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Frequency-correlation requirements on the biphoton wave function in an induced-coherence
experiment between separate sources
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There is renewed interest in using the coherence between beams generated in separate down-converter sources
for new applications in imaging, spectroscopy, microscopy, and optical coherence tomography (OCT). These
schemes make use of continuous-wave (cw) pumping in the low parametric gain regime, which produces
frequency correlations and frequency entanglement between signal-idler pairs generated in each single source.
But can induced coherence still be observed if there is no frequency correlation, so the biphoton wave function
is factorable? We will show that this is the case and might be an advantage for OCT applications. High axial
resolution requires a large bandwidth. For cw pumping, this requires the use of short nonlinear crystals. This is
detrimental since short crystals generate small photon fluxes. We show that the use of ultrashort pump pulses
allows one to improve the axial resolution even for a long crystal that produces higher photon fluxes.
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I. INTRODUCTION

In 1991, Zou et al. [1,2] demonstrated that the indistin-
guishability of idler beams generated at separate parametric
down-converting sources can induce coherence between the
signal beams generated at the same separate sources. The
effect was demonstrated originally at the low parametric gain
regime, where the probability to generate pairs of photons si-
multaneously in each source is very low. However, coherence
is also observed in the high parametric gain regime [3,4]. Here
we are interested in the low parametric gain regime since this
scenario allows one to straightforwardly quantify the degree
of entanglement between down-converted photons.

Induced coherence in a system of two parametric down
converters is a particular case of a broader class of interfer-
ometers sometimes referred to as nonlinear interferometers
[5] based on optical parametric amplifiers. The past few years
have seen a surge of interest in using these interferometers
for new schemes in imaging [6,7], sensing [8], spectroscopy
[9,10], microscopy [11,12], and optical coherence tomogra-
phy (OCT) [13–16]. One advantage of these systems is that
one can choose a wavelength for the beam that interacts with
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the sample and is never detected, and another wavelength for
the beam to be detected that enhances photodetection effi-
ciency. They also can show better sensitivity than alternative
schemes [17,18].

Up to now, all experiments but two [13,19] have been
performed in the low parametric gain regime. In all these
cases, the bandwidth of the pump laser (δp) is considerably
smaller than the bandwidth of down conversion (�dc) [20].
This produces a high degree of entanglement between the
signal and idler beams generated in a single biphoton source.
This can lead one to think that frequency entanglement be-
tween signal-idler pairs generated in a nonlinear crystal is a
necessary condition to observe induced coherence between
signal photons generated in separate nonlinear crystals. We
will demonstrate below that induced coherence happens when
there is no frequency correlation, and thus no frequency en-
tanglement, so, importantly, continuous-wave (cw) pumping
is not a requisite to observe induced coherence. As we will
show, this can have important practical consequences for the
implementation of high-flux and high-resolution optical co-
herence schemes based on induced coherence.

When we consider only frequency correlations between
signal-idler pairs, the quantum state can be described by the
biphoton wave function �(ωs, ωi ), where ωs,i refer to the
frequency of the signal and idler photons, respectively. If the
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FIG. 1. Induced coherence between signal photons generated in
separate parametric down converters. The idler traverses a lossy
sample before being injected into NLC2. The detector measures the
interference between signal photons s1 and s2 as a function of the
path delay �z. NLC: nonlinear crystal; s, i: signal and idler modes;
b, a: input and output quantum operators.

biphoton function is factorable, i.e., �(ωs, ωi ) = F (ωs)G(ωi ),
then the state is separable and shows no frequency entan-
glement. If the state cannot be decomposed in this way, the
quantum state is entangled. For pure states, the entropy of en-
tanglement [21] is a good quantitative measure of how much
entanglement there is between the signal and idler photons
that are generated. It is large when the ratio �dc/δp � 1
or �dc/δp � 1. The degree of entanglement can also be re-
trieved from the number of modes present in the Schmidt
decomposition of the quantum state [22].

Frequency entanglement in parametric down conversion
has been analyzed under different circumstances [23,24]. Sev-
eral methods to tailor the frequency correlations, and thus the
degree of entanglement between signal-photon pairs, has been
proposed and demonstrated. Signal-idler pairs that show fre-
quency correlation, in contrast to the frequency anticorrelation
that arises under cw pumping, has been produced [25], as
well as paired photons in a separable state [26–28]. Certain
methods even allow one to generate any type of frequency
correlation between signal-idler pairs [29], as well as tailoring
the bandwidth of the down-converted photons [30].

II. ROLE OF SIGNAL-IDLER ENTANGLEMENT
FOR OBSERVING INDUCED COHERENCE

Figure 1 shows a scheme of an induced coherence ex-
periment with two parametric down converters (NLC1 and
NLC2). We consider a pulsed laser that generates coherent
light with a spectrum F (�p). The frequency of the pump is
ωp = ω0

p + �p, with ω0
p being the central frequency and �p

the frequency deviation from the central frequency. A beam
splitter divides the pump beam into two coherent sub-beams
that pump the two nonlinear crystals. The two sub-beams
travel distances zp1 and zp2 before reaching NLC1 and NLC2,
respectively.

Both crystals have nonlinear susceptibility χ (2) and length
L. The nonlinear interaction generates signal and idler photons
s1 and i1 in NLC1, and s2 and i2 in NLC2. The frequency of the
signal and idler photons reads ωs = ω0

s + �s and ωi = ω0
i +

�i, where ω0
s,i are central frequencies and �s,i are frequency

deviations from the corresponding central frequencies. The
conditions ω0

p = ω0
s + ω0

i and �p = �s + �i are satisfied.
The quantum operators as1,s2 (�s) and ai1,i2 (�i ) correspond

to signal and idler modes at the output face of the corre-

sponding nonlinear crystals. bs1,s2 (�s) and bi1 (�i ) designate
the corresponding operators at the input face. In the low para-
metric gain regime, the Bogoliubov transformations that relate
the input-output operators for NLC1 are [31,32]

as1 (�s) = Us(�s)bs1 (�s) +
∫

d�iVs1 (�s,�i )b
†
i1

(�i ), (1)

ai1 (�i ) = Ui(�i )bi1 (�i ) +
∫

d�sVi1 (�s,�i )b
†
s1

(�s), (2)

where Us(�s) = exp [iks(�s)L], Ui(�i ) = exp [iki(�i )L], and

Vs1 (�s,�i ) = i(σL)Fp1 (�s + �i )sinc

[
�kL

2

]

× exp

[
i
kp(�s + �i ) + ks(�s) − ki(�i)

2
L

]
,

(3)

Vi1 (�s,�i ) = i(σL)Fp1 (�s + �i )sinc

[
�kL

2

]

× exp

[
i
kp(�s + �i ) + ki(�i ) − ks(�s)

2
L

]
.

(4)

The nonlinear coefficient σ is [20,31,32]

σ =
[

h̄ω0
pω

0
s ω

0
i [χ (2)]2N0

16πε0c3npnsniA

]1/2

, (5)

where N0 is the number of pump photons per pulse, A is the
effective area of interaction, and np,s,i are refractive indexes at
the central frequencies of all waves involved. The function Fp1

is

Fp1 (�p) = T 1/2
0

π1/4
exp

[
−�2

pT 2
0

2

]
exp[ikp(�p)zp1 ], (6)

where we have assumed a Gaussian shape for the spectrum
of the pump beam. The function Fp is normalized to 1. T0

is the temporal width of the pump pulses. The wave-vector
phase mismatch is �k = kp(�s + �i ) − ks(�s) − ki(�i ). If
we expand the wave vectors in Taylor series to first or-
der as ki(�) = k0

i + Ni� (Np,s,i are inverse group velocities)
and assume perfect phase matching at the central frequen-
cies (k0

p = k0
s + k0

i ), we obtain �k = D+�p + D�−/2, where
�− = �s − �i, D+ = Np − (Ns + Ni )/2 and D = Ni − Ns.

The idler mode ai1 traverses a distance z2 before encoun-
tering a lossy sample characterized by reflectivity r(�i). The
quantum operator transformation that describes this process is
[33,34]

ai1 (�i ) −→ r(�i )ai1 (�i ) exp [iki(�i )z2] + f (�i ), (7)

where the operator f fulfills the commutation relationship
[ f (�), f †(�′)] = [1 − |r(�)|2]δ(� − �′).
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The idler beam is injected into NLC2 so that the operator
as2 that describes signal beam s2 at the output face of NLC2 is

as2(�s) = Us(�s)bs2 (�s) +
∫

d�iVs2 (�s,�i ) f †(�i )

+
∫

d�ir
∗(�i )Vs2 (�s,�i )U

∗
i (�i )

× exp [−iki(�i )z2]b†
i (�i ), (8)

where only terms up to first order in σL has been con-
sidered, i.e., the terms that give a nonzero contribution in
the calculation of the first-order correlation function. The
function Vs2 is analogous to Vs1 in Eq. (3) with Fp2 =
Fp(�p) exp [ikp(�p)zp2 ].

Signal photon s1 traverses a distance z1 before detection,
and signal photon s2 traverses a distance z3. The number of
signal photons generated per pulse, Ns1 = ∫

d� a†
s1

(�)as1 (�)
and Ns2 = ∫

d� a†
s2

(�)as2 (�), is

Ns1 = Ns2 = 2π
σ 2L

D
. (9)

It depends on the total number of pump photons per pulse;
however, it is independent of the shape of the pulse. This fact
and that Ns1 = Ns2 are characteristics of the low parametric
gain regime.

We are interested in the normalized first-order correlation
function g(1)

s1,s2
between beams s1 and s2 that gives the visibil-

ity of the interference fringes detected after combining both
signals in a beam splitter, i.e.,

g(1)
s1,s2

= 1

N1/2
s1 N1/2

s2

∫
d� a†

s1
(�)as2 (�). (10)

Let us first assume that there are no losses in the idler path
[r(�) = 1]. Using Eqs. (1), (8), and (9) into Eq. (10), and
taking into account the distances z1 and z3 that signal beams
s1 and s2 propagate before combination in the beam splitter,
the first-order correlation function can be written as∣∣g(1)

s1,s2(T1, T2)
∣∣

= tri
( T1

DL

)
× exp

{
− 1

16T 2
0

[(
1 − 2D+

D

)
T1 + 2T2

]2}
,

(11)

where tri(ξ/2) = 1/π
∫

sinc2(x)exp(iξx)dx is the triangular
function and

T1 = z3 − z1 + z2

c
+ NiL, (12)

T2 = zp2 − zp1 − z2

c
− NiL. (13)

We assume that the condition zp2 = zp1 + cNiL + z2 is ful-
filled, so that T2 = 0. In order to optimize pulsed parametric
amplification in NLC2, one needs to synchronize the time of
arrival of the pump and idler pulses to the nonlinear crystal
[13].

The first-order correlation function is the product of a
triangular function of width DL and a Gaussian function of
width T0. Figure 2 plots the first-order correlation function as
a function of �z = z3 − z1 + z2 + cNiL for a crystal length

FIG. 2. First-order correlation function as a function of the path
delay �z. We consider a crystal with length L = 5 mm. The pump
pulses have temporal widths (a) T0 = 100 ps, (b) T0 = 2 ps, and
(c) T0 = 100 fs.

L = 5 mm and three different pulse widths: T0 = 100 ps,
T0 = 2 ps and T0 = 100 fs. �z can be modified in an experi-
ment by changing the path-length difference z3 − z1. We have
considered as an example two MgO-doped LiNbO3 crystals
[35] pumped by a pulsed laser operating at λ0

p = 532 nm.
The resulting type-0 signal and idler beams have wavelengths
λ0

s = 810 and λ0
i = 1550 nm with D = −263.50 and D+ =

780 fs/mm.
In the limiting case of cw pumping (T0 → ∞), the shape

of the first-order correlation function is dominated by the
triangular function [see Fig. 2(a)], as it has been measured
in many occasions [14]. As we decrease the temporal width of
the pump pulses, the influence of the triangular and Gaussian
functions on g(1)

s1,s2
becomes comparable [Fig. 2(b)]. Finally,

when T0 � DL, the shape of the first-order correlation func-
tion is dominated by the Gaussian function [Fig. 2(c)].

Is entanglement between signal and idler photons relevant
for observing induced coherence? Inspection of Fig. 2 shows
that it is not since, for all values of T0 and crystal length L
that correspond to quantum states with different degrees of
entanglement, there is induced coherence. For the sake of
clarity, let us be more specific. In the low parametric gain
regime, the biphoton function

�(�s,�i ) = iσLF (�s + �i )sinc

[
�kL

2

]
exp (iskL), (14)

where sk = kp(�s + �i ) + ks(�s) + ki(�i ), determines the
nature of the correlations between the paired photons and the
degree of entanglement between them [32]. If we can decom-
pose �(�s,�i ) into two functions that separately depend on
the variables �s and �i, the quantum state is nonentangled
(separable).

For the sake of simplicity, let us consider D+ = 0 and
make the approximation sinc(x) ∼ exp(−α2x2) with α =
0.455 [36]. The normalized biphoton function derived from
Eq. (14) is

�(�s,�i ) =
(

αT0DL√
2π

)1/2

exp

[
− (�s + �i )2T 2

0

2

]

× exp

[
−α2(DL)2

16
(�s − �i )

2

]
. (15)

Here, |�(�s,�i )|2 yields the probability to detect a signal
photon at frequency ω0

s + �s in coincidence with an idler
photon at frequency ω0

i + �i.
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FIG. 3. (a)–(c) Normalized biphoton function |�(�s, �i )|2. The
axis corresponds to angular frequency deviation �s and �i. (d)–(f)
First-order correlation function. The pump pulse durations T0 are
(a),(d) T0 = 100 ps, (b),(e) T0 = 212 fs, and (c),(f) T0 = 10 fs. The
nonlinear crystal length is L = 5 mm.

The degree of entanglement depends on the ratio between
the bandwidth of the pump beam and the bandwidth of down
conversion: γ = αDL/(2

√
2T0). For γ = 1, we can write the

quantum state as �(�s,�i ) = �s(�s)�i(�i ), where the state
is separable. The degree of entanglement is high if γ � 1 or
γ � 1 [21,30]. Figures 3(a)–3(c) plot |�(�s,�i )|2 for a crys-
tal length L = 5 mm and three different pump pulse widths
that correspond to γ � 1 (T0 = 100 ps), γ = 1 (T0 = 212 fs),
and γ � 1 (T0 = 10 fs).

When T0 � DL [Fig. 3(a)], there is frequency anticorre-
lation between the signal and idler photons. One can detect
coincidences if �i ∼ −�s. For T0 � DL [Fig. 3(c)], there
is a frequency correlation; there are coincidences only if
�i ∼ �s. In between, the degree of correlation is low and the
quantum state can become separable [Fig. 3(b)]. Figures 3(d)–
3(f) show the first-order correlation function corresponding to
these cases. For all values of the degree of entanglement, we
observe coherence, ruling out that the entanglement nature of
the paired photons is responsible for the existence of induced
coherence.

III. OPTICAL COHERENCE TOMOGRAPHY WITH
LARGE BANDWIDTH AND HIGH PHOTON FLUX

OCT is an optical imaging technique that permits cross-
sectional and axial high-resolution tomographic imaging [37].
The axial and transverse resolutions are independent. To
obtain information in the axial direction (along the beam
propagation), OCT uses a source of light with large bandwidth
that allows optical sectioning of the sample.

Different OCT schemes that make use of biphoton sources
have been demonstrated. In all cases, one photon of the pair
probes the sample. Some schemes measure the second-order
correlation function of the signal and idler photons [38,39],
others measure the first-order correlation function of the sig-
nal photons generated in different biphoton sources [13,14],
and others measure the flux of signal photons generated in an
SU(1,1) nonlinear interferometer [7,15].

Figures 2 and 3 demonstrate that one can observe induced
coherence independently of the degree of entanglement be-
tween the signal and idler beams. This has an important
consequence for the further development of OCT based on
nonlinear interferometers. Equation (9) shows that the gener-
ated photon flux increases with the nonlinear crystal length.
However, for cw pumping, �dc goes as ∼1/DL. OCT with
high axial resolution requires a large bandwidth. Therefore,
high axial resolution implies the generation of low photon
fluxes and so longer integration times to obtain high-quality
images. This is detrimental for OCT applications.

The first-order correlation function is the measure of axial
resolution in an OCT system. Equation (11) shows that one
can obtain a narrow first-order correlation function, and thus
high axial resolution, even for a long nonlinear crystal by
using an ultrashort pump pulse.

In order to show this effect, we consider a bilayer sam-
ple characterized by a reflectivity r(�) = r0 + r1 exp[i(ω0 +
�)τ ]. The delay is τ = 2d0n0/c, where d0 and n0 designate
the thickness and refractive index, respectively, of the sample.
The coefficient r0 is the Fresnel coefficient for the first layer,
whereas r1 is the effective coefficient for the second layer,
taking into account propagation through the sample. z2 is the
distance traveled by the idler beam reflected from the first
layer, while z2 + 2n0d0 is the optical distance traveled by the
idler beam reflected from the second layer.

The signal detected at one output port of the beam
splitter is

N = Ns1

{
1 + r0g(1)

s1,s2
(T1, T2) sin

[(
ω0

p/c
)
(zp2 − zp1 ) −(

ω0
i /c

)
(z2 + niL) − (

ω0
s /c

)
(z1 − z3)

]
+ r1g(1)

s1,s2
(T ′

1 , T ′
2 ) sin

[(
ω0

p/c
)
(zp2 − zp1 ) −(

ω0
i /c

)
(z2 + niL + 2n0d0) − (

ω0
s /c

)
(z1 − z3)

]}
, (16)

where T ′
1 = T1 + τ and T ′

2 = T2 − τ . T1 and T2

are given by Eqs. (12) and (13). We can choose
zp2 = zp1 + cNiL + z2.

Figure 4 shows the photon flux N as a function of �z
[Eq. (16)] for a 20 μm glass slab (refractive index n0 = 1.5)
embedded between air (n1 = 1) and water (n2 = 1.3). We
consider three scenarios. Figure 4(a) considers a pump beam
with T0 = 100 ps (quasi cw) and a crystal with L = 0.5 mm.

The interferogram shows two maxima separated by 60 μm,
the sample’s optical path length cτ .

Figure 4(b) considers the same pulse duration, but L =
10 mm. The interferogram cannot resolve the thickness of the
sample; there is not enough axial resolution. Figure 4(c) con-
siders the same length L = 10 mm but now with T0 = 100 fs.
The interferogram recovers the two maxima, thereby resolv-
ing the layers of the sample. The two maxima are separated by
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FIG. 4. (a)–(c) Signal N in one output port of the beam splitter
as a function of �z. (a) L = 0.5 mm, T0 = 100 ps; (b) L = 10 mm,
T0 = 100 ps; and (c) L = 10 mm, T0 = 100 fs. (d)–(f) Normalized
spectrum of the signal photon. The bandwidths (FWHM) are 14.8,
0.8, and 20 nm.

42 μm, which is smaller than the sample’s optical thickness.
This result can be understood noticing that the peak of the
interferogram when the shape of the first-order correlation
function is dominated by the Gaussian function will take place
for a value of T1 [see Eq. (11)],(

1 − 2D+
D

)
(T1 + τ ) − 2τ = 0,


⇒ T1 = D + 2D+
D − 2D+

τ. (17)

Taking into account the values of D = −263 and D+ = 780
fs/mm, the factor (D + 2D+)/(D − 2D+) = −0.71. The sep-
aration between the two maxima corresponding to the two
layers is −0.71 × 60μ>m ∼ − 42μm. This result is remi-
niscent of the fact that after reflection from the sample, we
have two pulses separated by τ that are injected in the second
nonlinear crystal and both show certain delay with the pump
pulse [40]. For a case with D+ = 0, we would again have
T1 = τ as in the quasi-cw case.

Figure 4 also shows the signal spectrum for each case,
given by S(�s) = ∫

d�i |�(�s,�i )|2. The interferograms
and spectra show the reciprocal relation between the spectral
bandwidth and axial resolution.

IV. CONCLUSIONS

We have demonstrated that induced coherence between
the signal beams generated in separate biphoton sources can
be observed independently of the degree of entanglement
between the signal-idler photon pairs generated in the same
nonlinear crystal. In our demonstration of OCT based on para-
metric down conversion, in the high parametric gain regime,
the bandwidth of the pump pulse and the bandwidth of down
conversion (0.36 nm) are made comparable due to the use of
narrowband filters. However, in the high parametric gain, one
cannot readily quantify the signal-idler entanglement.

In the low parametric gain regime, the emission rate of
photon pairs increases with the length of the nonlinear crystal,
regardless of the duration of the pump pulse. We have shown
that an OCT scheme based on induced coherence can achieve
high axial resolution and high photon-emission rates by com-
bining ultrashort pumping with long crystals. The method
maintains its salutary features, i.e., probing the sample with
photons centered at the most appropriate wavelength while
using the optimum wavelength for photodetectors.
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