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Quantum engineering of superdark excited states in arrays of atoms

A. A. Makarov 1,2 and V. I. Yudson 3,1

1Institute of Spectroscopy, Russian Academy of Sciences, 5 Fizicheskaya Street, Troitsk, Moscow 108840, Russia
2Moscow Institute of Physics and Technology, Institutskiy pereulok 9, Dolgoprudny, Moscow Region 141700, Russia

3National Research University Higher School of Economics, 20 Myasnitskaya Street, Moscow 101000, Russia

(Received 22 June 2020; accepted 20 October 2020; published 12 November 2020)

We suggest a method of achieving an extremely long lifetime of a collective singly excited state in a generic
small-size ensemble of N identical atoms. The decay rate of such a “superdark” state can be proportional to
(r/λ)2(N−1), where r and λ are the system size and the wavelength of the radiation, respectively, i.e., considerably
smaller than in any of the systems suggested up to now. The method is based on a special fine-tuning of the atomic
Hamiltonian, namely, on a proper position-dependent adjustment of atomic transition frequencies. The chosen
set of the control parameters is sufficient to ensure the minimum of the spontaneous decay rate of the engineered
state in a generic ensemble of atoms.
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I. INTRODUCTION

The phenomena of sub- and super-radiance are among the
central points when discussing emission properties of systems
of identical closely spaced atoms. There is growing interest in
subwavelength atomic ensembles with an enhanced radiative
lifetime of collective excitations. Slowly decaying states can
be implemented for the storage of information in quantum
memory devices.

Several configurations of one- and two-dimensional (1D
and 2D) atomic arrays have been proposed (see, e.g.,
Refs. [1–7]) that show substantial decrease of the decay rate
as compared to that of an individual atom. For two atoms, a
few schemes for controlling subradiant states in 1D [8–10]
and in 3D [11–13] were suggested. An interesting although
rather complicated scheme for constructing a singly excited
subradiant state in a one-dimensional array of many atoms
was considered in Refs. [14,15], with a potentiality of ultrafast
readout. As for the experiment, some evidence in favor of
a change in the spontaneous decay rate was obtained, for
example, in Ref. [16] for an ensemble of many atoms and
in Ref. [17] for a system of two ions in a trap. Finally,
subradiance from a cloud of cold atoms was reliably ob-
served [18,19].

The suppression of the radiative decay is caused by de-
structive interference of emission amplitudes of different
members of the atomic ensemble. This effect is most pro-
nounced in the seminal Dicke model [20] of a compact
ensemble of N identical two-level atoms without nonretarded
dipole-dipole interaction: One of the singly excited collective
states is super-radiative while the other N − 1 singly excited
states are nonradiative at all.

The presence of the dipole-dipole interaction leads to for-
mation of the eigenstates (exitons) of the atomic ensemble
which may reveal the properties of super- and subradiation.
In small-size ensembles, the resonant dipole-dipole excitation

transfer is the strongest effect, while the spontaneous radiative
decay occurs due to a weaker interaction with the transverse
quantum electromagnetic field. Both the exciton states and
their radiative decay rates are determined by the geometry
of the atomic array. The search for an array geometry with a
minimal decay rate seems to be the matter of art, intelligence,
and luck.

In this paper, we suggest a method to achieve an extremely
long lifetime of a collective state in a generic small-size array
of N atoms. The decay rate �N of such a “superdark” state can
be as small as �N ∝ �(r/λ)2(N−1), where � is the radiative
decay rate of an individual atom, and r and λ are the system
size and the resonant wavelength of the atomic transition,
respectively. The method is based on a special fine-tuning
of the exciton Hamiltonian. We show that it is sufficient to
adjust the frequencies of individual atomic transitions. We
begin from an analysis of a generic atomic ensemble and after
that we concentrate on the case of a finite regular chain of
atoms.

II. GENERIC SYSTEM

We consider an ensemble of N identical atoms located at
spatial points R j ( j = 1, 2, . . . , N). Each of singly excited
collective atomic states |C〉 can be represented as a superpo-
sition |C〉 = ∑N

j=1 Cj |e; j〉 of basis states |e; j〉 where the jth
atom is in its excited state |e〉 while all the other atoms are
in the ground state |g〉. These exciton states are eigenstates of
the atomic ensemble Hamiltonian Ĥ (at): Ĥ (at)|C〉 = E |C〉, or
in the matrix form

ω jCj +
N∑

j′=1

′
U (R j, R j′ )Cj′ = ECj , (1)

where we put h̄ = 1. Here the prime at the sum symbol means
the exclusion of the term j′ = j; ω j is the transition frequency
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of the jth atom; U (R j, R j′ ) is the matrix element of the
dipole-dipole interaction between the states |e; j〉 and |e; j′〉;
its particular form will be specified below. For the introduc-
tory illustration of the suggested approach, we assume that the
excited atomic state is nondegenerate. Then we will describe
a more general situation. The radiative decay rate of a given
exciton state is determined by the Fermi golden rule:

�N ∝ �
∑
ν=1,2

∫
dok

∣∣∣∣∣
N∑

j=1

(
d · e(ν)

k

)
eikR jCj

∣∣∣∣∣
2

= �

N∑
j, j′=1

C∗
j Wj, j′Cj′ , (2)

where d = 〈e|d̂|g〉 is the matrix element of the dipole moment
operator and e(ν)

k is the unit polarization vector of a photon
of the wave vector k. The integration in Eq. (2) is performed
over the solid angle in the momentum space while k = |k| =
2π/λ is fixed by the energy of the state |C〉. The first sum
runs over the polarizations. The quadratic form in Eq. (2) is
positively defined. The matrix Wj, j′ is obviously Hermitian.
Moreover, it is real due to the symmetry of the integrand in
Eq. (2) with respect to the change k → −k. Therefore, for
a given arrangement of atoms, i.e., for a given matrix Wj, j′ ,
there exists a real unit vector {Cj} ( j = 1, . . . , N ;

∑
j C2

j =
1) that provides the minimal value of the quadratic form and
therefore realizes the minimal decay rate. If the correspond-
ing state |C〉 = ∑N

j=1 Cj | j〉 were an eigenstate of the atomic

Hamiltonian Ĥ (at), the problem of finding the state with the
slowest decay rate would be solved. However, in general, the
two matrices Wj, j′ (2) and H (at)

j, j′ (1) do not have a common
eigenvector. Our current task is to perform a fine-tuning of the
atomic Hamiltonian in order to make the state |C〉 its eigen-
state obeying the system of equations (1). In these equations,
the matrix U (R j, R j′ ) of the dipole-dipole interactions is fixed
by the positions of the atoms, while the local frequencies
ω j can be controlled by external fields. It is natural to count
these shifts, and the eigenenergy E as well, from an ensemble
averaged frequency ω0, so that

∑N
j=1 ω j = 0. This condition

together with N equations (1) with fixed {Cj} uniquely deter-
mine N + 1 real quantities: local frequency shifts ω j and the
eigenenergy E , as

E = 1

N

N∑
j, j′=1

′ 1

Cj
U (R j, R j′ )Cj′ , (3)

ω j = E − 1

Cj

N∑
j′=1

′
U (R j, R j′ )Cj′ . (4)

This solves the problem of the Hamiltonian tuning to ensure
the existence of an eigenstate with the minimal decay rate for
the given geometry of the atomic ensemble.

The considered model can be generalized to the case where
the nondegenerate ground atomic state has the angular mo-
mentum J = 0 while the excited state is degenerate having the
angular momentum J = 1 with projections m = 0,±1 on the
quantization axis ẑ. Hereafter, we shall use an equivalent basis
of atomic excited states |α〉 (α = x, y, z), connected with
the states |m〉 by |m = 0〉 = |z〉, |m = ±1〉 = (|x〉 ± i|y〉)/

√
2.

Matrix elements of the Cartesian components d̂β (β = x, y, z)
of the dipole moment operator in this representation are
〈α|d̂β |g〉 = dδα,β . The operator of the dipole-dipole interac-
tion between the atoms is

Ĥd =
N∑

j, j′=1

′ (d̂ j · d̂ j′ ) − 3(d̂ j · n j, j′ )(d̂ j′ · n j, j′ )

|R j − R j′ |3 , (5)

where d̂ j is the dipole operator of the jth atom, and the
unit vector n j, j′ = (R j − R j′ )/|R j − R j′ |. In general, the op-
erator (5) mixes excited states with different projections α.
Therefore, collective singly excited eigenstates of the atomic
array are described by a superposition

|C〉 =
∑

α

N∑
j=1

C(α)
j |α; j〉,

∑
α

N∑
j=1

∣∣C(α)
j

∣∣2 = 1 . (6)

Here the sum runs over α = x, y, z; the basis vector |α; j〉
denotes the state where the jth atom is in its excited state |α〉
with J = 1, while all the other atoms are in their ground states
with J = 0. Correspondingly, the equations for the eigenstates
and for the radiative decay rate look similar to Eqs. (1) and (2)
but with the matrices U α,β (R j, R j′ ) and W α,β

j, j′ having the
additional indices. Interaction of the jth atom with the plane
wave of wave vector k and polarization ν is governed by the
operator Ĥint ∝ −(d̂ · e(ν)

k )eik·R j . The spontaneous decay rate
of the state (6) is given by

�N = 3�

8π

∫ 2π

0
dϕ

∫ π

0
sin θ dθ

2∑
ν=1

∣∣∣∣∣
N∑

j=1

∑
α

e(ν)
k,α

C(α)
j eik·R j

∣∣∣∣∣
2

≡ �
∑
α,β

N∑
j, j′=1

C(α)∗
j W α,β

j, j′ C(β )
j′ , (7)

where the wave vector is parameterized as k =
k(sin θ cos ϕ, sin θ sin ϕ , cos θ ), and the pre-factor in
the first line agrees with the decay rate � for N = 1,
since

∫ π

0

∫ 2π

0 sin θ dθdϕ = 8π/3. The polarization
vectors are chosen as e(1)

k = (− sin ϕ, cos ϕ, 0) and e(2)
k =

(cos θ cos ϕ, cos θ sin ϕ,− sin θ ); their Cartesian components
obey the relation

∑2
ν=1 e(ν)

k,α
e(ν)

k,β
= δα,β − kαkβ/k2.

Using Eq. (7), one can calculate the decay rate of any
singly excited eigenstate of the atomic Hamiltonian. The ma-
trix W α,β

j, j′ is Hermitian and real due to the symmetry k →
−k. The matrix U α,β (R j, R j′ ) corresponding to the matrix
elements of the Hamiltonian (5) between the states (6) is
obviously real, too. Thus, similarly to the simplified model,
we can find the real vector |C〉 that realizes the minimum
of the quadratic form (7). Then we can adjust the local
atomic transition frequencies, making this optimal vector to
be an eigenvector of the atomic Hamiltonian. In this way,
the conceptual problem of the proper tuning of the atomic
Hamiltonian to ensure the existence of an eigenstate with the
minimal decay rate for the given array geometry is solved.

For atomic ensembles of a low symmetry, where exciton
states are not characterized by a single atomic polariza-
tion α, implementation of the described procedure may be
complicated because it would require independent tuning of
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all three initially degenerate atomic transition frequencies of
each atom. The situation simplifies for geometries where the
dipole-dipole interaction (5) does not mix excited states of the
atomic Hamiltonian with different polarizations α. This hap-
pens in configurations where the vectors connecting atom sites
are parallel or perpendicular to the direction of the transition
dipole moment of a chosen excitation polarization, such as,
for instance, a plane ensemble and a linear chain of atoms.

III. LINEAR CHAIN OF ATOMS

Now, we study a linear chain of atoms located at the sites
R j = Rjẑ. We will explicitly construct the optimal vector |C〉
and the atomic Hamiltonian so that the decay rate of the
found superdark state will be very small �N ∝ �(r/λ)2(N−1).
For the exciton polarized parallel (perpendicular) to the chain
directions, i.e., for |α〉 = |z〉 (|α〉 = |x〉 or |α〉 = |y〉), matrix
elements of the operator (5) for the excitation transfer between
the sites Rj and Rj′ are given by

U ‖
j, j′ = −2

d2

R3
j, j′

, U ⊥
j, j′ = d2

R3
j, j′

, (8)

where Rj, j′ is the distance between the sites j and j′ of the
chain. The expression (7) for the decay rate of the collective
singly excited state of the polarization α = z (‖), or α = x, y
(⊥), reduces to

�N = 3�

8π

∫
dok f (α)(θ, ϕ)

∣∣∣∣∣
N∑

j=1

C(α)
j eikR j cos θ

∣∣∣∣∣
2

, (9)

where f (α)(θ, ϕ) = 1 − k2
α/k2, i.e., f (z)(θ, ϕ) = sin2 θ and

f (x)(θ, ϕ) = 1 − sin2 θ cos2 ϕ. The integration determines the
corresponding matrix W α,α

j, j′ of the quadratic form (7):

W z,z
j, j′ ≡ W (‖)

j, j′ = 3
sin ξ − ξ cos ξ

ξ 3
, (10)

W x,x
j, j′ ≡ W (⊥)

j, j′ = 3

2

ξ cos ξ + (ξ 2 − 1) sin ξ

ξ 3
, (11)

where the notation ξ = kRj, j′ is used for brevity. Exact eigen-
vectors corresponding to the minimal eigenvalues of these
matrices can be determined numerically. To make a simple
analytical estimate of the minimal decay rate for a short chain
of the length r � λ, it is natural to expand exponents in
Eq. (9) in powers of the small quantities kRj cos θ :∣∣∣∣∣

N∑
j=1

C(α)
j eikR j cos θ

∣∣∣∣∣ =
∣∣∣∣∣

∞∑
n=0

(ikr cos θ )n

n!

N∑
j=1

(Rj

r

)n

C(α)
j

∣∣∣∣∣ .
(12)

To minimize this expression (therefore, �N ) we require van-
ishing of N − 1 first terms with n = 0, . . . , N − 2 of the
expansion in (kr)n. This means imposing N − 1 (i.e., the max-
imal possible number) linear constraints on the N-component
unit vector |C〉:

N∑
j=1

(Rj

r

)n

C(α)
j = 0 ; n = 0, 1, . . . , N − 2 . (13)
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ω2/Ur

10−7

10−6

10−5

10−4

10−3

10−2

Γ
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/
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(ka) =0.1

FIG. 1. Three atoms in chain configuration: The slowest decay
rates are presented depending on the shift /U of the transition
frequency for the middle atom with respect to the edge atoms. These
rates are expressed in the units of U , the dipole-dipole interaction of
the neighboring atoms; see details in the text. The solid curves are
for the polarization along the chain, and the dashed curves are for the
perpendicular one.

Under conditions (13), the expansion (12) begins with terms
∝ (kr)N−1 and we arrive at the announced estimate for the
minimal decay rate �N ∝ (kr)2(N−1). This minimal value, re-
alized at the optimal vector determined by (13), is extremely
sensitive to a slight deviation of the state |C〉 from the optimal
one: Then the terms of the expansion (12) are involved with
lower powers of kr, i.e., of a much larger value. This results
in a strong sharpness of the decay rate dependences on tuning
parameters: See Figs. 1 and 2 for particular examples.

A formal solution to the system (13) can be expressed in
terms of the N × N Vandermonde matrix V (Vi j = (Rj/r)i;
i = 0, . . . , N − 1; j = 1, . . . , N): C(α)

j = c(V−1) j,N , where c
is determined by the normalization condition.

Explicit results can be presented for a chain of equally
spaced atoms: Rj = ( j − 1)a; j = 1, . . . , N . In this case, the
exact normalized solution to (13) is expressed in terms of the
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(ka) =0.01
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FIG. 2. Four atoms in chain configuration: Notation is the same
as in Fig. 1. A difference is that ̃/U = −37/27.
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binomial coefficients:

C(α)
j = (−1) j−1 [(N − 1)!]2

( j − 1)!(N − j)!
√

(2N − 2)!
. (14)

Note that this solution is either symmetric for odd N or
antisymmetric for even N with respect to the replacement
j → N − j + 1:

C(α)
j = (−1)N−1C(α)

N− j+1 . (15)

The decay rate (9) of this optimal state |C〉 =∑N
j=1 C(α)

j |α; j〉 is

�
‖
N

�⊥
N

}
= 3�

4N2 − 1

[(N − 1)!]2

(2N − 2)!
(ka)2(N−1)

{
1
N

, (16)

where the symbol ‖ (⊥) denotes the excitation polarization
parallel (perpendicular) to the chain. Now, to make the found
optimal state |C〉 an eigenstate of the atomic Hamiltonian,
we perform the fine-tuning of the local atomic frequencies.
The adjusted atomic frequencies are given by Eq. (4), where
the matrix of the dipole-dipole interaction for the consid-
ered geometry takes the following form in accordance with
Eq. (8): U ‖(R j, R j′ ) = −2d2/(| j − j′|a)3 or U ⊥(R j, R j′ ) =
d2/(| j − j′|a)3. The eigenenergy E of the constructed state
|C〉 is given by Eq. (3). As a consequence of Eq. (15),
the shifted atomic frequencies possess the symmetry ω j =
ωN− j+1. Both decay rates (16) are small when the system
size is small as compared to the resonance wavelength, (N −
1)a � λ. The same condition is sufficient to treat the decay
rate (7) of the state (6) independently of other eigenstates
of the atomic ensemble. The independence follows from the
fact that the energy intervals between different eigenstates,
being of the order of the dipole-dipole interaction, are greater
than the decay rates of these states. This inequality is fulfilled
for the particular examples considered below. In all these
examples, the contour of absorption from the ground state
consists of practically nonoverlapping Lorentzians. Their cen-
ters coincide with the eigenvalues of the Hermitian exciton
Hamiltonian, and their widths are equal to the decay rates
calculated using the Fermi golden rule.

IV. NUMERICAL EXAMPLES AND DISCUSSION

The property of superdarkness is extremely sensitive to the
shift(s) of transition frequencies [21]. This is illustrated by
the results of numerical calculations for the chain of three and
four equally spaced atoms. For three atoms, the only adjusted
parameter is the shift of the transition frequency of the middle
atom with respect to those of the edge atoms:  = ω2 − ω1.
To characterize the subradiance dependence on this shift, we
introduce the quantity �̃() that is the slowest decay rate of
those for all eigenstates. The dependences of so defined �̃

on /U are shown in Fig. 1 for two values of the param-
eter (ka)2; here U is the dipole-dipole interaction between
the neighboring atoms: U ⊥ = d2/a3 and U ‖ = −2d2/a3 [see
Eq. (8)]. Notice that the sign of the optimal shift is negative
for the perpendicular polarization (�̃⊥) and positive for the
parallel polarization (�̃‖). One can see sharp minima for all
curves, their abscissas being close to the optimum asymptotic
value ̃/U defined by Eq. (4) with the eigenvector (14). For

TABLE I. Comparison of two decay rates: The first one corre-
sponds to its minimum due to the suitable frequency shift  for
N = 3 and N = 4; the second one is the decay rate of the subradiative
state in the case where are no shifts, i.e., the transition frequencies of
all atoms are equal.

N �̃ (ka)2 At minimuma Without shiftb

0.01 7.62 × 10−7 4.0 × 10−3

3 �̃‖/� 0.10 7.64 × 10−5 3.9 × 10−2

1.00 7.73 × 10−3 3.6 × 10−2

0.01 1.62 × 10−6 7.9 × 10−3

3 �̃⊥/� 0.10 1.64 × 10−4 5.6 × 10−2

1.00 1.79 × 10−2 2.5 × 10−2

0.01 5.45 × 10−10 4.4 × 10−4

4 �̃‖/� 0.10 5.48 × 10−7 4.1 × 10−3

1.00 5.78 × 10−4 2.2 × 10−2

0.01 1.26 × 10−9 8.8 × 10−4

4 �̃⊥/� 0.10 1.28 × 10−6 8.0 × 10−3

1.00 1.46 × 10−3 2.7 × 10−2

aSee Figs. 1 and 2.
bAll ω j = 0.

N = 3, ̃/U = −7/8. Meanwhile, the optimum is actually
reached at /U that is a little shifted as can be seen in Fig. 1.
At, e.g., ka = 0.1, the mismatch is �/U ≈ 3.0 × 10−3 for
�

‖
N=3 and, in a good approximation, scales ∝ (ka)2. For �⊥

N=3,
shifts are twice larger. At the same time, the corresponding
decay rates, due to the extreme sharpness, are a little lower
than those defined by asymptotic Eq. (16). For example, the
fall is ≈2.64 times for �̃⊥

N=3 at ka = 0.1.
Similar results for four atoms are given in Fig. 2. There is

also only one adjusted parameter, i.e., the transition frequency
shift  for the two middle atoms with respect to the edge
atoms. In the case of N � 5 atoms, the [(N − 1)/2] param-
eters must be adjusted. We do not draw the corresponding
multidimensional pictures—only note that the minimum near
the set of optimum values defined by Eq. (4) with the eigen-
vector (14) is even sharper than in the just considered cases
N = 3 and N = 4 shown in Figs. 1 and 2, respectively.

How strong could be the suppression of the decay rate �̃

is shown in Table I, where the values of �̃N for the optimally
adjusted atomic frequencies are compared with those in the
case where are no shifts, i.e., the transition frequencies of all
atoms are equal.

The same several orders of magnitude are in play compar-
ing with the results for earlier treated subradiative systems
including a recently considered ensemble in the form of a
regular polygon [23], where �N ∝ �(r/λ)2[N/2]. The two ex-
ceptions are (i) two separated by the distance nλ/2 atoms
in 1D [8,9] and (ii) extension of this idea to 3D using two
similarly separated two-dimensional arrays of atoms [24].
However, the chain configuration is much more commonly
considered due to its implementation using the optical lattices,
even subwavelength ones [25,26]. Our examples above relate
just to such a scheme at ka � 1 (for matching with ka > 1 see
Ref. [27]). Certainly, usage of different tweezers for different
atoms can be assumed. In addition, we may suggest, in view of
the both N = 3 and N = 4 cases, a speculative scheme of laser
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Laser

Mirror

21 3

|g
|e

|a
⇐ N=3

⇐ N=4
1 2 3 4

Δω

FIG. 3. Scheme for inducing an energy shift of the ground state
in the middle atom(s). The nodes are at the positions of the edge
atoms. The laser frequency is detuned relative to the frequency of
the transition from the ground state |g〉 to some high-lying excited
state |a〉 of the atom(s). As shown in the diagram, this shifts the
frequency of the transition |e〉 → |g〉 to the red, i.e., suitably for the
perpendicular polarization. For the case of the parallel polarization,
the sign of the detuning should be reversed.

control using the standing wave as shown in Fig. 3. We add
two comments to such an ideal scheme. First, one can see that
it is capable of providing a fast readout because the system
would emit the photon much more quickly after switching out
the standing wave than in its presence. Also it is sensitive

to rather small changes in parameters. This opens potential-
ities for precision measurements of the laser intensity and
frequency, and the mirror position as well, assuming surely
that (i) the supercooled atoms are localized in sufficiently
deep minima in the potential of the optical lattice, and (ii)
laser parameters are stable enough as, e.g., in the experiments
on detection of the gravitational waves. Believing that both
conditions (i) and (ii) are fulfilled, one can expect that the
method is robust.

V. CONCLUSION

To conclude, in this paper we presented a method to
achieve a huge gain in subradiance of atomic ensembles.
This gain is reached by adjustment of atomic transition fre-
quencies ω j . The demonstrated extreme sensitivity of the
slow spontaneous decay rate and the accompanying narrow
radiative width to external fields may be useful for precision
measurements and diagnostics in addition to its undoubted
fundamental significance.
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