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Bell inequality violation and operator ordering in quantum theory
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We investigate the role played by quantum operator ordering in the correlations that characterize two-photon
polarization Bell measurements. The Clauser-Horne-Shimony-Holt (CHSH) criterion is investigated in the
normal ordering imposed by the photodetection theory and in the symmetric ordering that constitutes the
standard prescription for building Hermitian operators from products of noncommuting observables. The two
approaches are obtained in a single theoretical framework, where operator ordering is directly associated with
the representation used for the density matrix. Moreover, this discussion can be recast in terms of the contribution
given by the vacuum fluctuations to the detected signals. We also envisage possible detection schemes sensitive
to these fluctuations with recent technological developments.
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I. INTRODUCTION

Bell inequality violation has been used as a key criterion
for identifying nonlocal or noncotextual correlations in quan-
tum mechanics [1–16]. It is one of the pillars that distinguish
quantum from classical correlations and also plays a major
role in quantum information protocols. Since the seminal
experiment by Aspect and co-workers [2], many different
tests of the Clauser-Horne-Shimmony-Holt (CHSH) inequal-
ity [17] have been performed with entangled photon pairs.
These photonic tests of the CHSH criterion rely on intensity
correlations measured with photodetectors, which are subject
to the assumptions adopted in the realm of photodetection
theory [18]. For example, intensity correlations are given by
normally ordered correlation functions of the electromag-
netic field operators. This normal ordering stems from the
destructive nature of the detection mechanism through photon
absorption. It also prevents any influence from the quantum
vacuum, since its energy cannot be extracted by the pho-
todetectors. In this sense, Bell’s inequality violation can be
affected by a vacuum sensitive detection system.

Nevertheless, symmetric ordering is the prescription for
constructing Hermitian operators composed by products of
noncommuting observables. In this context, phase-space
quantum distributions play a key role in calculating averages,
such as correlation functions, in a given operator ordering. For
example, the Glauber P-distribution is associated with aver-
ages of normally ordered operator products, while the Wigner
distribution corresponds to averages in symmetric ordering
[19]. Beyond a simple technical issue, this operator ordering
has a more profound meaning regarding the vacuum contribu-
tion to intensity correlation measurements in quantum optical
experiments. This is a long standing concern and we may
quote an interesting discussion presented in Ref. [20] about
the role played by operator ordering in correctly account-
ing for the contribution of vacuum fluctuations in radiation
reaction. More recently, operator ordering sensitivity has
been related to the nonclassicality of bosonic field quantum
states [21].

As we mentioned, photodetection signals naturally give
normally ordered intensity correlations with vanishing vac-
uum contribution. Interestingly, the symmetrically ordered
intensity correlations given by the Wigner representation en-
compass vacuum fluctuations and coincides with the results
given by a classical stochastic model for the background noise
[22]. Such classical models have already been used to de-
scribe optical phenomena related to the vacuum fluctuations
[22–25]. Moreover, the quantum-classical boundary has been
recently revisited in a number of research works with the
aid of new theoretical tools for characterizing polarization in
different optical degrees of freedom and the corresponding
correlations [26–31].

This paper aims to investigate the role played by operator
ordering in Bell inequality violation with polarization entan-
gled photons. We compare different ordering choices in the
intensity correlations that figure in the CHSH inequality. We
show that violation is precluded by symmetric ordering, which
means that the blindness of the photodetectors to the quantum
vacuum plays an important role.

II. QUANTUM DESCRIPTION OF PARAMETRIC
DOWN CONVERSION

Let us apply our ideas to a frequently used source of
polarization entangled photon pairs [32–34]. It is composed
of two identical nonlinear crystals glued together with their
optical axes rotated by 90◦ relative to each other. A strong
laser beam at frequency ω is used to pump the crystals and
generate photon pairs at frequency ω/2 by spontaneous para-
metric down conversion (SPDC). The pump beam is linearly
polarized at 45◦ with respect to the crystals axes. Under type-I
phase match, a pair of linearly polarized photons is generated
either with horizontal polarization in one crystal or with ver-
tical polarization in the other, thus producing a polarization
entangled state. Two polarizers are used in the detection re-
gion, one before each photodetector, to set the measurement
bases. This setup is depicted in Fig. 1. This will be our model
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FIG. 1. Typical setup for Bell inequality measurements with a
polarization entangled photon source. Two nonlinear crystals are
glued together with their optical axes rotated with respect to each
other. A pump beam polarized at 45◦ can generate either horizontally
polarized photons in the first crystal or vertically polarized photons
in the second. Two-photon polarization analysis is performed in
the detection region. Half-wave plates (HWP) are used to set the
measurement angles θ and φ . Polarization projection is performed
with polarizing beam splitters (PBS) before the photons hit detectors
Ds

± and Di
±. When measuring symmetrically ordered intensity cor-

relations, these detectors must be replaced by homodyne detection
setups.

system for investigating the CHSH inequality under different
correlation ordering and the role played by quantum vacuum.
For symmetrically ordered intensity correlations, detectors
Ds

± and Di
± must be replaced by homodyne detection setups,

as will be explained in Sec. V.
For a thin crystal and low nonlinear susceptibility χ , the

pump laser is very little affected by the down-conversion
process and only a small fraction of the incoming photons is
converted into photon pairs. In this case, we can assume that
the input quantum state of the pump beam remains unaltered
by the parametric interaction. Moreover, we will consider the
pump laser polarized at 45◦, prepared in a coherent state
|vp〉H ⊗ |vp〉V . The Hamiltonians for the SPDC process in
crystals 1 and 2 are

Ĥ1 = ih̄g âs †
H âi †

H + H.c.,

Ĥ2 = ih̄g âs †
V âi †

V + H.c., (1)

where g = χvp is the nonlinear coupling constant, âs
j , âi

j
( j = H,V ) are boson operators for signal and idler modes
with horizontal (H) and vertical (V ) polarizations, and H.c.
stands for Hermitian conjugate.

In either Glauber or Wigner representation, the density
matrix ρ̂ is represented by a quasiprobability distribution
P(a, a∗) (Glauber) or W (a, a∗) (Wigner) for a column vec-
tor of complex stochastic amplitudes a = (as

H , as
V , ai

H , ai
V )T .

These distributions are readily obtained from the density ma-
trix through the corresponding characteristic function. The
Glauber representation is given as the Fourier transform of

the normally ordered characteristic function CP [19],

P(a, a∗) = 1

π2

∫
CP(z, z∗) e−i(z∗a∗+z a)d2z,

CP(z, z∗) = Tr[ρ̂ ei(z∗â† ) ei(z â)], (2)

where z = (zs
H , zs

V , zi
H , zi

V ) is a row vector of Fourier
variables, one for each mode amplitude, and â =
(âs

H , âs
V , âi

H , âi
V )T is a column vector with the corresponding

annihilation operators. Averages of normally ordered operator
products for any mode j are readily calculated with the
Glauber distribution as follows:

〈
â† m

j ân
j

〉
N =

∫
P(a, a∗) a∗ m

j an
j d2a. (3)

The Wigner representation is given as the Fourier trans-
form of the symmetrically ordered characteristic function CW

[19],

W (a, a∗) = 1

π2

∫
CW (z, z∗) e−i(z∗a∗+z a)d2z,

CW (z, z∗) = Tr[ρ̂ ei(z∗â†+z â)]. (4)

Averages of symmetrically ordered operator products for any
mode j are readily calculated with the Wigner distribution as
follows:

〈
â† m

j ân
j

〉
S =

∫
W (a, a∗) a∗ m

j an
j d2a. (5)

For the Hamiltonians given in Eqs. (1), the dynamics of
SPDC can be described by a Fokker-Planck equation for
the time evolution of both Glauber and Wigner distributions
[35–37]. From the corresponding Fokker-Planck equation for
P or W , one can derive a set of Langevin equations for the
stochastic amplitudes a. Neglecting losses in the thin crystal
regime, these equations are

ȧs
H = gai ∗

H , ȧs
V = gai ∗

V ,

ȧi
H = gas ∗

H , ȧi
V = gas ∗

V , (6)

where the equations on the left are for crystal 1 and those on
the right are for crystal 2. The main difference between the
two representations consists of the correlation functions be-
tween the input amplitudes, as we will make explicit shortly.

The pump- and down-converted electric fields will be de-
scribed by plane waves of the form

Ep(r, t ) = vp(êH + êV ) ei(kp·r−ωpt ),

Es(r, t ) = (as
H êH + as

V êV ) ei(ks·r−ωst ),

Ei(r, t ) = (
ai

H êH + ai
V êV

)
ei(ki ·r−ωit ), (7)

where k j ( j = p, s, i) is the wave vector of the cor-
responding mode. We will assume perfect phase match
between pump- and down-converted fields, so that kp =
ks + ki . The input down-converted fields, signal and
idler, are assumed to be in vacuum state and the ini-
tial values of their amplitudes are complex, Gaussian-
distributed stochastic variables that simulate the incoming
vacuum fluctuations. These amplitudes obey the following
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correlations: 〈
a j

0k

〉 = 0,〈
a j

0ka j′
0k

〉 = 0,

〈
a j

0ka j′∗
0k′

〉 = ε

2
δ j j′δkk′ , (8)

where j, j′ = s, i ; k, k′ = H,V , and ε = 0 (1) for Glauber
(Wigner) representation.

We next solve the dynamical equations for the signal and
idler complex amplitudes after passage through both crystals.

A. First crystal

The first crystal converts a vertically polarized pump pho-
ton into a pair of horizontally polarized signal and idler
photons. The interaction time is τ = nd/c , where d is the
propagation distance inside the crystal, n is the refractive in-
dex, and c is the speed of light in vacuum. The output complex
amplitudes are given by the solution of the left Eqs. (6):

as
H (τ ) = as

0H cosh gτ + ai∗
0H sinh gτ ,

ai
H (τ ) = ai

0H cosh gτ + as∗
0H sinh gτ . (9)

Note that after passing the first crystal, the signal and idler am-
plitudes as

H and ai
H exhibit a cross talk between their incoming

vacuum fluctuations. This is crucial for understanding the
origin of the correlations (entanglement) between signal and
idler as a vacuum induced effect. Using the input correlations
given in Eq. (8), the output correlations after interaction in the
first crystal are 〈

a j
H (τ )

〉 = 0,

〈
a j ∗

H (τ )a j′
H (τ )

〉 =
(

ε

2
+ sinh2 gτ

)
δ j j′ ,

〈
as

H (τ )ai
H (τ )

〉 = cosh gτ sinh gτ , (10)

where j, j′ = s, i .

B. Second crystal

The second crystal converts a horizontally polarized pump
photon into a pair of vertically polarized signal and idler
photons. The interaction time is also τ if we assume the
crystals have the same width. The output complex amplitudes
are given by the solution of the right Eqs. (6):

as
V (τ ) = as

0V cosh gτ + ai∗
0V sinh gτ ,

ai
V (τ ) = ai

0V cosh gτ + as∗
0V sinh gτ . (11)

After passing the second crystal, the signal and idler am-
plitudes as

V and ai
V also exhibit a cross talk between their

incoming vacuum fluctuations, inducing correlations (entan-
glement). Using the input correlations given in Eq. (8), the
output correlations after interaction in the second crystal are〈

a j
V (τ )

〉 = 0,

〈
a j ∗

V (τ )a j′
V (τ )

〉 =
(

ε

2
+ sinh2 gτ

)
δ j j′ ,

〈
as

V (τ )ai
V (τ )

〉 = cosh gτ sinh gτ , (12)

where j, j′ = s, i .

C. Polarization measurement settings

After leaving the crystals, the entangled photons travel to
the detectors region and traverse two polarizing beam splitters
(PBS) preceded by half-wave plates that set the measurement
angles at θ (signal) and φ (idler) before hitting the detectors.
After passing the respective HWP and PBS, each beam will
be divided into two polarization components that mix the
input H and V amplitudes, producing the following rotated
variables:

as
+(θ ) = as

H cos θ + as
V sin θ,

as
−(θ ) = as

V cos θ − as
H sin θ, (13)

ai
+(φ) = ai

H cos φ + ai
V sin φ,

ai
−(φ) = ai

V cos φ − ai
H sin φ. (14)

The electric field at detectors Ds
± and Di

± will be given by

Es(rs
+, t ) = as

+(θ ) ei(ks·rs
+−ωst ),

Es(rs
−, t ) = as

−(θ ) ei(ks·rs
−−ωst ),

Ei(ri
+, t ) = ai

+(φ) ei(ki·ri
+−ωit ),

Ei(ri
−, t ) = ai

−(φ) ei(ki·ri
−−ωit ). (15)

These rotated amplitudes will determine the po-
larization correlations that figure in the CHSH
inequality.

III. FIELD CORRELATIONS

The CHSH criterion for Bell violation is evaluated from
coincidence measurements that correspond to intensity cor-
relations between signal and idler. We now calculate several
correlation functions in the Glauber and Wigner representa-
tions.

A. Individual intensities

First, we calculate the field intensity at each detector

〈Is
±(θ )〉 = 〈E∗

s (rs
±)Es(rs

±)〉 = 〈as ∗
± (θ )as

±(θ )〉,
〈I i

±(φ)〉 = 〈E∗
i (ri

±)Ei(ri
±)〉 = 〈ai ∗

± (φ)ai
±(φ)〉, (16)

Substituting expressions Eqs. (13) and (14), and using the
amplitudes correlations given by Eqs. (10) and (11), we
arrive at

〈Is
±(θ )〉 = 〈I i

±(φ)〉 = ε

2
+ sinh2 gτ . (17)

Note that the individual intensities are insensitive to the
polarizers settings. This will be different for the intensity
correlations as we show next.

B. Intensity correlations

The input quantum fluctuations on signal and idler fields
are uncorrelated before entering the crystals. However, after
undergoing parametric interaction within the crystals, their
amplitudes become correlated according to Eqs. (10) and (11).
The intensity correlations measured on two separate detectors
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are given by

Cjk (θ, φ) = 〈
E∗

s

(
rs

j

)
Es

(
rs

j

)
E∗

i

(
ri

k

)
Ei

(
ri

k

)〉
= 〈

Is
j (θ )I i

k (φ)
〉
, (18)

where j = ± and k = ± . These intensity correlations can be
calculated by using the following relationship that holds for
stochastic Gaussian variables:

〈a1a2a3a4〉 = 〈a1a2〉〈a3a4〉 + 〈a1a3〉〈a2a4〉
+ 〈a1a4〉〈a2a3〉. (19)

With the aid of relation (19), the two-photon polarization
correlations can be written as

Cjk (θ, φ) = 〈
as ∗

j (θ )as
j (θ )

〉〈
ai ∗

k (φ)ai
k (φ)

〉
+ 〈

as ∗
j (θ )ai ∗

k (φ)
〉〈

as
j (θ )ai

k (φ)
〉

+ 〈
as ∗

j (θ )ai
k (φ)

〉〈
as

j (θ )ai ∗
k (φ)

〉
. (20)

Using now the correlations given by Eqs. (10) and (12), we
find

C++(θ, φ) = C−−(θ, φ)

=
(

ε
2 + sinh2 gτ

)2 + sinh2 2gτ cos2 (θ − φ)

4
,

(21)

C+−(θ, φ) = C−+(θ, φ)

=
(

ε
2 + sinh2 gτ

)2 + sinh2 2gτ sin2 (θ − φ)

4
.

(22)

We next evaluate the impact of operator ordering on the
CHSH criterion for the quantum-classical correlation bound-
ary.

IV. BELL INEQUALITY

Let us apply the Clauser-Horne-Shimony-Holt (CHSH)
inequality to the two-photon polarization correlations and
compare the results obtained with the symmetric and normal
operator ordering. The correlations obtained at a given mea-
surement setting with angles θ (signal) and φ (idler) are given
by

M(θ, φ) = C++ + C−− − C+− − C−+
C++ + C−− + C+− + C−+

. (23)

Then, the CHSH inequality is evaluated for the quantity

S = M(θ, φ) + M(θ ′, φ) − M(θ, φ′) + M(θ ′, φ′). (24)

Classical correlations are restricted to −2 � S � 2. How-
ever, this inequality can be violated for quantum correlated
polarization modes, where maximum violation occurs when
S = 2

√
2 . This can be accomplished with the following polar-

ization settings: θ = 0, θ ′ = π/4, φ = π/8, and φ′ = 3π/8 ,
for example. We next check the CHSH inequality in each
operator ordering by plugging (21) and (22) into (23) and
(24). Note that the ordering dependent terms in Eqs. (21) and
(22) cancel out in the numerator of (23) but they do contribute

FIG. 2. Bell parameter S for normal (blue) and symmetric (red)
ordering. The dashed and dotted lines show the 2

√
2 limit and the

violation boundary, respectively.

to the denominator. As we show below, it drastically affects
the violation of the CHSH criterion in the thin crystal limit
gτ 	 1, usually valid in actual experimental conditions.

(1) Normal ordering

M(θ, φ) =
(

sinh2 2gτ

sinh2 2gτ + 8 sinh4 gτ

)
cos [2(θ − φ)],

SN = 2
√

2

(
sinh2 2gτ

sinh2 2gτ + 8 sinh4 gτ

)
≈ 2

√
2. (25)

(2) Symmetric ordering

M(θ, φ) =
(

sinh2 2gτ

sinh2 2gτ + 2 cosh2 2gτ

)
cos [2(θ − φ)],

SS = 2
√

2

(
sinh2 2gτ

sinh2 2gτ + 2 cosh2 2gτ

)
≈ 0. (26)

As we can see, in the thin crystal limit (gτ 	 1) the
normally ordered polarization correlations give maximal vio-
lation of the CHSH inequality, while the symmetric ordered
polarization correlations do not violate. This can be eas-
ily visualized in the graphic shown in Fig. 2, where the
CHSH quantity S given by Eqs. (25) and (26) is plotted as a
function of gτ .

V. MEASUREMENT SCHEME

A natural question to be asked is whether the intensity
correlations between the vacuum modes predicted in the sym-
metric order can be accessed by some mechanism. Let us
recall that symmetric ordering is the quantum theory pre-
scription when calculating averages of physical quantities
composed by functions of noncommuting observables. This
is the case, for example, of the intensity

I = X 2 + Y 2 = aa† + a†a

2
, (27)

where we defined the quadratures

X = a + a†

2
, Y = a − a†

2i
. (28)
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FIG. 3. Measurement scheme for symmetrically ordered correla-
tions. BS: beam splitter, LO: local oscillator.

This quantity is not the one measured in the standard pho-
todetection scheme, which, being based on photon absorption,
is not sensitive to antinormal terms. Therefore, the usual
schemes have limited access to the field fluctuations, since
they are blind to the vacuum field contribution. In order to
obtain full information about the field properties by measuring
the symmetrically ordered correlation functions, one must
perform a direct measurement of the field amplitude, more
precisely the field quadratures. In the radio frequency range
of the electromagnetic spectrum, the response of a regular
antenna is indeed proportional to the field amplitude and the
quadratures can be directly measured. However, discretization
of the energy exchange in this regime is negligible and quan-
tum effects cannot be sensed. Meanwhile, direct detection of
the fast field oscillations in the optical regime is challenging
and one must resort to homodyne measurements. An inter-
esting discussion on experimental techniques for measuring
correlation functions in normal, symmetric, and antinormal
ordering is presented in Refs. [38,39], where a direct corre-
spondence between operator ordering and detection schemes
is summarized as follows:

(1) normal ordering a†a: direct detection.
(2) symmetric ordering (a†a + aa†)/2: homodyne detec-

tion.
(3) antinormal ordering aa†: heterodyne detection.
In the heterodyne (double-homodyne) detection scheme,

it is possible to simultaneously measure canonical conjugate
quadratures, at the expense of allowing extra (vacuum) noise
into the detection mechanism.

The symmetrically ordered averages can be accessed with
the homodyne measurement setup depicted in Fig. 3. Each

polarization output of signal and idler is sent to a homodyne
detection setup, where it is mixed with a local oscillator
prepared in a coherent state |β j〉 ( j = s, i). By adjusting the
phase of each local oscillator independently, all quadrature
combinations (X s

±, X i
±), (X s

±,Y i
±), (Y s

±, X i
±), (Y s

±,Y i
±), can be

measured for each setting of the polarization analyzers. Then,
the homodyne detection data can be processed to compute the
symmetrically ordered intensity correlations from

〈Is
±(θ )I i

±(φ)〉s = 〈[(X s
±)2 + (Y s

±)2][(X i
±)2 + (Y i

±)2]〉. (29)

A recent measurement of the CHSH inequality for continuous
variables employed a homodyne detection scheme similar to
the one described here [40].

VI. CONCLUSION

In conclusion, we analyzed Bell’s inequality violation in
two-photon polarization correlations under different operator
ordering of the intensity correlation functions. Under the usual
experimental condition of weak parametric coupling (thin
crystal), the normally ordered intensity correlations violate the
CHSH criterion, while the symmetrically ordered ones do not.
Beyond a technical issue, this operator ordering has a more
profound physical meaning.

Normal ordering is imposed by photodetection signals
based on photon absorption and therefore precludes any in-
fluence from the quantum vacuum, which energy cannot be
extracted. Meanwhile, symmetric ordering is the usual pre-
scription for constructing Hermitian operators from products
of noncommuting observables. Moreover, symmetric ordering
is crucial for evidencing vacuum effects like Casimir force,
spontaneous emission, among many others [41]. The symmet-
rically ordered intensity correlations can be measured with the
detection schemes discussed in Refs. [38,39]. We can also
quote a recent measurement of the vacuum fluctuations, as
reported in Ref. [42].

As a final remark, it is worthwhile to mention that for
sufficiently large parametric interaction (gτ ∼ 1), no CHSH
violation is predicted in either operator ordering. However,
this regime falls outside the validity of the nondepletion as-
sumption for the pump beam. In this case, the triple interaction
between pump, signal, and idler must be fully solved, giving
rise to triple correlations that may generate tripartite entan-
glement witnessed by other inequality criteria [43,44]. For
example, strong parametric interaction is attained in four-
wave mixing sources of entangled photon pairs [45–47]. The
discussion draw in this article will be pursued to the strong
interaction regime in future contributions.
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