitter give rise
to the following steady-state density operator of the three-
body quantum antenna in the dressed-state representation as

ρS =
8∑

k=1

ρkk|k〉〈k| + (ρ24|2〉〈4| + ρ42|4〉〈2|),

+ (ρ67|6〉〈7| + ρ76|7〉〈6|), (12)

where the nonzero steady-state density matrix elements ρkk

(k ∈ {1, 2, . . . , 8}), ρ24, ρ42, ρ67, and ρ76 and their equations
of motion have been given in Appendix B. As a set of states
can always be found that transforms the steady-state den-
sity operator of the source into the incoherent superposition
of several independent pure states, it seems convenient to
introduce a new atomic basis {| j̃〉} ( j ∈ {1, 2, . . . , 8}) by di-
agonalizing the steady-state density operator of the source ρS .
In the new atomic basis, the uncorrelated atomic bases remain
unchanged, i.e., |1̃〉 = |1〉, |3̃〉 = |3〉, |5̃〉 = |5〉, and |8̃〉 = |8〉,
whereas two pairs of coherent superposition atomic states,
{|2̃〉, |4̃〉} and {|6̃〉, |7̃〉}, are introduced as

|2̃〉 = sinα1|2〉 + cosα1e−iφ24 |4〉,
|4̃〉 = −cosα1eiφ24 |2〉 + sinα1|4〉, (13)

and

|6̃〉 = sinα2|6〉 + cosα2e−iφ67 |7〉,
|7̃〉 = −cosα2eiφ67 |6〉 + sinα2|7〉, (14)

respectively, where the phase angles φkk′ are determined by
the atomic coherences ρkk′ = |ρkk′ |eiφkk′ , and α1 and α2 are
determined by the relations sin2 α1 = 1

2 + u24/(2w24) and
sin2 α2 = 1

2 + u67/(2w67), respectively, with the definitions

ukk′ = ρkk − ρk′k′ and wkk′ =
√

u2
kk′ + 4|ρkk′ |2. Therefore the

new representation transforms ρS into the diagonalized form

ρ̃S =
8∑

j=1

ρ̃ j j | j̃〉〈 j̃|, (15)

where the new steady-state populations ρ̃22, ρ̃44, ρ̃66, and ρ̃77

can be calculated straightforwardly from the original dressed-
state populations and the atomic coherences via Eqs. (13)
and (14).

B. Quantum state of the system in the diagonalized atomic
representation

To calculate frequency-resolved correlation functions, the
corresponding two-mode atom-photon correlators of the type
〈a†mb†pbqanσ̃rs〉 and the single-mode atom-photon correlators
of the type 〈a†manσ̃rs〉 give us a good starting point, where
a, b ∈ {a1, a2, a3} and σ̃rs = |r̃〉〈s̃| is the transition operator
between the two diagonalized atomic states |r̃〉 and |s̃〉. From
the cascaded master equation (8)–(11), the equations of mo-
tion and the steady-state solutions for the correlators can be
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derived, thus providing the exact description of the geometry-
dependent spectrally correlations for the system. Here, it
should be noted that the correlation properties of arbitrary
two modes are unaltered by the presence of the residual mode
due to the lack of its back action to the source, irrespective
of its decay rate, and vice versa. Thus the correlators of
the reduced system (source plus target modes) depending on
which modes are chosen can be calculated by the correspond-
ing reduced density operator after tracing out the remaining
mode. In addition, the correlator 〈a†mb†pbqanσ̃rs〉 is of the
order of (

√
μκγ )m+p+q+n, which means that the dependence

of the normalized correlations on the coupling rate
√

μκγ can
vanish algebraically irrespective of the value of μ.

However, by recalling the spirit of quantum filtering
dynamics that each filtered mode is produced under the weak-
coupling regime between the source and filters with extremely
weak excitation [61], we may consider that the weak-coupling
regime allows the analytical expressions of the correlation
functions to be accurately computed by truncating the Hilbert
space. For two-mode correlations, the Hilbert space depend-
ing on which modes are chosen is spanned by a set of
atom-photon collective bases {| j̃, na, nb〉}, where the first in-
dex j̃ denotes the diagonalized atomic states, and the indexes
na and nb denote the excitations of the cavity modes a and b,
respectively. Correspondingly, for single-mode dynamics, we
introduce the atom-photon collective state vectors {| j̃, na〉}.
Therefore the mth-order correlators with m ∈ {0, 1, 2} can be
calculated analytically by truncating the Hilbert space to one
or two photons, i.e., we have na, nb ∈ {0, 1} for two-mode
two-photon dynamics and na ∈ {0, 1, 2} for single-mode two-
photon dynamics.

As we expected, after ignoring higher-order coupling terms
in the truncated density matrix elements due to the weak
coupling, we can establish the one-to-one correspondence
between the correlators and the approximate truncated density
matrix elements. Despite the various mode combinations, we
find that the approximate truncated reduced density operators
of all the possible single-mode atom-photons combined sys-
tems ρ̃S,a and the two-mode atom-photons combined systems
ρ̃S,ab can be summarized, respectively, as

ρ̃S,a ≈
∑
r,s

∑
m,n

〈a†manσ̃rs〉√
m!n!

|s̃, na〉〈r̃, ma|, (16a)

ρ̃S,ab ≈
∑
r,s

∑
m,n

∑
p,q

〈a†mb†pbqanσ̃rs〉√
m!n!p!q!

|s̃, na.qb〉〈r̃, ma, pb|.

(16b)

We note here that, in Eq. (16b), the upper bounds of the sum-
mation indexes ma, na, pb, and qb in the state vectors cannot
be zero due to the fact that both modes have at least one pho-
ton in their respective cavities when we consider two-mode
dynamics. Base on Eqs. (16a) and (16b), more transparent
physical mechanisms can be revealed if the quantum antenna
is resolved by the filter whose passband width κ is sufficiently
larger than the spectral linewidth, i.e., κ 
 γ [71,72]. Phys-
ically, on the one hand, the target cavity with large passband
width can extract the entire target spectral component without
spectral distortion. On the other hand, this situation ensures
that the emissions triggered by each of the atomic states | j̃〉

can be individually addressable so that the total fluorescent
emission can be treated as the incoherent superposition of
independent emission groups [71,72], weighted by the new
atomic populations ρ̃ j j , respectively. Therefore it may be
beneficial to split the two-mode correlators according to the
steady-state atomic populations ρ̃ j j as the following form (see
Appendix C):

〈a†mb†pbqanσ̃rs〉 =
8∑

j=1

ρ̃ j j〈a†mb†pbqanσ̃rs〉 j . (17)

As we expected, a more instructive relation is exposed now
that all the reduced correlators 〈a†mb†pbqanσ̃rs〉 j belonging to
the common emission group triggered by the new atomic state
| j̃〉 can be factorized as (see Appendix C)

〈a†mb†pbqanσ̃rs〉 j = 〈a†mb†pσ̃r j〉 j〈anbqσ̃ js〉 j . (18)

This factorization relation implies a transparent case when
m = n, p = q, and r = s simultaneously. In this case, we find
that the reduced correlator 〈anbqσ̃ js〉 j can serve as a prob-

ability amplitude through the relation 〈(a†a)n(b†b)qσ̃ss〉 j =
|〈anbqσ̃ js〉 j |

2
, where 〈(a†a)n(b†b)qσ̃ss〉 j can be understood as

the probability of detecting (n + q) photons, including n pho-
tons in mode a and q photons in mode b, triggered from the
atomic state | j̃〉 and terminated by the atomic state |s̃〉. The
factorization for the single-mode correlators can be also found
with similar form given by (C21) in Appendix C. Inspired by
this decomposition, we find that the approximate truncated
reduced density operators (16a) and (16b) can be simplified,
respectively, as the following compact forms:

ρ̃S,a =
8∑

j=1

ρ̃ j j

∣∣�̃ ( j)
S,a

〉〈
�̃

( j)
S,a

∣∣, (19a)

ρ̃S,ab =
8∑

j=1

ρ̃ j j

∣∣�̃ ( j)
S,ab

〉〈
�̃

( j)
S,ab

∣∣, (19b)

where the steady-state single-mode wave functions and two-
mode wave functions take the general forms∣∣�̃ ( j)

S,a

〉 = | j̃, 0a〉 +
∑

( j′,na )

C̃ ( j)
j′,na

| j̃′, na〉, (20a)

∣∣�̃ ( j)
S,ab

〉 = | j̃, 0a, 0b〉 +
∑

( j′,na,nb)

C̃ ( j)
j′,na,nb

| j̃′, na, nb〉, (20b)

respectively. In Eqs. (20a) and (20b), the steady-state prob-
ability amplitude C̃ ( j)

j′,na,nb
(C̃ ( j)

j′,na
) describes all the possible

cascaded emissions from the initial state | j̃, 0a, 0b〉 (| j̃, 0a〉) to
the target state | j̃′, na, nb〉 (| j̃′, na〉), and the summation index
( j′, na, nb) [( j′, na)] represents a possible state determined by
the electric dipole transitions. The analytical expressions of
the probability amplitudes are derived from the reduced cor-
relators in the diagonalized atomic representation, and have
been presented in Appendix D.
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C. Quantum state of the system in the dressed-state
representation

In order to explore the role of the atomic coherent ef-
fects established by the electric dipole-dipole interaction
between the driven two-body radiating source and the

undriven auxiliary emitter, we now transform ρ̃S,ab back to
the original dressed-state representation via the transforma-
tions (13) and (14). Thus we regain the steady-state density
operator of the full system, including the source in the
dressed-state representation and the target cavity modes, as

ρS,a =
8∑

k=1

ρkk

∣∣� (k)
S,a

〉〈
�

(k)
S,a

∣∣+ (ρ24

∣∣� (2)
S,a

〉〈
�

(4)
S,a

∣∣+ H.c.
)+ (ρ67

∣∣� (6)
S,a

〉〈
�

(7)
S,a

∣∣+ H.c.
)
, (21a)

ρS,ab =
8∑

k=1

ρkk

∣∣� (k)
S,ab

〉〈
�

(k)
S,ab

∣∣+ (ρ24

∣∣� (2)
S,ab

〉〈
�

(4)
S,ab

∣∣+ H.c.
)+ (ρ67

∣∣� (6)
S,ab

〉〈
�

(7)
S,ab

∣∣+ H.c.
)
, (21b)

where the explicit forms of the steady-state single-mode wave
functions |� (k)

S,a〉 and the two-mode wave functions |� (k)
S,ab〉

are similar to |�̃ ( j)
S,a〉 in Eq. (20a) and |�̃ ( j)

S,ab〉 in Eq. (20b),
respectively, and are given by∣∣� (k)

S,a

〉 = |k, 0a〉 +
∑

(k′,na )

C (k)
k′,na

|k′, na〉, (22a)

∣∣� (k)
S,ab

〉 = |k, 0a, 0b〉 +
∑

(k′,na,nb)

C (k)
k′,na,nb

|k′, na, nb〉. (22b)

In Eqs. (22a) and (22b), the cascaded transitions described
by C (k)

k′,na,nb
(C (k)

k′,na
) are similar to those described by the prob-

ability amplitude C̃ ( j)
j′,na,nb

(C̃ ( j)
j′,na

) so that C (k)
k′,na,nb

(C (k)
k′,na

) and

C̃ ( j)
j′,na,nb

(C̃ ( j)
j′,na

) share the common analytical forms, which
has been presented in Appendix D. In physical terms, the
first term of Eqs. (21a) and (21b) represents the incoherent
superposition of different cascaded emission groups weighted
by the populations ρkk , respectively, while the second and the
third terms of Eqs. (21a) and (21b) illustrate the interferences
of the cascaded emission groups triggered by the correlated
atomic states {|2〉, |4〉} and {|6〉, |7〉}, respectively.

In Fig. 2, the steady-state atomic populations and the
atomic coherences of the quantum antenna for the isosce-
les triangle configuration are plotted for the parameters
r12 = r3 = 0.2λ0, 	 = 100γ , and θd = 0. It is clearly seen
that the maximal magnitude of the atomic coherence ρ24

is almost twice that of ρ67, which is more important for
the regulation of directional emissions than the latter. The
dominant coherence ρ24 arises from the large population
of the dressed state |2〉 prepared by the laser field with
negative detuning, � < 0. Whereas the maximal values of
ρ66 and ρ77 in Fig. 2(b) are 0.225 and 0.042, respectively,
which are far less than the value of ρ22 in the region of
� < 0. This unbalanced distribution of the atomic popu-
lations and coherences can be illustrated by the explicit
forms of the dressed states |2〉 = |+1,+2, g3〉 and |4〉 =

1√
2
(|+1,−2, e3〉 + |−1,+2, e3〉), in which |+i〉 = c|ei〉 +

s|gi〉 and |−i〉 = −s|ei〉 + c|gi〉(i = 1, 2) are the single-atom
dressed states. One can see that, for � < 0, the probability
of the two dressed quantum emitters being prepared in the
single-atom dressed state |+〉 simultaneously can be enhanced
significantly, such as ρ22 = 0.94 for � = −100γ . This leads
to the enhancement of the emission of the higher-frequency
sideband photons and the resonant dipole-dipole interaction

between the two-body dressed radiating source and the un-
driven emitter. Whereas the population of the state |8〉 =
|−1,−2, g3〉, which is related to the emission of the lower-
frequency sideband photons, is suppressed for large negative
laser detunings, as illustrated by the black dashed line in
Fig. 2(a). It should be noted that the coherence ρ24 can be
subverted by very large laser detunings. Thus the value of �

should be chosen approvingly to ensure a sufficient atomic
population ρ22 and the sensitive dependence of the photon
correlation signals on the atomic coherence ρ24.

Now we would like to discuss the obtained analytical forms
briefly. Firstly, one can see that the state of the system, ρS,ab,
is classified by the incoherent superposition part and the in-
terference part, where the incoherent superposition part are
further classified according to different dressed-state radiating
sources (ρkk). Therefore their respective contributions to the
total correlation signals are transparent analytically. Secondly,
it is straightforward to recover the analytical results for a
strongly dressed two-atom system by setting the distance r3

to infinity. To our knowledge, the directionality of spectral
correlations in this system with electric dipole-dipole inter-

FIG. 2. Steady-state populations and atomic coherences of the
three-body dressed states for the isosceles triangle configuration,
plotted as functions of the laser detuning �. (a) ρ22 (red solid line),
ρ88 (black dashed line), ρ44 (cyan dotted line), and |ρ24| (blue circular
line). (b) ρ66 (red solid line), ρ77 (black dashed line), and |ρ67| (blue
circular line). The parameters are r12 = r3 = 0.2λ0, 	 = 100γ , and
θd = 0.
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action being considered have not been studied so far. We hope
that our investigation for the three-body quantum antenna can
provide some complementary results for this system, which
will be discussed later. In addition, we can also check that
the nth-order spectral correlation signals (such as intensity or
intensity correlation) calculated from our analytical approach
can be reproduced via the conventional physical spectrum
with 2n-time integrals [71,72].

IV. DIRECTIONAL NONCLASSICALITY OF
FREQUENCY-RESOLVED SPECTRAL CORRELATIONS

Before exploring the geometry-dependent nonclassical
correlations generated from the three-body quantum antenna,
let us first consider the experimental feasibility of the param-
eters of the quantum filtering dynamics in our scheme. The
experimental researches for the frequency-resolved spectral
correlations of the Mollow photons were carried out in single
semiconductor quantum dots, as presented in Ref. [40]. The
experimental parameters in Ref. [40] are under the regime of
large filter bandwidth, corresponding to the condition consid-
ered in Refs. [71,72], in which the filter bandwidth κ and the
radiative natural linewidth of the quantum dot γ satisfy κ =
12γ for κ−1 = 110 ps and γ −1 = 1.25(+0.08) ns. Recently,
the photon statistics of filtered resonance fluorescence was
also reported in Ref. [44], in which the fluorescent photons
generated from a self-assembled quantum dot are filtered by
a Lorentzian filter with the tunable linewidth from narrow
(κ = 0.01γ ) to wide (κ = 100γ ). Based on these experi-
mental conditions, we choose the large filter linewidth κ =
20γ considered in Refs. [71,72], which has been achieved
experimentally. In addition, the scattered fluorescent pho-
tons are expected to be collected efficiently in experimental
schemes [42,43]. Thus, for the cascaded driving scheme in
our system, a properly large fraction of fluorescent emission
of single emitter reaching the filter may be more in line
with experimental demands, although the normalized cor-
relation functions are independent of the value of μ. Base
on this consideration, we choose μ = 0.8 as discussed in
Refs. [63,64,73] for the calculations of unnormalized corre-
lation functions, which covers the emitted photons at a large
solid angle of single-emitter spontaneous emission. In partic-
ular, within the framework of chiral quantum optics, optical
nanofibres and waveguides can provide the possibility of fully
unidirectional spontaneous emission to realize cascaded quan-
tum systems, even for insignificant unidirectional modes [14].

A. Geometry-dependent nonclassicality related to
intensity-intensity correlations

An elegant way to test the nonclassical correlations be-
tween two quantized modes a and b is the Cauchy-Schwarz
inequality. The version of intensity-intensity correlation func-
tions can be expressed as [41,42,74]

R(2)
ab =

(
G(2)

ab

)2
G(2)

a G(2)
b

� 1, (23)

where G(2)
ab = 〈a†b†ba〉 is the intensity-intensity correlation

between modes a and b, G(2)
a = 〈a†2a2〉 and G(2)

b = 〈b†2b2〉

are the single-mode intensity-intensity correlations of modes
a and b, respectively. The parameter R(2)

ab is defined to quantify
the degree of the violation of the Cauchy-Schwarz inequal-
ity, and two-mode nonclassical correlations are indicated by
R(2)

ab > 1.
We first plot in Figs. 3(a)–3(d) the violation degrees of the

Cauchy-Schwarz inequality R(2)
a1a2

and the relevant intensity-
intensity correlations in the xy plane varying with the single
observation angle φl = φ for the small distance r12 = 0.3λ0

in Figs. 3(a) and 3(b), and for the larger distance r12 = 1.5λ0

in Figs. 3(c) and 3(d). Other parameters are 	 = −� = 100γ ,
r3 = 0.2λ0, κ = 20γ , δ1 = 	̄, and δ2 = 0. The undriven emit-
ter is placed at the xy plane, i.e., ϑ3 = π/2, and the dipole
orientations are assumed to be perpendicular to the obser-
vation plane, i.e., θd = 0. Figs. 3(a) and 3(c) show that the
violation degrees of the Cauchy-Schwarz inequality of the
photon pair (a1, a2), i.e., R(2)

a1a2
, display obvious rotational

symmetry despite the presence of the auxiliary emitter. Under
the same parameters, by comparing the intensity-intensity
correlations in Figs. 3(b) and 3(d) with the degrees of the
violation of the Cauchy-Schwarz inequality R(2)

a1a2
in Figs. 3(a)

and 3(c), respectively, one can observe that the maximal two-
photon probabilities of the single-mode field a2 (blue curves
in Figs. 3(b) and 3(d) corresponding to G(2)

a2
× 103) are almost

one order of magnitude higher than the probabilities of the
two-mode photon pair G(2)

a1a2
[red curves in Figs. 3(b) and 3(d)

corresponding to G(2)
a1a2

× 104] and the single-mode photon
pair G(2)

a1
(green curves in Figs. 3(b) and 3(d) corresponding

to G(2)
a1

× 104). These results originate from the fact that it is
the central-peak photon pair that is resonant with two dress-
ing photons. Therefore only the concave parts of the angular
distributions of G(2)

a2
lead to the nonclassical lobes of R(2)

a1a2
.

However, the situation for the two opposite sideband pho-
tons, i.e., the photon pair (a1, a3), is radically different. As
presented in Fig. 3(e), the giant but rotationally asymmetrical
nonclassicality displays in the direction φ = π/2 under the
same parameters as in Figs. 3(a) and 3(b) except for δ3 = −	̄.
Furthermore, the larger distance r12 = λ0 in Fig. 3(g) not only
increases the number of nonclassical lobes of R(2)

a1a3
, but also

makes the maximal nonclassicality more concentrated. After
examining the corresponding two-photon joint probabilities
in Figs. 3(f) and 3(h), corresponding to Figs. 3(e) and 3(g),
respectively, we find that the directionality of R(2)

a1a3
is dom-

inated by G(2)
a1a3

[blue curves in Figs. 3(f) and 3(h)], instead
of the single-mode two-photon emissions as in the previous
group.

Now let us explore the physical mechanisms of the direc-
tionally nonclassical correlations of the two-mode photon pair
(a1, a3). Given the analytical approach proposed in Sec. III,
the full intensity-intensity correlation function G(2)

a1a3
is calcu-

lated, which is given by Eqs. (E1) and (E2) in Appendix E.
The full solution of G(2)

a1a3
includes the contributions of all

the atomic populations (ρ11, ρ22, . . . , ρ88) and atomic coher-
ences (ρ24, ρ42, ρ67, ρ76). However, in order to enhance the
higher-frequency collective emissions, the three-body quan-
tum antenna is mainly populated to the dressed state |2〉 for an
appropriate negative laser detuning. This leads the cascaded
emissions of the two-mode sideband fields (a1, a3) to be con-
centrated on a pair of correlated cascaded emission groups,
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FIG. 3. Polar diagrams of the violation degrees of the Cauchy-Schwarz inequality R(2)
a1a2

, R(2)
a1a3

, and the relevant two-photon correlations
as functions of the single-observation angle φl = φ with θd = 0. For the photon pair (a1, a2): (a) and (c) R(2)

a1a2
, (b) and (d) G(2)

a1a2
× 104

(red curves), G(2)
a1

× 104 (green curves), and G(2)
a2

× 103 (blue curves), in which (b) corresponds to (a) for r12 = 0.3λ0, and (d) corresponds to
(c) for r12 = 1.5λ0. For the photon pair (a1, a3): (e) and (g) R(2)

a1a3
, (f) and (h) G(2)

a1a3
× 104 (blue curves), G(2)

a1
× 104 (red curves), and G(2)

a3
× 104

(green curves), in which (f) corresponds to (e) for r12 = 0.3λ0, and (h) corresponds to (g) for r12 = λ0. Other parameters are 	 = −� = 100γ ,
κ = 20γ , μ = 0.8, θl = π/2, r3 = 0.2λ0, ϑ3 = π/2, δ1 = 	̄, δ2 = 0, and δ3 = −	̄.

triggered by the dressed states |2〉 and |4〉. Thus the domi-
nant two-photon correlation signal G(2)

a1a3
is the consequence

of probing the common two-photon state |2, 1a1 , 1a3〉 of this
pair of correlated cascaded emission groups, as illustrated in
Fig. 4. The value of G(2)

a1a3
is predominately contributed from

the four-channel interference in this pair of cascaded emission

FIG. 4. Dominant two-photon cascaded emissions of the two-
mode fields (a1, a3) described by G̃(2)

a1a3
. The interfered cascaded

emission groups are triggered by the initial dressed states |2〉 and
|4〉, respectively, and terminated by their common two-photon tar-
get state |2, 1a1 , 1a3 〉. The fluorescent photons generated from the
higher-frequency component (blue arrows) and the lower-frequency
component (gray arrows) are coupled by the cavity modes a1 and a3,
respectively. The geometry factors of single-photon transitions are
indicated.

groups, and their corresponding two-photon probability am-
plitudes are labeled as C (2)

1 , C (2)
2 , C (4)

1 , and C (4)
2 , respectively,

as indicated in Fig. 4. Obviously, our target two-photon prob-
ability amplitudes are C (2)

2,1a1 ,1a3
= C (2)

1 + C (2)
2 and C (4)

2,1a1 ,1a3
=

C (4)
1 + C (4)

2 . For convenience, let we introduce an abbreviation
“G̃(n)

ab ” to represent the main contribution of the value of total
nth-order correlation function G(n)

ab . Thus the contribution of
the four-channel interference can be calculated as

G̃(2)
a1a3

=
∑

k=2,4

P (kk) +
∑

j, j′=1,2

P (24)
j j′ , (24)

where the probability components are

P (22) = ρ22

∣∣C (2)
2,1a1 ,1a3

∣∣2, P (44) = ρ44

∣∣C (4)
2,1a1 ,1a3

∣∣2,
P (24)

j j′ = 2Re
[
ρ42
(
C (2)∗

j C (4)
j′
)]

( j, j′ = 1, 2). (25)

The values of the dominant contribution G̃(2)
a1a3

and the total
correlation function G(2)

a1a3
are compared in Fig. 5(a) to verify

the accuracy of the analytical results. In Eq. (25), the function
P (kk) represents the two-photon joint probability of a pair of
channels belonging to a common cascaded emission group,
and P (24)

j j′ represents the interference between the two chan-
nels belonging to different cascaded emission groups. Their
analytical expressions are further derived with the help of the
analytical forms in Eqs. (21b) and (22b), and are given by

P (22) = ξ 4A2
1A2

2ρ22E (22),
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FIG. 5. (a) Comparison of the angular distributions of the to-
tal two-photon correlation G(2)

a1a3
(yellow solid line) calculated by

Eq. (E1) and the contribution of the interfered four channels G̃(2)
a1a3

(black dashed line) given by Eq. (24). (b) Geometrical modulation
function v(r3, φ) = cos ψ3 varying with the distance r3 for φ = π/2
(blue solid line) and φ = 3π/2 (red dashed line) with r12 = 0.3λ0.
(c) and (d) Angular distributions of the interference terms P (24)

11

(= P (24)
12 ) (blue dashed lines) and P (24)

21 (= P (24)
22 ) (red solid lines) for

(c) r3 = 0.32λ0 and (d) r3 = 0.125λ0 determined from (b). All the
other parameters in (a)−(d) are the same as in Figs. 3(e) and 3(f).

P (44) = 8ξ 4A2
2ρ44E (44),

P (24)
11 = P (24)

12 =
√

2ξ 4A1A2
2|ρ24|E (24)

1 ,

P (24)
21 = P (24)

22 =
√

2ξ 4A1A2
2|ρ24|E (24)

2 , (26)

where ξ = √
μκγ /κ . The geometrical modulation functions

in Eq. (26) are given by

E (22) = 16 cos2(2ψ12),

E (44) = 4 cos2 ψ12,

E (24)
1 = [4 cos(3ψ12) − 4 cos ψ12] cos ψ3,

E (24)
2 = [4 cos(3ψ12) + 12 cos ψ12] cos ψ3, (27)

where ψ12 = 1
2 k0r12 cos φ and ψ3 = k0r3 sin φ − φ24.

Eqs. (26) and (27) show that the angular distributions
of P (22) and P (44) are rotationally symmetrical, i.e., we
have the relations P (kk)(φ) = P (kk)(π ± φ) (k ∈ 2, 4). The
symmetry of P (22) can be traced back to the symmetrical
geometrical structure of the driven two-emitter subsystem,
whereas the symmetry of P (44) is originated from the
fact that the three-body cooperative mode a1 is involved
in the two possible two-photon cascaded transitions with
opposite emission orderings, i.e., |4〉 a3−→ |1〉 a1−→ |2〉 and
|4〉 a1−→ |6〉 a3−→ |2〉, as illustrated in Fig. 4. However, for
zero-delay detection, these two possible emission orderings
are equivalent physically. Thus these two components
convey the information about the emission orderings instead
of the information about the photon exchanges, which is
necessary for the directionality of emissions. Under such
circumstances, the rotational asymmetry of the two-mode
nonclassical correlations should be attributed to the second

term of Eq. (24), where the directional regulation relies
more sensitively on P (24)

21 and P (24)
22 because the two-body

symmetrically superposed mode ( f1) leads to a larger range
of variation of the signal. Considering that the strong
directionality refers to the ability of quantum antenna to
produce prominent signal in special directions, it is possible
to achieve the most significant nonclassical signal
when the interference terms P (24)

21 and P (24)
22 are maximal.

According to Eq. (27), the most satisfactory condition of
maximal constructive interference is given by

cos(3ψ12) = cos ψ12 = cos ψ3 = 1. (28)

Here one might argue that the observation angles solved
from the condition cos(3ψ12) = cos ψ12 = 1 may not neces-
sarily maximize the term cos ψ3 to cos ψ3 = 1. However, the
analytical results in Eq. (27) tell us that the geometrical mod-
ulation effects of the driven two-emitter subsystem and the
undriven emitter are completely separated, thus the undriven
emitter can be controlled individually. Our strategy is to find
the solutions of cos(3ψ12) = cos ψ12 = 1, and then control
the value of the geometrical modulation function v(r3, φ) =
cos ψ3 conditioned by the solved angles.

We first examine the geometrical modulation effect of the
driven two-emitter subsystem, i.e., the condition cos(3ψ12) =
cos ψ12 = 1. One can notice that cos ψ12 = 1 is a sufficient
but not necessary condition for cos(3ψ12) = 1. Thus the
maximal constructive interference should be subject to the
condition cos ψ12 = 1, i.e.,

k0r12 cos φ = 4nπ, n ∈ {0,±1,±2, . . . }, (29)

with the restriction on the distance of r12 � |2n|λ0 � 0. This
condition implies that the optimal enhancement of the terms
cos(3ψ12) and cos ψ12 can be achieved for arbitrary value of
r12. Obviously, only the directions φ = π/2 and 3π/2 are
available for a shorter distance r12, which can inhibit the
emergence of other lobes to generate unidirectional nonclas-
sical correlation along the central vertical line of the driven
two-emitter subsystem. In these two directions, it can be
checked that the other two interference terms P (24)

11 = P (24)
12 =

0. Figure 5(b) shows the geometrical modulation function
v(r3, φ) = cos ψ3 conditioned by the solved angles φ = π/2
(blue solid line) and φ = 3π/2 (red dashed line) for r12 =
0.3λ0. We can determine that r3 ≈ 0.32λ0 is the required dis-
tance in the range of r3 < λ0/2, corresponding to the maximal
constructive interference and giving rise to the maximal non-
classical signal for the sideband photon pair (a1, a3). It is also
worthwhile pointing out that another distance r3 ≈ 0.125λ0

may suppress the value of G(2)
a1a3

at φ = 3π/2 optimally to
realize the unidirectional two-mode nonclassicality in the
direction φ = π/2. In Figs. 5(c) and 5(d), the angular distribu-
tions of the interference terms illustrate the above discussions.
Obviously, the inter-group interference is mainly dominated
by P (24)

21 and P (24)
22 , in which the maximal constructive interfer-

ence occurs in the direction φ = π/2 for r3 = 0.32λ0 [see red
solid line in Fig. 5(c)], and the optimal destructive interference
occurs in the direction φ = 3π/2 for r3 = 0.125λ0 [see red
solid line in Fig. 5(d)]. As for the appearance of the other lobes
shown in Figs. 3(g) and 3(h) for the lager distance r12 = λ0, it
is predicted by the dominated symmetrical contribution P (22)

21 ,
i.e., the condition of cos2(2ψ12) = 1, yielding the directions
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φ = 0, π/3, π/2, 2π/3, π , 4π/3, and 5π/3. However, the
rotational asymmetry is still related to the inter-group inter-
ference due to the presence of the auxiliary undriven emitter.

B. Geometry-dependent nonclassicality related to
intensity-field correlation

For the frequency-resolved two-mode correlations between
the higher-frequency component and the central-frequency
component, we have seen that the directionality of the vio-
lation of the Cauchy-Schwarz inequality related to intensity-
intensity correlations displays obvious rotational symmetry.
However, the next version can be considered to be customized
for the special directionality of the nonclassical correlations
between the modes a1 and a2.

As the concept of quantum correlations develops more and
more extensively, the Cauchy-Schwarz inequality can be also
specified by the so-called intensity-field correlation or wave-
particle correlation [45–51], which has been attracting wide
attention in recent years. The Cauchy-Schwarz inequality of
this alternative version takes the form

〈a†2a2〉〈 :b2
x :
〉
� 〈 :a†bxa :〉2, (30)

where the symbol “〈: :〉” stands for the normally ordered
expectation value of the operators of quantized fields, and
bx = be−ix + b†eix is the quadrature amplitude of the mode
b with x being the local oscillator phase in homodyne
detection. This version can be obtained from the general
Cauchy-Schwarz inequality 〈 : f †

1 f1 :〉〈 : f †
2 f2 :〉 � |〈 : f †

1 f2 :〉|2
by choosing f1 = a†a and f2 = bx [47,75]. Since the two
operators a†a and bx are Hermitian, the intensity-field correla-
tion 〈 :a†bxa :〉 can be measured experimentally by conditional
homodyne detection [50,51]. In the following, we shall label
the intensity-field correlation and the quadrature squared as
G(1.5)

ab = 〈 :a†bxa :〉 and X (1)
b = 〈 :b2

x :〉, respectively, where the
superscript “(1.5)” represents that intensity-field correlation
refers to “(intensity)1.5”. Here we should notice an important
difference between Eqs. (30) and (23) that the quadrature
squared signal can be negative, marking the absolute non-
classicality. Therefore a straightforward indicator for testing
nonclassical correlations can be defined as

D(1.5)
ab = (G(1.5)

ab

)2 − G(2)
a X (1)

b , (31)

regardless of the sign of X (1)
b , and D(1.5)

ab > 0 indicates non-
classical correlations. Meanwhile, an alternative violation
degree is also available if X (1)

b is nonzero, which is defined
as

R(1.5)
ab =

(
G(1.5)

ab

)2
G(2)

a X (1)
b

. (32)

Thus the nonclassical correlations of radiation can be deter-
mined by R(1.5)

ab > 1 for X (1)
b > 0 and R(1.5)

ab < 1 for X (1)
b <

0. The signal G(n)
ab in our quantum filtering system is the

2nth-order small quantity of the weak coupling rate
√

μκγ ,
i.e., G(n)

ab ∼ (
√

μκγ )2n. Therefore, compared with D(1.5)
ab ,

the function R(1.5)
ab may be more sensitive to two-photon

correlations and quadrature squared signals, thus can produce
more prominent values for testing the nonclassical correla-
tions in our quantum filtering system.

FIG. 6. The violation degrees of the Cauchy-Schwarz inequality
(a) D(1.5)

a1a2
, (c) R(1.5)

a1a2
, and (b) the quadrature squared X (1)

a2
as a function

of the single observation angle φl = φ and the local oscillator phase
x. Other parameters are r12 = r3 = 0.3λ0, 	 = −� = 100γ , κ =
20γ , μ = 0.8, θl = π/2, θd = 0, ϑ3 = π/2, δ1 = 	̄, and δ2 = 0.
(d) Enlarged view of the distribution of the violation degree of the
Cauchy-Schwarz inequality R(1.5)

a1a2
around the direction φ = 3π/2 in

(c). In (a)−(d), the contours indicating the regions of nonclassicality
are indicated by the white dashed thick curves, and the consistency
of the regions of nonclassicality in (a) and (c) are indicated by the
vertical dashed thin lines.

In our system, one of the intensity-field correlator in G(1.5)
ab

is calculated as 〈a†ba〉 =∑k 〈k, 1a, 1b|ρS,ab|k, 1a, 0b〉, i.e.,
we have the relation 〈k, 1a, 0b|a†ba|k′, 1a, 1b〉 = δkk′ with δkk′

being the Kronecker symbol. It means that the intensity-
field correlator in our system extracts the information of the
second-step transitions between the single-photon state and
the two-photon state with unchanged atomic state. Obviously,
only the photons emitted from the central-frequency compo-
nent satisfy this requirement, and 〈a†

1a1a3〉 ≡ 0 in our system.
In Fig. 6(a), we first explore the function D(1.5)

a1a2
varying

with the single-point observation angle φl = φ and the local
oscillator phase x. Under the given parameters, it can be
observed that the nonclassical signals can emerge when the
local oscillator phase is adjusted to x ≈ 0. The reason can be
explained by Fig. 6(b) that the optimal local oscillator phase
in Fig. 6(a) corresponds to the reduction of the quadrature
squared signal. Considering that the value of X (1)

a2
is positive in

the whole region in Fig. 6(b), we further present the function
R(1.5)

a1a2
in Fig. 6(c) to visualize the nonclassical regions more

clearly, in which the three distinct nonclassical peaks can be
observed near the directions φ = 0 (2π ), φ = π , and φ =
3π/2, respectively. Obviously, the emergence of the nonclas-
sicality around the direction φ = 3π/2 [see Fig. 6(d)] realizes
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FIG. 7. (a) Angular distributions of G(1.5)
a1a2

(red solid line), G(2)
a1

×
10 (gray dashed line), and X (1)

a2
× 10−1 (blue dashed-dotted line) for

r12 = r3 = 0.3λ0. (b) Comparison of the angular distributions of the
total intensity-field correlation G(1.5)

a1a2
calculated by Eq. (E3) (yellow

solid line) with that of the dominant contribution G̃(1.5)
a1a2

(black dashed
line) given by Eq. (33) for r12 = r3 = 0.3λ0. (c) The quadrature
squared signal X (1)

a2
(red solid line) and the two-photon correla-

tion G(2)
a1

(blue dashed line) varying with the distance r3 for r12 =
0.3λ0 and φ = 3π/2. (d) The function �u(r3) = [u(r3, 3π/2)]2 −
[u(r3, π/2)]2 varying with the distance r3 for r12 = 0.3λ0. All the
other parameters in (a)–(d) are the same as in Fig. 6.

the unidirectional nonclassical correlations in the direction of
the central vertical line of the axis of the driven two-emitter
subsystem.

In order to get a better insight into the origin of these
nonclassical signals, in Fig. 7(a), we further compare the
angular distributions of the relevant correlation functions for
x = 0. This comparison reveals that the nonclassical peaks
around φ = 0 (2π ) and π predict the directions in which
the intensity-field correlation is significantly enhanced [see
red solid line in Fig. 7(a)]. Whereas the extra nonclassical
peak in the direction φ = 3π/2 is derived from three aspects,
including the suppression of X (1)

a2
, the destructive interfer-

ence of G(2)
a1

, and the enhancement of (G(1.5)
a1a2

)2, as shown in
Fig. 7(a). Let us first examine the angular distribution of the
intensity-field correlation. For a properly large negative laser
detuning, although the full solution of G(1.5)

a1a2
arises from the

contributions of all the populations and atomic coherences, the
value of G(1.5)

a1a2
is predominantly contributed from the atomic

coherences ρ24 and ρ42, as illustrated in Fig. 7(b), in which
the full analytical expression of G(1.5)

a1a2
is given by Eqs. (E3)

and (E4) in Appendix E. We label the dominant component of
G(1.5)

a1a2
as G̃(1.5)

a1a2
, which is calculated as

G̃(1.5)
a1a2

= 2Re
[
ρ42C (2)∗

5,1a1 ,0a2
C (4)

5,1a1 ,1a2
+ ρ24C (4)∗

6,1a1 ,0a2
C (2)

6,1a1 ,1a2

]
= 16A1B1ξ

3|ρ24|(1 + 2 sin2 ψ12) cos(ψ3 + π/2).
(33)

This result suggests once again that the geometrical modu-
lation effects of the driven two-emitter subsystem and the
undriven emitter are completely separated. For the driven
two-emitter subsystem, the propagation directions of emit-
ted the photons that optimally enhance the value of (G(1.5)

a1a2
)2

are subject to the relation sin ψ12 = ±1, which implies the
restriction on distance r12 � |n + 1/2|λ0 � λ0/2. However,
for a smaller distance r12 < λ0/2, although the perfectly op-
timal values of the term sin ψ12, i.e., sin ψ12 = ±1, cannot
be achieved for all directions, the distinct nonclassicality can
still be observed in the two symmetrical directions φ = 0
and π , which maximize the term sin2 ψ12 and give rise to a
pair of symmetrical nonclassical peaks in Fig. 6(c). Whereas
the rotationally asymmetrical nonclassicality corresponding
to the isolated peak in the direction φ = 3π/2 is the modu-
lation effect of the undriven emitter, including the destructive
interference of two-photon emissions in the three-body co-
operative mode a1 around the direction φ = 3π/2 [see the
gray dashed line in Fig. 7(a)], and the asymmetrical intensity-
field correlation with the geometrical modulation function
u(r3, φ) = cos(ψ3 + π/2), whose optimally negative value
appears at φ = 3π/2. Before discussing the feasibility of us-
ing the auxiliary emitter to further enhance the nonclassical
signal at φ = 3π/2, we examine in Fig. 7(c) the behaviours
of X (1)

a2
and G(2)

a1
varying with the distance r3 for r12 = 0.3λ0

and φ = 3π/2. Under the given parameters, the critical dis-
tance corresponding to the sign change of X (1)

a2
is determined

as r3 ≈ 0.42λ0. Meanwhile, it can be seen that the two-
photon probability G(2)

a1a2
at φ = 3π/2 is stable in the range

of r3 ∈ [0.15λ0, 0.5λ0] (see the blue dashed line in Fig. 7(c)),
which means that the destructive interference of two-photon
emissions that is conducive to achieve prominent nonclas-
sical signal can persist in this direction. Given this feature,
we explore in Fig. 7(d) the degree of asymmetry of the
intensity-field correlation signal in the direction perpendicu-
lar to the axis of the two-emitter subsystem by introducing
the function �u(r3) = [u(r3, 3π/2)]2 − [u(r3, π/2)]2. Based
on the result in Fig. 7(c) that the quadrature squared signal
is monotonically decreased to zero when the distance r3 is
increased to approach the critical value 0.42λ0, the extremely
large positive value of the violation of degree R(1.5)

a1a2
can be

achieved. Therefore a possible region for generating remark-
able value of R(1.5)

a1a2
is determined as r3 ∈ [0.33λ0, 0.42λ0]

(the shaded region in Fig. 7(d)) for r12 = 0.3λ0, where the
lower boundary 0.33λ0 corresponds to the maximum value of
�u(r3), as shown in Fig. 7(d). Based on the discussed strat-
egy of using the undriven emitter to achieve the directional
nonclassicality in the direction perpendicular to the axis of
the driven two-emitter subsystem, we present in Fig. 8 the
angular distributions of R(1.5)

a1a2
for different values of r12, in

which r3 = 0.38λ0 is determined for r12 = 0.3λ0 according to
the above analysis, corresponding to Fig. 8(a). Meanwhile we
should point out that the parameters in Fig. 8 have ensured that
the value of X (1)

a2
is positive in all directions, thus the criterion

of R(1.5)
a1a2

> 1 in determining the nonclassical correlations is
valid.

In order to shed more light on the intensity-field correla-
tions in detecting the directional two-mode nonclassicality,
it is also worthwhile to point out that another version of the
Cauchy-Schwarz inequality is also effective, which takes the
form [47]

η
(1.5)
ab = |〈a†ab〉|2

〈a†2a2〉〈b†b〉 � 1, (34)
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FIG. 8. Angular distributions of the violation degree of the
Cauchy-Schwarz inequality R(1.5)

a1a2
for the distances (a) r12 = 0.3λ0

and r3 = 0.38λ0, and (b) r12 = 0.5λ0 and r3 = 0.35λ0. All the other
parameters in (a) and (b) are the same as in Fig. 6.

and η
(1.5)
ab > 1 indicates two-mode nonclassical correlations.

In Fig. 9, we present the angular distributions of the func-
tion η(1.5)

a1a2
for our system. One can see that, under the given

parameters, four lobes can be observed around the directions
φ = π/3, 2π/3, 4π/3, and 5π/3, in which the two distinct
lobes mark the nonclassical correlations with concentrated
directionality. These four lobes exactly predict the directions
in which the single-photon emission in mode a2 is suppressed.
Although their directions are rotationally symmetrical, the
magnitudes are in sharp contrast, which results from the ro-
tational asymmetry of the intensity-field correlator 〈a†

1a1a2〉.
Now let us discuss some physical information conveyed

by the intensity-field correlation function, although it cannot
be understood as the probability of photon detections. The
analytical result in Eq. (33) indicates that the intensity-field
correlator 〈a†

1a1a2〉 essentially reflects the quantum coher-
ence between the single-photon state |5, 1a1 , 0a2〉 and the
two-photon state |5, 1a1 , 1a2〉, and the quantum coherence be-
tween the states |6, 1a1 , 0a2〉 and |6, 1a1 , 1a2〉, in which the two
correlated photon states belong to different cascaded emis-
sion groups coupled by the effective dipole-dipole interaction
	

(dd )
+ , as illustrated by the black dashed arrows in Fig. 10.

Hence the intensity-field correlation signal conveys the in-

FIG. 9. Angular distributions of the violation degree of the
Cauchy-Schwarz inequality η(1.5)

a1a2
for the distances (a) r12 = 0.8λ0,

r3 = 0.4λ0, and (b) r12 = λ0, r3 = 0.1λ0. Other parameters are 	 =
100γ , � = −150γ , κ = 20γ , μ = 0.8, θl = π/2, θd = 0, ϑ3 =
π/2, δ1 = 	̄, and δ2 = 0.

FIG. 10. Dominant two-photon cascaded emissions of the two-
mode fields (a1, a2), in which the two cascaded emission groups are
triggered by the initial dressed atomic states |2〉 and |4〉, respectively.
Quantum coherence between the single-photon state |5, 1a1 , 0a2 〉
(|6, 1a1 , 0a2 〉) in the cascaded emission group triggered by the state
|2〉 (|4〉) and the two-photon state |5, 1a1 , 1a2 〉 (|6, 1a1 , 1a2 〉) in the
cascaded emission group triggered by the initial dressed atomic state
|4〉 (|2〉) is revealed by the intensity-field correlation function G(1.5)

a1a2
.

formation that the three-body cooperative mode a1 emitted
from the transition |4〉 a1−→ |6〉, for example, not only par-
ticipates in a pair of two-photon cascaded transitions with
opposite emission orderings, i.e., |4〉 a1−→ |6〉 a2−→ |5〉 and
|4〉 a2−→ |3〉 a1−→ |5〉, but also regulates another pair of two-
photon transitions |2〉 a2−→ |2〉 a1−→ |6〉 and |2〉 a1−→ |5〉 a2−→
|6〉 established between the driven two-emitter subsystem.
Obviously, the quantum coherence of photon states is the
wavelike property of radiation. In this sense, the intensity-field
correlation function seems to be complementary to the fa-
miliar intensity-intensity correlation function, which conveys
the information about the particlelike property of radiation by
probing the populations of photon states. In other words, the
intensity-intensity correlation function and the intensity-field
correlation function in our quantum filtering system display
the directionality of nonclassical properties of collective stim-
ulated radiation from different perspectives, including the
particle property and the coherence of frequency-resolved
resonance fluorescence.

C. Geometry-dependent frequency-resolved entanglement

We now proceed to explore the feasibility of generating the
frequency-resolved entangled emissions along some specific
directions in our system. In Refs. [76,77], Hillery and Zubairy
proposed the inequalities

〈a†mamb†nbn〉 < |〈a†mbn〉|2,
〈a†mam〉〈b†nbn〉 < |〈ambn〉|2, (35)

which can be applied to test higher-order two-mode entan-
glement. For the case of the lowest order (m = n = 1), these
criteria involve the correlators 〈a†b〉 and 〈ab〉. In our quantum
filtering system of two-photon filtering dynamics, we get

〈a†b〉 =
∑

k

〈k, 0a, 1b|ρS,ab|k, 1a, 0b〉,

〈ab〉 =
∑

k

〈k, 0a, 0b|ρS,ab|k, 1a, 1b〉. (36)

Considering that the single-photon transitions of two dif-
ferent modes triggered by a common initial dressed state will
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FIG. 11. Angular distributions of (a) the entanglement parameter
Ea1a3 and (b) the relevant correlation functions. In (b), |G(0,2)

a1a3
| × 102,

5G(1)
a1

× 102, and 5G(1)
a3

× 102 correspond to the red solid curve,
the black dashed curve, and the blue dashed-dotted curve, respec-
tively. Other parameters are r12 = 0.4λ0, r3 = 0.35λ0, 	 = 100γ ,
� = −150γ , κ = 20γ , μ = 0.8, θl = π/2, θd = 0, ϑ3 = π/2, and
δ1 = −δ3 = 	̄.

fall into different dressed states, we have 〈a†
1a2〉 = 〈a†

1a3〉 =
0 in our system. If the other correlator 〈ab〉 is nonzero, it
requires that the cascaded two-mode two-photon transitions
cannot affect the dressed atomic state of zero-photon and
two-photon states. Obviously, in our system, the two-mode
sideband fields (a1, a3) satisfy this requirement due to ν1 +
ν3 = 2ωL, and also satisfy 〈a1〉 = 〈a3〉 = 0. Therefore the
sideband filtered modes a1 and a3 are entangled if

Ea1a3 =
∣∣G(0,2)

a1a3

∣∣2
G(1)

a1 G(1)
a3

> 1, (37)

with G(0,2)
a1a3

= 〈a1a3〉, G(1)
a1

= 〈a†
1a1〉, and G(1)

a3
= 〈a†

3a3〉. The
superscript “(0,2)” represents that the correlator 〈a1a3〉 refers
to “(field)2” without negative-frequency field component.
It is worth mentioning that this condition of two-mode
entanglement reminds us of the definition of anomalous cross-
correlation function [52,53]

g(0,2)
ab = |〈ab〉|√

〈a†a〉〈b†b〉
. (38)

Thus the two-mode entanglement can be detected by an al-
ternative form, i.e., the anomalous correlation g(0,2)

ab > 1. For
many radiation processes, anomalous correlation has not re-
ceived much attention. However, an interesting question may
arise in our system —– what is the physical information the
anomalous correlation conveys via the directionality of entan-
glement.

In Fig. 11, we present the single-point angular distributions
of Ea1a3 and the relevant correlation functions. It is seen that
the frequency-resolved two-mode entanglement in Fig. 11(a)
is strongly dependent on the unnormalized anomalous cor-
relation function G(0,2)

a1a3
[red solid curve in Fig. 11(b)]. The

full analytical expression of the unnormalized anomalous cor-
relation function G(0,2)

a1a3
is given by Eqs. (E5) and (E6) in

Appendix E by considering the contributions of all the pop-
ulations and atomic coherences. Based on the full solution
of G(0,2)

a1a3
, we can examine that the main contribution of the

FIG. 12. (a) Comparison of the angular distributions of the mag-
nitude squared of the total anomalous correlation |G(0,2)

a1a3
|2 calculated

by Eq. (E5) (yellow solid line) with that of the main component
|G̃(0,2)

a1a3
|2 (black dashed line) given by Eq. (40). (b) Angular distri-

butions of the functions T1 (gray dashed line), T2 (blue dashed-dotted
line), and T3 (red solid line). All the parameters are the same as in
Fig. 11.

anomalous correlation corresponds to

G̃(0,2)
a1a3

= ρ22C (2)
2,1a1 ,1a3

+ ρ42C (4)
2,1a1 ,1a3

, (39)

and its contribution to the total anomalous correlation function
G(0,2)

a1a3
is shown in Fig. 12(a). Then we obtain the magnitude

squared of the main anomalous correlation as∣∣G̃(0,2)
a1a3

∣∣2 = T1 + T2 + T3, (40)

with the following three parts:

T1 = ∣∣ρ22C (2)
2,1a1 ,1a3

∣∣2,
T2 = ∣∣ρ42C (4)

2,1a1 ,1a3

∣∣2,
T3 = 2Re

[
ρ22ρ42C (2)∗

2,1a1 ,1a3
C (4)

2,1a1 ,1a3

]
. (41)

Figure 12(b) shows the angular distributions of T1 (gray
dashed line), T2 (blue dashed-dotted line), and T3 (red solid
line). One can see from Eqs. (39)–(41) that the anomalous cor-
relation conveys the information of the two-photon cascaded
emissions that are resonant with two dressing photons, includ-
ing the independent cascaded emissions and the interference
of cascaded emissions. The components T1 and T2 are similar
in form to that of the two-photon probability components
P22 and P44 in Eq. (26), except that their magnitudes might
be different. Thus the symmetry of T1 and T2 can be also
traced back to the physical origin of the symmetry of P22

and P44, i.e., the symmetrical two-photon cascaded emissions
resolved by the filters. Whereas the component T3 reflects
the geometrical modulation effect of the auxiliary undriven
emitter on the dressed two-body radiating source, which leads
to the frequency-resolved two-mode entanglement for dif-
ferent sideband fields along a specific emission direction.
Furthermore, Eq. (39) tells us that the anomalous correlation
G(0,2)

a1a3
still provides the directionality of nonclassical proper-

ties of resonance fluorescence by conveying the information
about the quantum coherences of photon states, but what
it mainly reveals is the coherence between the zero-photon
state |2, 0a1 , 0a3〉 and the target two-photon state |2, 1a1 , 1a3〉
belonging in a common cascaded emission group, and the
coherence between the zero-photon state |2, 0a1 , 0a3〉 and the
target two-photon state |4, 1a1 , 1a3〉 belonging in different
cascaded emission groups. In other words, the correlator
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〈a1a3〉 is related to two-photon coherence [78]. Obviously,
this physical information is different from the intensity-field
correlation function discussed in the above. It is also worth
mentioning that anomalous correlation function has been
discussed in collective resonance fluorescence of multiatom
system [53], in which the information about higher-order reso-
nance can be conveyed by the anomalous correlation function
of electric dipole radiation fields.

D. Comparisons with a strongly driven two-body
quantum antenna

Before finishing our discussions, we would like to make
some brief comparisons between the three-body quantum an-
tenna and a strongly driven two-body quantum antenna, in
which both the two identical two-level quantum emitters are
strongly dressed. To our knowledge, only a few researches
have been devoted to the directional properties of the spectral
correlations in two-atom resonance fluorescence. We hope
that these comparisons can provide some complementary re-
sults for strongly driven two-atom systems.

The strongly driven two-body quantum antenna can be re-
covered from our system by setting the distance r3 to infinity,
thus 	13 and 	23 are negligible. However, considering the
rotational symmetry of the angular distribution of radiation in
the dressed two-body system, in order to ensure the rationality
of the comparisons, the three-body quantum antenna should
be linear and symmetrical, in which the auxiliary emitter 3
is located at the center point between the emitters 1 and 2,
i.e., r3 = 0. In Fig. 13, we compare the angular distribu-
tions of the nonclassical signals of the linear symmetrical
three-body quantum antenna (red solid curves) with that of
the strongly dressed two-body quantum antenna (blue dashed
curves). It can be seen from Figs. 13(b) and 13(d) that the
values of R(2)

a1a3
and Ea1a3 are weakened by the presence of the

emitter 3, however, the lobes of the two systems predict the
coincident directions of nonclassical correlations. In addition,
Figs. 13(a) and 13(c) indicate that the dipole-dipole interac-
tions between the undriven emitter and the driven two-emitter
subsystem provide some positive effects on the nonclassical
correlations between the central-frequency and the higher-
frequency photons. For instance, Fig. 13(a) shows that the
emitter 3 further increases the value of R(2)

a1a2
, and Figs. 13(c)

and 13(e) indicate that the signals η(1.5)
a1a2

and D(1.5)
a1a2

of the
two-body quantum antenna cannot display nonclassical cor-
relations in all directions (the blue dashed curve in Fig. 13(c)
corresponds to η(1.5)

a1a2
× 5). However, the three-body quantum

antenna not only improves these signals to reach the non-
classical levels, but also produces strong directionality with
narrow nonclassical lobes. These improvements are originated
from the nonzero signal components related to the dressed
population ρ44 and the atomic coherence ρ24 in the three-body
quantum antenna, which should have been zero in the two-
body quantum antenna. The dressed state |4〉 is related to the
excited state of the auxiliary emitter [see Eqs. (A1)–(A3) in
Appendix A], which is populated by the electric dipole-dipole
interactions between the driven two-emitter subsystem and the
auxiliary emitter.

FIG. 13. Comparisons of the angular distributions of the pa-
rameters (a) R(2)

a1a2
, (b) R(2)

a1a3
, (c) η(1.5)

a1a2
, (d) Ea1a3 , and (e) D(1.5)

a1a2

of the symmetrical linear three-body quantum antenna (red solid
curves) with that of the strongly driven two-body quantum antenna
(blue dashed curves). In (c), the blue dashed curve corresponds to
η(1.5)

a1a2
× 5. The parameters are r12 = 0.8λ0, 	 = −� = 100γ , κ =

20γ , μ = 0.8, θl = π/2, θd = 0, δ1 = −δ3 = 	̄, and δ2 = 0.

V. SUMMARY

By constructing a quantum filtering system, we have inves-
tigated the directionality of spectrally correlated nonclassical
properties of collective resonance fluorescence radiated from
a three-body quantum antenna. The quantum antenna is com-
posed of two resonantly, strongly driven identical two-level
electric dipolar emitters, plus an auxiliary undriven emitter,
whose resonant transition corresponds to the higher-frequency
sideband of the collective resonance fluorescence of the two
driven emitters. In far-field zone, three single-mode quantum
cavities are applied to filter the photons from the three spectral
components respectively. In the limit of large passband width,
the calculations of the quantum filtering dynamics of the com-
bined system have been carried out analytically in the frame
of cascaded quantum system.

By correlating the target cavity modes, we have found
that the two types of spectral combinations including the
three-body collective mode allow for strongly directional non-
classical correlations. On the one hand, when the two opposite
sidebands are correlated with each other, the giant violation of
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the Cauchy-Schwarz inequality related to intensity-intensity
correlation functions can be achieved with well-defined di-
rections, and the frequency-resolved two-mode entanglement
along a specific direction can be detected by anomalous cor-
relation function. The physical origin can be attributed to the
atomic coherent effects arising from the electric dipole-dipole
interactions between the undriven emitter and the dressed
two-body radiating source. Specifically, the interatomic inter-
actions couple different cascaded emission groups, in which
the asymmetrical two-photon cascaded transitions are con-
structed. On the other hand, the prominent directionality
of nonclassical correlations can be also generated by cor-
relating a central-frequency photon and a higher-frequency
photons, which is identified through the violation of the
Cauchy-Schwarz inequality related to intensity-field correla-
tion. The intensity-field correlation function for this spectral
combination displays rotational asymmetry by revealing the
quantum coherences between the single-photon states and
the two-photon states in different cascaded emission groups.
Therefore these various frequency-resolved correlation func-
tions characterize the spatial asymmetry of nonclassical
properties of the collective resonance fluorescence from

different perspectives, including the particlelike properties
and the quantum coherences of the filtered photons. In addi-
tion, we have examined the feasibility of using the auxiliary
emitter to produce the optimal nonclassical signals along a
specific emission direction. Finally, we have compared our
system with a strongly driven two-atom quantum antenna, and
have found that the presence of the auxiliary undriven emitter
can improve some signals in the two-atom system to reach
nonclassical levels with strong directionality.

Our investigation provides a theoretical scheme for prepar-
ing the frequency-resolved nonclassical light with strong
directionality. We hope that the proposed scheme could be
helpful for the construction of quantum radars to further re-
alize using the nonclassical light with angular and spectral
resolutions to probe another target quantum systems.
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APPENDIX A: DRESSED STATES AND GEOMETRY-DEPENDENT ELECTRIC DIPOLE RADIATION OPERATORS

In this Appendix, we present the representation transformation between the three-body bare states and the dressed atomic
states. Then, we give the explicit expressions of the geometry-dependent electric dipole radiation operators in Eq. (6).

Firstly, we define the three-body bare states as

|ψ1〉 = |e1, g2, g3〉, |ψ2〉 = |e1, e2, g3〉,
|ψ3〉 = |e1, g2, e3〉, |ψ4〉 = |e1, e2, e3〉,
|ψ5〉 = |g1, g2, g3〉, |ψ6〉 = |g1, e2, g3〉,
|ψ7〉 = |g1, g2, e3〉, |ψ8〉 = |g1, e2, e3〉. (A1)

By diagonalizing the Hamiltonian HS + HL under the condition �1 = �2 = � and 	(r1) = 	(r2) = 	, one can obtain
the Hamiltonian of the laser-dressed three-body quantum antenna H̃S , which is spaced by the dressed-state basis {|k〉} k ∈
{1, 2, . . . , 8}. The representation transformation between the dressed states and the three-body bare states can be given by the
vector form a = Ub, where the dressed-state vector and the bare-state vector are defined as

a = (|1〉, |2〉, . . . , |7〉, |8〉)T,

b = (|ψ1〉, |ψ2〉, . . . , |ψ7〉, |ψ8〉)T, (A2)

respectively, with the symbol “T” denoting the transpose of matrix, and the matrix U is the representation transformation matrix
and is given by

U =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 cs c2 0 0 s2 cs
cs c2 0 0 s2 cs 0 0

0 0 1√
2

0 0 0 0 − 1√
2

0 0 c2−s2√
2

−√
2cs 0 0

√
2cs c2−s2√

2
1√
2

0 0 0 0 − 1√
2

0 0
c2−s2√

2
−√

2cs 0 0
√

2cs c2−s2√
2

0 0
0 0 cs −s2 0 0 −c2 cs
cs −s2 0 0 −c2 cs 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (A3)

For the condition of higher-frequency sideband resonance, i.e., �3 = 	̄, we find that the coherent dipole-dipole interaction
between the two laser-driven emitters described by the Hamiltonian H12 = 	12(S+

1 S−
2 + S+

2 S−
1 ) leads to the level disturbances of

the dressed states after transforming H12 into the dressed-state representation H̃12 and neglecting rapidly oscillating terms. Thus

053715-16



DIRECTIONAL NONCLASSICALITY OF RESONANCE … PHYSICAL REVIEW A 102, 053715 (2020)

the Hamiltonian H̃0 in Eq. (9) is given by H̃0 = H̃S + H̃12, where

H̃S =
∑

k

	
(0)
k |k〉〈k|, H̃12 =

∑
k

δ	k|k〉〈k|, (A4)

with the free energies of the dressed states

	
(0)
1 = −	

(0)
8 = 3	̄

2
,

	
(0)
2 = 	

(0)
3 = 	

(0)
4 = 	̄

2
,

	
(0)
5 = 	

(0)
6 = 	

(0)
7 = − 	̄

2
, (A5)

and the level shifts

δ	3 = δ	5 = −	12,

δ	4 = δ	6 = 2B2
2	12,

δ	1 = δ	2 = δ	7 = δ	8 = B2
1	12. (A6)

Therefore the total energy distribution of the dressed states in Eq. (9) is given by 	k = 	
(0)
k + δ	k .

In terms of the dressed states, we can decompose the electric dipole radiation operator of each emitter according to the spectral
components of the resonance fluorescence. For the identical driven emitters 1 and 2, we have the decompositions

S−
1 = S(1)

1 + S(1)
2 + S(1)

3 ,

S−
2 = S(2)

1 + S(2)
2 + S(2)

3 , (A7)

where the higher-frequency, the central-frequency, and the lower-frequency spectral components are determined by

S(1,2)
1 = A1√

2
(σ41 + σ62 − σ74 − σ86 ∓ σ31 ∓ σ52 ∓ σ73 ∓ σ85),

S(1,2)
2 = B1√

2
(σ11 + σ22 − σ77 − σ88 ± σ34 ± σ43 ± σ56 ± σ65),

S(1,2)
3 = A2√

2
(σ47 + σ68 − σ14 − σ26 ± σ13 ± σ25 ± σ37 ± σ58), (A8)

respectively. However, the electric dipole radiation operator of the undriven emitter 3 is

S−
3 = S(3)

1 = σ21 + σ87 + σ64 + σ53. (A9)

In our scheme, the radiation field determined by S(i)
l is coupled with the corresponding cavity mode al unidirectionally along

the propagation direction kl . By rearranging the collective electric dipole radiation operators according to the target spectral
components, we thus obtain the geometry-dependent higher-frequency, the central-frequency, and the lower-frequency photon
detection operators, respectively, as

σ1 =
∑
(k,k′ )

A(a1 )
kk′ σkk′ = A1√

2
[ f1(k1)(σ41 + σ62 − σ74 − σ86) − f2(k1)(σ31 + σ52 + σ73 + σ85)]

+ f3(k1)(σ21 + σ87 + σ64 + σ53),

σ2 =
∑
(k,k′ )

A(a2 )
kk′ σkk′ = B1√

2
[ f1(k2)(σ11 + σ22 − σ77 − σ88) + f2(k2)(σ34 + σ43 + σ56 + σ65)],

σ3 =
∑
(k,k′ )

A(a3 )
kk′ σkk′ = A2√

2
[ f1(k3)(σ47 + σ68 − σ14 − σ26) + f2(k3)(σ13 + σ37 + σ25 + σ58)], (A10)

which correspond to Eq. (6). For convenience, we abbreviate the explicit expression of each geometry-dependent dipole operator
in Eq. (A10) as σl =∑(k,k′ ) A

(al )
kk′ σkk′ with the indexes l ∈ {1, 2, 3} and k, k′ ∈ {1, 2, . . . , 8}.
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APPENDIX B: EQUATIONS OF MOTION AND STEADY-STATE SOLUTIONS FOR THE ATOMIC
DENSITY MATRIX ELEMENTS

In this Appendix, we present the equations of motion and steady-state solutions for the reduced density matrix elements of
the source with nonzero steady-state values.

In the condition of higher-frequency sideband resonance, we get two sets of degenerate dressed states {|2〉, |3〉, |4〉} and
{|5〉, |6〉, |7〉} [see Eq. (A5)]. Furthermore, in the considered isosceles triangle configuration (γ13 = γ23 = γr,	13 = 	23 = 	r),
the two-atom antisymmetric superposition states |3〉 and |5〉 are decoupled from the electric dipole-dipole interactions established
between the dressed two-atom radiating source and the undriven auxiliary emitter. Therefore only the steady-state populations
ρkk (k ∈ {1, 2, . . . , 8}) and the atomic coherences ρ24, ρ42, ρ67, and ρ76 are nonzero. When the density matrix element ρ88, for
example, is eliminated from the equations of motion, the dynamical evolution of this set of density matrix elements obey the
inhomogeneous differential equation of the vector form

d

dt
X = MX + C, (B1)

where the matrix of the density matrix elements X and the nonhomogeneous term are

X = (ρ11, ρ22, ρ33, ρ44, ρ55, ρ66, ρ77, ρ24, ρ42, ρ67, ρ76)T,

C = (0, 0, 0, 0, α4, α3, 0, 0, 0, 0, 0)T, (B2)

and the coefficient matrix M is given by

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−β1 0 α4 α3 0 0 0 0 0 0 0
γ −β2 0 0 α4 α3 0 −χ∗ −χ 0 0
α2 0 −β3 α5 0 0 α4 0 0 0 0
α1 0 α5 −β4 0 0 α3 −χ −χ∗ 0 0

−α4 α2 − α4 γ − α4 −α4 −(β5 + α4) α5 − α4 −α4 0 0 0 0
−α3 α1 − α3 −α3 γ − α3 α5 − α3 −(β6 + α3) −α3 α6 α6 χ∗ χ

0 0 α2 α1 0 0 −β7 0 0 χ χ∗
α6 −χ∗ 0 −χ 0 0 0 −β24 0 −α3 0
α6 −χ 0 −χ∗ 0 0 0 0 −β∗

24 0 −α3

0 0 0 −α6 0 χ∗ χ −α1 0 −β67 0
0 0 0 −α6 0 χ χ∗ 0 −α1 0 −β∗

67

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (B3)

with the coefficients

α1 = A2
1(γ + γ12), α2 = A2

1(γ − γ12), α3 = A2
2(γ + γ12), α4 = A2

2(γ − γ12),

α5 = B2
1(γ − γ12), α6 =

√
2A1γr,

β1 = (1 + 2A2
1

)
γ , β2 = 2A2

1γ , β3 = 2γ − γ12, β4 = 2γ + 2B2
2γ12,

β5 = γ − γ12, β6 = γ + 2B2
2γ12, β7 = (1 + 2A2

2

)
γ , β8 = 2A2

2γ ,

β24 = 1

2

[
(3 +

√
2B2)γ + (A2

1 + A2
2

)
γ12
]+ i(	2 − 	4),

β67 = 1

2

[
(3 −

√
2B2)γ + (A2

1 + A2
2

)
γ12
]+ i(	6 − 	7), χ = A1√

2
(γr + 2i	r ). (B4)

The steady-state solution of the matrix X can be expressed in component form as ρi j = −det[Mi j]/det[M], where the symbol
“det” represents the determinant of matrix, Mi j is the matrix obtained by replacing the column vector corresponding to the density
matrix element ρi j in M by the inhomogeneous column vector C. The nonzero steady-state populations and the coherences
are fundamental in accessing the fluorescence emitted by the source, and the new populations in the diagonalized atomic
representation, ρ̃ j j , can be calculated straightforwardly via the transformations (13) and (14).

APPENDIX C: PROOF OF THE FACTORIZATIONS IN EQUATIONS (17) AND (18)

In this Appendix, as an example, we give the detailed proof the factorization of two-mode correlators in Eqs. (17) and (18) in
the limit of large filter linewidth. Similarly, the factorization of single-mode correlators can be also obtained through the same
procedure.

1. General forms of the equations of motion for the atom-photon correlators

Let us work in the diagonalized atomic representation {| j̃〉} to eliminate the steady-state atomic coherences (ρ24, ρ42, ρ67, and
ρ76) temporarily. Thus the Hamiltonian of the source, H̃0 + H̃I (H̃0 = H̃S + H̃12), in Eq. (9) can be rewritten in the diagonalized
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atomic representation as H = H0 + H′
γ + H′′

γ . The first part, H0, is transformed from the free dressed-state Hamiltonian H̃S in
Eq. (A4), and thus takes the form

H0 =
8∑

j=1

	̃
(0)
j σ̃ j j, (C1)

with the unchanged free energies 	̃
(0)
j = 	

(0)
j . While the remaining parts H′

γ and H′′
γ are transformed from H̃12 in Eq. (A4) and

H̃I in Eq. (9), respectively, and take the forms

H′
γ =

8∑
j=1

δ	̃ j σ̃ j j, H′′
γ = (ε1σ̃24 + ε∗

1 σ̃42) + (ε2σ̃67 + ε∗
2 σ̃76), (C2)

respectively, where the energy shifts of the diagonalized atomic states δ	̃ j and the coherent coupling rates ε1,2 are given by

δ	̃1 = δ	1, δ	̃2 = δ	2 sin2 α1 + δ	4 cos2 α1 + 2	
(dd )
+ sin α1 cos α1 cos φ24,

δ	̃3 = δ	3, δ	̃4 = δ	2 cos2 α1 + δ	4 sin2 α1 − 2	
(dd )
+ sin α1 cos α1 cos φ24,

δ	̃5 = δ	5, δ	̃6 = δ	6 sin2 α2 + δ	7 cos2 α2 + 2	
(dd )
+ sin α2 cos α2 cos φ67,

δ	̃8 = δ	8, δ	̃7 = δ	6 cos2 α2 + δ	7 sin2 α2 − 2	
(dd )
+ sin α2 cos α2 cos φ67,

ε1 = (δ	4 − δ	2) sin α1 cos α1eiφ24 , ε2 = (δ	7 − δ	6) sin α2 cos α2eiφ67 . (C3)

Obviously, the Hamiltonian H0 + H′
γ gives rise to the total free energies for the diagonalized atom by defining 	̃ j = 	̃

(0)
j + δ	̃ j .

Considering that the geometrical scale of the quantum antenna and the condition of sideband resonance ensure that all
the energy-level shifts δ	̃ j and the coherent coupling rates ε1,2 are within the natural linewidth of the single emitter, the
perturbative Hamiltonians H′

γ and H′′
γ give rise to the terms that are of the order of (or even less than) γ . With the help of

the transformations (13) and (14), the damping terms in Eqs. (10) and (11) can be also transformed into the diagonalized atomic
representation by reorganizing the photon detection operators in Eq. (A10) into the general form σl =∑( j, j′ ) B

(al )
j j′ σ̃ j j′ , where

l ∈ {1, 2, 3} and j, j′ ∈ {1, 2, . . . , 8}, and B(al )
j j′ is the transformed amplitude of the atomic transition | j̃〉〈 j̃′| of generating the

cavity mode al in the diagonalized atomic representation.
After transforming the master equation (8) into the diagonalized atomic representation, we can derive the equations of motion

for the (m + n + p + q)th-order two-mode atom-photon correlators of the type 〈a†mb†pbqanσ̃rs〉 through the relation

d

dt
〈(a†mb†pbqanσ̃rs)(t )〉 = Tr

[
a†mb†pbqanσ̃rs

dρ̃

dt

]
= TrS,ab

[
a†mb†pbqanσ̃rs

dρ̃S,ab

dt

]
, (C4)

with a, b ∈ {a1, a2, a3} and r, s ∈ {1, 2, . . . , 8}. Here we should point out that the dynamics of two-mode correlators are irrelevant
with the presence of the remaining mode. For example, if we choose a1 and a2 as the target modes, the unidirectional dissipative
coupling term of the remaining mode a3 is (LSC ρ̃ )a3

= √
μκγ (σ̃3ρ̃a†

3 − a†
3σ̃3ρ̃ + a3ρ̃σ̃

†
3 − ρ̃σ̃

†
3 a3). We can easily examine that

there is no contribution of (LSC ρ̃ )a3
to the equation of motion for the two-mode correlator 〈a†m

1 a†p
2 aq

2an
1σ̃rs〉. In other words,

the correlator 〈a†m
1 a†p

2 aq
2an

1σ̃rs〉 is only related to the reduced density operator ρ̃S,a1a2 after tracing out the mode a3. Thus the
calculations of the two-mode correlators for the target modes a1 and a2 are irrelevant with the remanding mode a3 due to the
lack of back action from the residual mode to the source. Similarly, the single-mode correlation properties are also unaltered by
the other two modes.

Based on this fact, the equation of motion for the two-mode (m + n + p + q)th-order correlator 〈a†mb†pbqanσ̃rs〉 has the
following recurrence form:

d

dt
〈a†mb†pbqanσ̃rs〉 = − K(m,p,q,n)

rs 〈a†mb†pbqanσ̃rs〉 +
∑
(i,i′ )

J (rs)
ii′ 〈a†mb†pbqanσ̃ii′ 〉

− √
μκγ

(
n
∑

j

B(a)
s j 〈a†mb†pbqan−1σ̃r j〉 + m

∑
j

B(a)∗
r j 〈a†m−1b†pbqanσ̃ js〉

)

− √
μκγ

(
q
∑

j

B(b)
s j 〈a†mb†pbq−1anσ̃r j〉 + p

∑
j

B(b)∗
r j 〈a†mb†p−1bqanσ̃ js〉

)
, (C5)
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where the complex dissipation rate K(m,p,q,n)
rs is

K(m,p,q,n)
rs = (m + n + p + q)

κ

2
− i[(m − n)δa + (p − q)δb + 	̃r − 	̃s], (C6)

and the coefficient J (rs)
ii′ is the coupling coefficient of the atomic variable 〈σ̃ii′ (t )〉 coupled to 〈σ̃rs(t )〉, which is the parameter of

the source that is of the order of γ , i.e., γ , γi j , or 	i j . More specifically, the coupled terms 〈a†mb†pbqanσ̃ii′ 〉 (i, i′ ∈ {1, 2, . . . , 8})
in Eq. (C5) arise from the dynamical information of the source described by

d

dt
〈σ̃rs〉 =

∑
(i,i′ )

J (rs)
ii′ 〈σ̃ii′ 〉, (C7)

which is dominated by the superoperator

Lγ ρ̃S = −i[H′′
γ , ρ̃S] + L̃Sρ̃S (C8)

via the relation d
dt 〈σ̃rs〉 = Tr[σ̃rs(Lγ ρ̃S )]. The explicit form the coefficient J (rs)

ii′ is given by the master equation for the
corresponding atomic density matrix element presented in Appendix B. For example, the explicit form of the equation of motion
for the two-mode second-order correlator 〈a†

1a2σ̃11〉 is derived as

d

dt
〈a†

1a2σ̃11〉 = −[κ − i(δ1 − δ2) + β1]〈a†
1a2σ̃11〉 + α4〈a†

1a2σ̃33〉 + α3〈a†
1a2σ̃44〉 − √

μκγB(a2 )
11 〈a†

1σ̃11〉, (C9)

in which the explicit forms of the coefficients β1, α3, and α4 are given by Eq. (B4), and B(a2 )
11 = A(a2 )

11 = cs f1(k2) is given by
Eq. (A10). Obviously, the dynamical information of the source in Eq. (C9) is described by∑

(i,i′ )

J (11)
ii′ 〈a†

1a2σ̃ii′ 〉 = −β1〈a†
1a2σ̃11〉 + α4〈a†

1a2σ̃33〉 + α3〈a†
1a2σ̃44〉. (C10)

2. Proof of the factorizations

Taking the correlator 〈a†bσ̃rs〉 as an example, let us first explore the relation between the second-order correlators and first-
order correlators. From Eq. (C5), it is straightforward to write the equations of motion for the second-order correlator 〈a†bσ̃rs〉
and its coupled terms

d

dt
〈a†bσ̃rs〉 = −K(1,0,1,0)

rs 〈a†bσ̃rs〉 +
∑
(i,i′ )

J (rs)
ii′ 〈a†bσ̃ii′ 〉 − √

μκγ

(∑
j

B(a)∗
r j 〈bσ̃ js〉 +

∑
j

B(b)
s j 〈a†σ̃r j〉

)
, (C11a)

d

dt
〈a†σ̃r j〉 = −K(1,0,0,0)

r j 〈a†σ̃r j〉 +
∑
(i,i′ )

J (r j)
ii′ 〈a†σ̃ii′ 〉 − √

μκγ
∑

j′
B(a)∗

r j′ 〈σ̃ j′ j (t )〉, (C11b)

d

dt
〈bσ̃ js〉 = −K(0,0,1,0)

js 〈bσ̃ js〉 +
∑
(i,i′ )

J ( js)
ii′ 〈bσ̃ii′ 〉 − √

μκγ
∑

j′
B(b)

s j′ 〈σ̃ j j′ (t )〉. (C11c)

Here we should note that, in the limit of large passband width (κ 
 γ ), the characteristic timescale of the correlators is κ−1,
which is small compared with the atomic evolution time γ −1 [71,72]. On this timescale, we can ignore the small contributions
that are of the order of γ compared with κ , i.e., the second term in the right-hand side of Eq. (C5) and that in Eqs. (C11a)–
(C11c), and use the steady-state approximation only for the atomic variables in the last term of Eqs. (C11b) and (C11c), i.e.,
〈σ̃ j j′ (t )〉 ≈ 〈σ̃ j j′ 〉 = ρ̃ j j for j = j′ and 〈σ̃ j j′ 〉 = ρ j′ j = 0 for j �= j′, to remove the summation symbol. In addition, the initial state
of the system is ρ̃S,ab(t = 0) = ρ̃S ⊗ |0a, 0b〉〈0a, 0b| without any photon being prepared in the target cavities, which suggests that
the initial values of all the correlators are zero (except for zeroth-order correlators, i.e., the atomic populations). Therefore we
can conclude that all the correlators and their equations of motion can be decomposed according to the steady-state populations
{〈σ̃ j j〉} without constant term, i.e., we have the decomposition 〈a†mb†pbqanσ̃rs〉 =∑ j〈σ̃ j j〉〈a†mb†pbqanσ̃rs〉 j . Specifically, the
reduced correlators 〈bσ̃ js〉 j , 〈a†σ̃r j〉 j , and 〈a†bσ̃rs〉 j are determined by

〈bσ̃ js〉 =
∑

j′
〈σ̃ j′ j′ 〉〈bσ̃ js〉 j′ = 〈σ̃ j j〉〈bσ̃ js〉 j, (C12a)

〈a†σ̃r j〉 =
∑

j′
〈σ̃ j′ j′ 〉〈a†σ̃r j〉 j′ = 〈σ̃ j j〉〈a†σ̃r j〉 j, (C12b)

〈a†bσ̃rs〉 =
∑

j′
〈σ̃ j′ j′ 〉〈a†bσ̃rs〉 j′ . (C12c)
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In Eqs. (C12a) and (C12b), the second equalities are based on the fact that the first-order correlators 〈bσ̃ js〉 and 〈a†σ̃r j〉 are
only proportional to the single steady-state population 〈σ̃ j j〉 [see Eqs. (C11b) and (C11c)). Thus the equations of motion for the
reduced correlators 〈bσ̃ js〉 j and 〈a†σ̃r j〉 j can be obtained mathematically from Eqs. (C11b), and (C11c) by setting 〈σ̃ j j〉 = 1 and
〈σ̃ j′ j′ 〉 = 0 ( j′ �= j) to remove the summation symbols, which turn out to be

d

dt
〈a†σ̃r j〉 j ≈ −K(1,0,0,0)

r j 〈a†σ̃r j〉 j − √
μκγB(a)∗

r j , (C13a)

d

dt
〈bσ̃ js〉 j ≈ −K(0,0,1,0)

js 〈bσ̃ js〉 j − √
μκγB(b)

s j . (C13b)

Comparing Eq. (C11a) with Eqs. (C13a) and (C13b), it is not difficult to find that the relation between these equations seems to
be revealed by calculating the evolution of the product 〈a†σ̃r j〉 j〈bσ̃ js〉 j , which turns out to be

d

dt
(〈a†σ̃r j〉 j〈bσ̃ js〉 j ) =

(
d

dt
〈a†σ̃r j〉 j

)
〈bσ̃ js〉 j + 〈a†σ̃r j〉 j

(
d

dt
〈bσ̃ js〉 j

)
≈ − K(1,0,1,0)

rs (〈a†σ̃r j〉 j〈bσ̃ js〉 j ) − √
μκγ

(
B(a)∗

r j 〈bσ̃ js〉 j + B(b)
s j 〈a†σ̃r j〉 j

)
, (C14)

where we have used the relation K(1,0,0,0)
r j + K(0,0,1,0)

js = K(1,0,1,0)
rs . Because of the decomposability of Eq. (C5) for arbitrary

population distributions {〈σ̃11〉, 〈σ̃22〉, . . . , 〈σ̃88〉}, the equation of motion for the reduced correlator 〈a†mb†pbqanσ̃rs〉 j can be
obtained mathematically by setting 〈σ̃ j j〉 = 1 and 〈σ̃ j′ j′ 〉 = 0 ( j′ �= j) in Eq. (C5). Accordingly, the equation of motion for the
reduced second-order correlator 〈a†bσ̃rs〉 j is obtained by setting 〈σ̃ j j〉 = 1 and 〈σ̃ j′ j′ 〉 = 0 ( j′ �= j) and ignoring the terms of
atomic decay rates in Eq. (C11a), which takes the form

d

dt
〈a†bσ̃rs〉 j ≈ −K(1,0,1,0)

rs 〈a†bσ̃rs〉 j − √
μκγ

(
B(a)∗

r j 〈bσ̃ js〉 j + B(b)
s j 〈a†σ̃r j〉 j

)
. (C15)

Obviously, the dynamical evolution described by Eq. (C15) is consistent with that described by Eq. (C14). Given the fact that
the initial values of all the correlators are zero, so far, we have found the factorization

〈a†bσ̃rs〉 j = 〈a†σ̃r j〉 j〈bσ̃ js〉 j . (C16)

The factorization for other second-order correlators can be derived similarly.
We now proceed to examine the higher-order correlators. Due to the recurrence relation between the (m + n + p + q)th-order

and the (m + n + p + q − 1)th-order correlators, inspired by the decomposition for the second-order correlators obtained in the
above, we may as well assume that the (m + n + p + q − 1)th-order correlators satisfy the factorizations

〈a†m−1b†pbqanσ̃rs〉 j = 〈a†m−1b†pσ̃r j〉 j〈anbqσ̃ js〉 j, (C17a)

〈a†mb†p−1bqanσ̃rs〉 j = 〈a†mb†p−1σ̃r j〉 j〈anbqσ̃ js〉 j, (C17b)

〈a†mb†pbqan−1σ̃rs〉 j = 〈a†mb†pσ̃r j〉 j〈an−1bqσ̃ js〉 j, (C17c)

〈a†mb†pbq−1anσ̃rs〉 j = 〈a†mb†pσ̃r j〉 j〈anbq−1σ̃ js〉 j . (C17d)

As mentioned in the above, because of the decomposability of Eq. (C5) for arbitrary population distributions, the equations
of motion for all the reduced correlators reduced by 〈σ̃ j j〉 can be obtained mathematically from Eq. (C5) by setting 〈σ̃ j j〉 = 1
and 〈σ̃ j′ j′ 〉 = 0 ( j′ �= j) to replace the coupled lower-order correlators with the corresponding reduced correlators. Thus the
relation between the (m + n + p + q)th-order and the (m + n + p + q − 1)th-order reduced correlators can be obtained through
the equations(

d

dt
〈a†mb†pσ̃r j〉 j

)
〈anbqσ̃ js〉 j ≈ −K(m,p,0,0)

r j (〈a†mb†pσ̃r j〉 j〈anbqσ̃ js〉 j )

−√
μκγ

[
m
∑

j′
B(a)∗

r j′ (〈a†m−1b†pσ̃ j′ j〉 j〈anbqσ̃ js〉 j )

]

−√
μκγ

[
p
∑

j′
B(b)∗

r j′ (〈a†mb†p−1σ̃ j′ j〉 j〈anbqσ̃ js〉 j )

]
, (C18a)

(
d

dt
〈anbqσ̃ js〉 j

)
〈a†mb†pσ̃r j〉 j ≈ −K(0,0,q,n)

js (〈a†mb†pσ̃r j〉 j〈anbqσ̃ js〉 j ) − √
μκγ

[
n
∑

j′
B(a)

s j′ (〈a†mb†pσ̃r j〉 j〈an−1bqσ̃ j j′ 〉 j )

]

−√
μκγ

[
q
∑

j′
B(b)

s j′ (〈a†mb†pσ̃r j〉 j〈anbq−1σ̃ j j′ 〉 j )

]
. (C18b)
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Substituting Eqs. (C17a)–(C17d) into Eqs. (C18a) and (C18b), and adding Eqs. (C18a) and (C18b) together, we find

d

dt
(〈a†mb†pσ̃r j〉 j〈anbqσ̃ js〉 j ) = d

dt
〈a†mb†pbqanσ̃rs〉 j, (C19)

where we have used the relation K(m,p,0,0)
r j + K(0,0,q,n)

js = K(m,p,q,n)
rs . Eq. (C19) indicates that the common equation of motion

and the common initial value of 〈a†mb†pbqanσ̃rs〉 j and 〈a†mb†pσ̃r j〉 j〈anbqσ̃ js〉 j ensure that the (m + n + p + q)th-order reduced
correlator also satisfies the factorization

〈a†mb†pbqanσ̃rs〉 j = 〈a†mb†pσ̃r j〉 j〈anbqσ̃ js〉 j (C20)

if the factorization holds for the (m + n + p + q − 1)th-order correlators, i.e., Eqs. (C17a)–(C17d). Obviously, Eq. (C20) is the
factorization in Eq. (18) in the diagonalized atomic representation.

Based on the above two steps, we have proved the factorization (18) for all the (m + n + p + q)th-order correlators with
(m + n + p + q) � 2 in the diagonalized atomic representation. Similarly, the factorization for single-mode correlators can be
also obtained through the same procedure, and takes the form

〈a†manσ̃rs〉 j = 〈a†mσ̃r j〉 j〈anσ̃ js〉 j . (C21)

Physically, the factorizations in Eqs. (C20) and (C21) suggest that, in the limit of large passband width, the emissions triggered
by a single independent population can be addressable individually, and some reduced correlators, such as 〈anbqσ̃ js〉 j , play the
role of probability amplitudes. Based on these factorizations and ignoring higher-order terms in the truncated reduced density
matrix elements, we can formally rewrite the approximate truncated reduced density operator of the atom-photon combined
system in Eqs. (16a) and (16b) in the language of the probability amplitudes.

APPENDIX D: ANALYTICAL EXPRESSIONS OF THE PROBABILITY AMPLITUDES IN EQUATIONS
(20a), (20b), (22a), AND (22b)

As an example, in this Appendix, we select the two-photon cascaded emissions for the two-mode fields (a1, a2) only in a
single cascaded emission group to present the analytical expressions of the probability amplitudes in Eqs. (20b) and (22b). The
analytical expressions of the other wave functions in Eqs. (20b) and (22b) can be also given similarly. Finally, we briefly present
the single-mode probability amplitudes.

For the two-mode cavity fields (a1, a2) in the diagonalized atomic representation {| j̃〉} ( j ∈ {1, 2, . . . , 8}), the wave function
of the two-photon cascaded emissions triggered by the diagonalized atomic state |1̃〉, for example, takes the form∣∣�̃ (1)

S,a1a2

〉 = ∣∣1̃, 0a1 , 0a2

〉+ C̃ (1)
1,0a1 ,1a2

∣∣1̃, 0a1 , 1a2

〉
+ C̃ (1)

2,1a1 ,0a2

∣∣2̃, 1a1 , 0a2

〉+ C̃ (1)
3,1a1 ,0a2

∣∣3̃, 1a1 , 0a2

〉+ C̃ (1)
4,1a1 ,0a2

∣∣4̃, 1a1 , 0a2

〉
+ C̃ (1)

2,1a1 ,1a2

∣∣2̃, 1a1 , 1a2

〉+ C̃ (1)
3,1a1 ,1a2

∣∣3̃, 1a1 , 1a2

〉+ C̃ (1)
4,1a1 ,1a2

∣∣4̃, 1a1 , 1a2

〉
, (D1)

where the steady-state probability amplitudes in Eq. (D1) are given by the steady-state solutions of the corresponding reduced
correlators as

C̃ (1)
1,0a1 ,1a2

= 〈a2σ̃11〉1 =
√

μκγB(a2 )
11

κ
2 + iδ2

, C̃ (1)
2,1a1 ,0a2

= 〈a1σ̃12〉1 =
√

μκγB(a1 )
21

κ
2 + i(δ1 + 	̃21)

,

C̃ (1)
3,1a1 ,0a2

= 〈a1σ̃13〉1 =
√

μκγB(a1 )
31

κ
2 + i(δ1 + 	̃31)

, C̃ (1)
4,1a1 ,0a2

= 〈a1σ̃14〉1 =
√

μκγB(a1 )
41

κ
2 + i(δ1 + 	̃41)

,

C̃ (1)
2,1a1 ,1a2

= 〈a1a2σ̃12〉1

=
√

μκγ

κ + i(δ12 + 	̃21)

(
B(a1 )

21 C̃ (1)
1,0a1 ,1a2

+ B(a2 )
22 C̃ (1)

2,1a1 ,0a2
+ B(a2 )

23 C̃ (1)
3,1a1 ,0a2

+ B(a2 )
24 C̃ (1)

4,1a1 ,0a2

)
,

C̃ (1)
3,1a1 ,1a2

= 〈a1a2σ̃13〉1

=
√

μκγ

κ + i(δ12 + 	̃31)

(
B(a1 )

31 C̃ (1)
1,0a1 ,1a2

+ B(a2 )
32 C̃ (1)

2,1a1 ,0a2
+ B(a2 )

34 C̃ (1)
4,1a1 ,0a2

)
,

C̃ (1)
4,1a1 ,1a2

= 〈a1a2σ̃14〉1

=
√

μκγ

κ + i(δ12 + 	̃41)

(
B(a1 )

41 C̃ (1)
1,0a1 ,1a2

+ B(a2 )
42 C̃ (1)

2,1a1 ,0a2
+ B(a2 )

43 C̃ (1)
3,1a1 ,0a2

+ B(a2 )
44 C̃ (1)

4,1a1 ,0a2

)
, (D2)
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where δ12 = δ1 + δ2 and 	̃ j j′ = 	̃ j − 	̃ j′ . Obviously, these expressions of coherent superpositions show that multichannel
interferences are established if these channels are terminated by a common target atomic state and triggered by a common initial
atomic state. The explicit expressions of the other two-mode wave functions in Eq. (20b) can be also given formally by the
corresponding steady-state reduced correlators.

The influence of the steady-state atomic coherent effects ρ24, ρ42, ρ67, and ρ76 on the directionality of radiation in our system
can be highlighted by transforming the diagonalized steady-state density operator ρ̃S,ab in Eq. (19b) back to the original dressed-
state representation {|k〉} (k ∈ {1, 2, . . . , 8}) via Eqs. (13) and (14). In order to obtain a transparent form of the dressed-state
probability amplitudes similar to Eq. (D2), we can further ignore the small energy-level shifts δ	̃ j with respect to κ . In this case,
	̃ j ≈ 	̃

(0)
j = 	

(0)
j , and one can obtain the wave functions |� (k)

S,a1a2
〉 in the dressed-state representation in Eq. (22b). For example,

the wave function |� (2)
S,a1a2

〉, which describes the two-photon cascaded emissions triggered by the dressed state |2〉, takes the form∣∣� (2)
S,a1a2

〉 = ∣∣2, 0a1 , 0a2

〉
+ C (2)

2,0a1 ,1a2

∣∣2, 0a1 , 1a2

〉+ C (2)
5,1a1 ,0a2

∣∣5, 1a1 , 0a2

〉
+ C (2)

6,1a1 ,0a2

∣∣6, 1a1 , 0a2

〉+ C (2)
5,1a1 ,1a2

∣∣5, 1a1 , 1a2

〉+ C (2)
6,1a1 ,1a2

∣∣6, 1a1 , 1a2

〉
, (D3)

where the analytical expressions of the steady-state probability amplitudes are given by

C (2)
2,0a1 ,1a2

=
√

μκγA(a2 )
22

κ
2 + iδ2

,

C (2)
5,1a1 ,0a2

=
√

μκγA(a1 )
52

κ
2 + i

(
δ1 + 	

(0)
52

) , C (2)
6,1a1 ,0a2

=
√

μκγA(a1 )
62

κ
2 + i

(
δ1 + 	

(0)
62

) ,
C (2)

5,1a1 ,1a2
=

√
μκγ

κ + i
(
δ12 + 	

(0)
52

)(A(a1 )
52 C (2)

2,0a1 ,1a2
+ A(a2 )

56 C (2)
6,1a1 ,0a2

)
,

C (2)
6,1a1 ,1a2

=
√

μκγ

κ + i
(
δ12 + 	

(0)
62

)(A(a1 )
62 C (2)

2,0a1 ,1a2
+ A(a2 )

65 C (2)
5,1a1 ,0a2

)
, (D4)

with 	
(0)
kk′ = 	

(0)
k − 	

(0)
k′ . The explicit expressions of the other two-mode wave functions in Eq. (22b) can be also given similarly.

The main physical mechanism can be revealed with the help of the probability amplitudes.
For the sake of completeness, we briefly present an example of the analytical expressions for the single-mode probability

amplitudes in Eq. (22a), After solving the single-mode correlators in the diagonalized atomic representation for the system
composed of the source plus the three-body collective mode a1, for example, and transforming back to the dressed-state
representation, the cascaded emissions triggered by the dressed state |1〉 can be described by the following wave function∣∣� (1)

S,a1

〉 = ∣∣1, 0a1

〉
+ C (1)

2,1a1

∣∣2, 1a1

〉+ C (1)
3,1a1

∣∣3, 1a1

〉+ C (1)
4,1a1

∣∣4, 1a1

〉
+ C (1)

5,2a1

∣∣5, 2a1

〉+ C (1)
6,2a1

∣∣6, 2a1

〉+ C (1)
7,2a1

∣∣7, 2a1

〉
, (D5)

where the analytical expressions of the steady-state probability amplitudes are given by

C (1)
2,1a1

=
√

μκγA(a1 )
21

κ
2 + i

(
δ1 + 	

(0)
21

) ,
C (1)

3,1a1
=

√
μκγA(a1 )

31
κ
2 + i

(
δ1 + 	

(0)
31

) , C (1)
4,1a1

=
√

μκγA(a1 )
41

κ
2 + i

(
δ1 + 	

(0)
41

) ,
C (1)

5,2a1
=

√
2μκγ

κ + i
(
2δ1 + 	

(0)
51

)(A(a1 )
52 C (1)

2,1a1
+ A(a1 )

53 C (1)
3,1a1

)
,

C (1)
6,2a1

=
√

2μκγ

κ + i
(
2δ1 + 	

(0)
61

)(A(a1 )
62 C (1)

2,1a1
+ A(a1 )

64 C (1)
4,1a1

)
,

C (1)
7,2a1

=
√

2μκγ

κ + i
(
2δ1 + 	

(0)
71

)(A(a1 )
73 C (1)

3,1a1
+ A(a1 )

74 C (1)
4,1a1

)
. (D6)
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APPENDIX E: FULL SOLUTIONS OF THE FREQUENCY-RESOLVED CORRELATION FUNCTIONS IN SECTION IV

In this Appendix, we present the full analytical expressions of the frequency-resolved correlation functions plotted in
Figs. 5(a), 7(b), and 12(a). In the full solutions, the contributions of all the populations (ρ11, ρ22, . . . , ρ88) and the atomic
coherences (ρ24, ρ42, ρ67, ρ76) are considered, giving rise to the results in Figs. 5(a), 7(b), and 12(a) without any additional
approximations.

1. Full solution of the frequency-resolved intensity-intensity correlation function

The frequency-resolved intensity-intensity correlation function G(2)
a1a3

plotted in Fig. 5(a) involves all the two-photon prob-
abilities triggered by the dressed states {|k〉} (k ∈ {1, 2, . . . , 8}) and all the quantum interferences of the two-photon cascaded
channels from the correlated atomic states {|2〉, |4〉} and {|6〉, |7〉}. Based on the analytical approach proposed in Sec. III, the full
explicit expression of G(2)

a1a3
is calculated as

G(2)
a1a3

=
8∑

k=1

(
G(2)

a1a3

)
kk

+ (G(2)
a1a3

)
24 + (G(2)

a1a3

)
42 + (G(2)

a1a3

)
67 + (G(2)

a1a3

)
76, (E1)

where the probability components are expressed as

(
G(2)

a1a3

)
kk′ = ρk′k

∑
j

C (k)∗
j,1a1 ,1a3

C (k′ )
j,1a1 ,1a3

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j = 1, for (k, k′) = (1, 1),
j = 2, for (k, k′) = (2, 2),
j = 8, for (k, k′) = (8, 8),
j = 2, 3, 4, for (k, k′) = (3, 3), (4, 4),
j = 5, 6, for (k, k′) = (5, 5), (6, 6),
j = 7, for (k, k′) = (7, 7),
j = 2, for (k, k′) = (2, 4), (4, 2),
j = 5, 6, for (k, k′) = (6, 7), (7, 6).

(E2)

In Eq. (E2), the components indicated by k = k′ and k �= k′ arise from the population ρkk and the atomic coherence ρkk′ ,
respectively. The probability components, (G(2)

a1a3
)22, (G(2)

a1a3
)24 + (G(2)

a1a3
)42, and the term (G(2)

a1a3
)44 for j = 2 correspond to the

components P (22),
∑

j, j′=1,2 P
(24)
j j′ , and P (44) in Eq. (25), respectively.

2. Full solution of the frequency-resolved intensity-field correlation function

Next, we present the full analytical expression of the frequency-resolved intensity-field correlation function G(1.5)
a1a2

plotted
in Fig. 7(b). According to the definition of the intensity-field correlation function for the photon pair (a1, a2), i.e., G(1.5)

a1a2
=

〈a†
1a2a1〉e−x + 〈a†

1a†
2a1〉ex, the correlator G (1.5)

a1a2
= 〈a†

1a2a1〉 is given by

G (1.5)
a1a2

=
7∑

k=1

(
G (1.5)

a1a2

)
kk

+ (G (1.5)
a1a2

)
24 + (G (1.5)

a1a2

)
42 + (G (1.5)

a1a2

)
67 + (G (1.5)

a1a2

)
76, (E3)

where the components of the correlator G (1.5)
a1a2

are expressed as

(
G (1.5)

a1a2

)
kk′ = ρk′k

∑
j

C (k)∗
j,1a1 ,0a2

C (k′ )
j,1a1 ,1a2

,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

j = 2, 3, 4, for (k, k′) = (1, 1),
j = 5, 6, for (k, k′) = (2, 2),
j = 7, for (k, k′) = (3, 3), (4, 4),
j = 8, for (k, k′) = (5, 5), (6, 6), (7, 7),
j = 5, for (k, k′) = (2, 4),
j = 6, for (k, k′) = (4, 2),
j = 8, for (k, k′) = (6, 7), (7, 6).

(E4)

Thus the total value of G(1.5)
a1a2

in Fig. 7(b) can be obtained as G(1.5)
a1a2

= 2Re[G (1.5)
a1a2

]. We can find from Eq. (E4) that there is no
contribution of the population ρ88 in G(1.5)

a1a2
, because the first step of the cascaded transitions triggered by the lowest energy level

|8〉 cannot emit higher-frequency photons into the mode a1.

3. Full solution of the frequency-resolved anomalous correlation function

Finally, we present the full analytical expression of the frequency-resolved anomalous correlation function G(0,2)
a1a3

plotted in
Fig. 12(a). It is given by

G(0,2)
a1a3

=
8∑

k=1

(
G(0,2)

a1a3

)
kk + (G(0,2)

a1a3

)
42 + (G(0,2)

a1a3

)
76, (E5)
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where the components of the correlation function G(0,2)
a1a3

are expressed as

(
G(0,2)

a1a3

)
kk′ = ρkk′

∑
j

C (k)
j,1a1 ,1a3

,

⎧⎨⎩ j = k(= k′), for (k, k′) = (1, 1), (2, 2), . . . , (7, 7), (8, 8),
j = 2, for (k, k′) = (4, 2),
j = 6, for (k, k′) = (7, 6).

(E6)

From the summation index in Eq. (E6), one can see clearly that only the two-photon probability amplitudes identified by j = k′
are chosen by the anomalous correlation function in our system. In other words, it reveals the quantum coherence of the target
two-photon state | j, 1a1 , 1a3〉 and the initial state |k′, 0a1 , 0a3〉 with j = k′ after detecting a pair of sideband photons.
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