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The generalized Rabi model (gRM) with both one- and two-photon coupling terms has been successfully
implemented in circuit quantum electrodynamics systems. In this paper, we examine theoretically multiphoton
resonances in the gRM and derive their effective Hamiltonians. We show that all three- to six-photon resonances
can be achieved by involving two intermediate states with different detunings in the system. Furthermore, we
study the interplay between multiphoton resonance and chiral transport of photon Fock states in a resonator
junction with broken time-reversal symmetry. Depending on the qubit-photon interaction and photon-hopping
amplitude, we find that the ultrastrong-coupling system can demonstrate different short-time dynamics.
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I. INTRODUCTION

A two-level atom interacting with a quantized electromag-
netic field is one of the most basic and oldest problems in
quantum optics. The system is described by the celebrated
quantum Rabi model [1]. When the atom-photon interac-
tion is weak, the rotating-wave approximation (RWA) applies
and leads to the Jaynes-Cummings model (JCM) [2]. Al-
though counter-rotating (excitation-number-nonconserving)
processes are eliminated by the RWA, the JCM had been a
widely accepted model in quantum optics for a long time [3].
Recent advances in fabricating circuit quantum electrodynam-
ics (cQED) systems [4] make it feasible for the atom-photon
interaction to reach the ultrastrong-coupling (USC) [5,6] or
even the deep-strong-coupling (DSC) regimes [7–9]. Since the
RWA breaks down in these regimes, it has reignited a large
amount of studies of the original Rabi model. The model was
shown to be quantum integrable [10,11], and attracted various
attempts to construct its analytic solutions [11–17]. On a more
physical perspective, previous works have shown that counter-
rotating terms could lead to many novel phenomena, and may
find different applications that are absent in the JCM [18–50].

Aside from the original Rabi model, a two-photon coupling
term with a two-level system was successfully simulated in
both cQED [51,52] and cold-atom setups [53]. This non-
linear term may lead to squeezing of light [54,55] and
interaction-induced spectral collapse [52,56–59]. Further-
more, a generalized Rabi model (gRM) with both one-photon
and two-photon terms has emerged in the last decade [60–62].
It was found that both terms are tunable and the two-photon
term need not be suppressed by enhancing the single-photon
term [67]. Mathematical consequences of the broken Z2 sym-
metry and analytic solutions of the model have been well
documented in recent works [68,69]. Also, it is exciting that
the gRM may open a door to simulate particle dynamics in
(1 + 1)-dimensional curved spacetime [70]. Meanwhile, not
much is known for other physical effects of the generalized

model. We believe it is tempting to explore new features in the
gRM and examine their corresponding physical applications.

In this paper, our first goal is examining theoretically mul-
tiphoton resonances in the gRM. With different detunings
between atomic transition frequency and photon frequency,
we show that all three- to six-photon resonances can be
achieved. Also, we derive effective Hamiltonians describing
these resonances. The result is valuable because resonances
involving even numbers of photons are forbidden in the origi-
nal Rabi model due to its Z2 symmetry [11,71]. It is remarked
that a parity-violating coupling between the resonator mode
and the flux qubit exists in a realistic cQED setup [6] and its
related asymmetric Rabi model [11,12,72]. Nevertheless, the
absence of a two-photon term there implies that an N-photon
resonance must involve at least N − 1 intermediate states.
This kind of process is suppressed even in the USC regime.
In other words, the gRM provides an opportunity to realize
multiphoton resonances involving large numbers of photons in
a more effective way. This is further elaborated in Sec. IV C,
and has important consequences in NOON-states generation
via adiabatic passage [34].

The above results lead us to the second goal of the paper:
studying the interplay between multiphoton resonances and
chiral photon transfer in cQED lattices. Although breaking
time-reversal symmetry to achieve chiral transport of photons
is challenging [73–82], an accessible scheme was proposed
for cQED systems [75]. Specifically, synthetic gauge flux for
photons can be induced by inserting Josephson rings into
the system as on-chip circulators. When the flux is tuned
properly, photon transfer with a preferred chirality was re-
alized in a junction of three microwave resonators [75]. A
similar effect can also occur when each resonator couples to
a superconducting qubit [76]. The result has opened up the
possibility of simulating novel phases of photons in cQED
systems. In this paper, we revisit the coupled system without
employing the RWA and without limiting to one-photon trans-
fer. Each coupled qubit-resonator in our system may achieve
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multiphoton resonance. However, this effect needs to com-
pete with photon hopping between different resonators. When
the photon-hopping strength and the effective multiphoton-
resonant coupling strength are tuned, it is expected that
the system will exhibit different types of short-time
dynamics.

The paper is organized as follows. In the first part of our
work, we begin by reviewing the generalized Rabi model and
outlining the perturbation theory for analyzing multiphoton
resonances in Sec. II. Then, we examine three-photon reso-
nance in Sec. III, and compare the results with the original
Rabi model. In Sec. IV, we demonstrate the possibility of
achieving four- to six-photon resonances in the gRM. In the
second part of the paper, we study in Sec. V the interplay
between chiral photon transport and multiphoton resonance
in cQED systems. By reducing the ratio of photon-hopping
strength to multiphoton-resonant coupling strength, the tran-
sition from a chiral photon transfer to a suppression of photon
hopping in the short-time dynamics of the system is illus-
trated. Last, we conclude our work in Sec. VI.

II. REVIEW OF THE GENERALIZED RABI MODEL
AND PERTURBATION THEORY

The generalized Rabi model with both one-photon and
two-photon coupling terms is described by the Hamiltonian

H = ωa

2
σz + ωca†a + λ(a + a†)σx

+ κ[a2 + (a†)2]σx. (1)

In this paper, we set h̄ = 1 unless specified. The transition
frequency of the two-level atom is denoted by ωa. A photon
with frequency ωc is annihilated (created) by the operator a
(a†). We denote the ground state and the excited state of the
two-level atom as |g〉 and |e〉, respectively. Then, the Pauli
matrices are given by σz = |e〉〈e| − |g〉〈g| and σx = |e〉〈g| +
|g〉〈e|. The one- and two-photon coupling terms with the atom
have coupling strengths λ and κ , respectively.

In the absence of the two-photon coupling term (i.e., when
κ = 0), it is possible to define a parity operator for the quan-
tum Rabi model [11,71]:

�1 = exp

[
iπ

(
1 + σz

2
+ a†a

)]
. (2)

The parity operator satisfies [H,�1] = 0. By acting �1 on
the bare states |g, n〉 and |e, n〉, it can only take eigen-
values of ±1. Similarly, one may define a corresponding
Z4-symmetry operator for the two-photon Rabi model (i.e.,
when λ = 0) [83]:

�2 = exp

[
iπ

(
1 + σz

2
+ a†a

2

)]
. (3)

Every eigenstate of the Hamiltonian must be a linear super-
position of bare states in the same subspace with the same
eigenvalue of �1 or �2. However, the discrete symmetry is
broken in the generalized Rabi model with both one- and
two-photon terms. Thus it becomes more difficult to study the
analytic solutions of the model. At the same time, it opens the
door to other multiphoton resonances, which are forbidden in

the original Rabi model. We review the third-order perturba-
tion theory for multiphoton resonances in a largely detuned
Rabi model.

Perturbation theory for multiphoton resonance

In this paper, we study multiphoton resonances between
two bare states |i〉 and | f 〉. We only focus on resonances which
involve two intermediate states. The two bare states are |i〉 =
|g, n0 + n〉 and | f 〉 = |e, n0〉. In the absence of atom-photon
interaction, these two states are degenerate when ωc = ωa/n.
An effective Hamiltonian to describe the resonance can be
obtained by eliminating the intermediate states. This can be
done by several approaches, such as adiabatic elimination
[34], the generalized James effective Hamiltonian approach
[84], and third-order perturbation theory [37]. The derivation
based on the second approach is discussed in the Appendix.
The end result is in the following form:

Hn-ph
eff = (Ei + �Ei )|i〉〈i| + (E f + �E f )| f 〉〈 f |

+ 	
n-ph
eff (|i〉〈 f | + | f 〉〈i|). (4)

Here, the unperturbed energy for the state |i〉 is denoted by
Ei. Due to the atom-photon interaction, the energy levels
are Stark shifted. Consequently, the required photon fre-
quency of achieving the n-photon resonance (or, equivalently,
the resonant frequency) is perturbed away from ωc = ωa/n.
The perturbed resonant frequency ω′

c can be obtained by
equating the diagonal elements of Hn-ph

eff , that is, solving
Ei + �Ei = E f + �E f . At the resonance, the two nearly de-
generate energy levels develop an avoided crossing with a
gap 2|	n-ph

eff |.
In the following discussion, we directly use the result from

second-order perturbation theory to obtain the leading order
terms in �Ei:

�Ei =
∑

α

|〈α|V |i〉|2
Ei − Eα

. (5)

Here, the symbol V denotes the atom-photon interaction terms
in the gRM, i.e., V = λ(a + a†)σx + κ (a2 + a†2)σx. All inter-
mediate bare states which can be connected to |i〉 by V are
labeled as |α〉. The result of �Ei/ωa and ω′

c/ωa from Eq. (5)
will be accurate to the order of (λ/ωa)2 and (κ/ωa)2. For the
effective coupling strength 	

n-ph
eff , it can be deduced from the

third-order perturbation theory [37]:

	
n-ph
eff =

∑
α,β

〈 f |V |β〉〈β|V |α〉〈α|V |i〉
(Ei − Eα )(Ei − Eβ )

. (6)

The symbol |β〉 denotes another intermediate state. All results
obtained from Eqs. (5) and (6) are consistent with the gener-
alized James effective Hamiltonian approach discussed in the
Appendix.

III. THREE-PHOTON RESONANCE
IN THE GENERALIZED RABI MODEL

In the original Rabi model (i.e., κ = 0), a three-photon
resonance can occur when the frequency of the photon field
is tuned to ωc ≈ ωa/3 [34]. Physically, this is possible for
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FIG. 1. Three different coupling schemes for the three-photon
resonance in the gRM in Eq. (1). Here, counter-rotating processes are
labeled by dashed lines. Single (double) lines with arrows indicate
coupling between the bare states by the single-photon (two-photon)
term in the generalized Rabi model. In contrast to the original Rabi
model (i.e., when κ = 0), three-photon resonance is possible even
when the RWA applies as illustrated in (a). The coupling scheme
shown in (c) was introduced in Ref. [34]. The values near the arrowed
lines are the matrix elements 〈α1, n1|V |α2, n2〉.

two reasons. First, the two bare states |g, 3〉 and |e, 0〉 are
nearly degenerate. Second, these two bare states can be con-
nected by intermediate states via counter-rotating processes.
Thus an avoided crossing is formed between the two energy
levels. Away from the avoided crossing, the corresponding
eigenvectors of these two levels have high overlaps with the
two bare states. In the framework of the generalized Rabi
model, we revisit the three-photon resonance. The three dif-
ferent schemes for achieving the resonance in the gRM are
illustrated in Fig. 1.

A. General consideration without rotating-wave approximation

For simplicity, we only consider the three-photon reso-
nance between the bare states |g, 3〉 and |e, 0〉 in detail. It
is straightforward to generalize the discussion to any pair of
|g, n0 + 3〉 and |e, n0〉. To the leading order, the one-photon
and two-photon terms in the gRM couple |g, 3〉 to |e, 5〉, |e, 4〉,
|e, 2〉, and |e, 1〉. Similarly, |e, 0〉 is coupled to |g, 2〉 and
|g, 1〉. From the discussion in Sec. II, the resonant frequency

FIG. 2. Percentage errors between (a) resonant frequencies
ω′

c/ωa and (b) energy splittings �/ωa for the three-photon resonance
from perturbation theory and numerical diagonalization. For refer-
ence, we mark the regions (below the red dashed lines) in (a) and
(b) that have percentage errors less than 5% and 10%, respectively.

is determined as

ω′
c

ωa
= 1

3
+ 3

(
λ

ωa

)2

+ 12
( κ

ωa

)2
. (7)

The same result can be obtained from Eq. (A11) with n = 3
and n0 = 0. By employing Eq. (6) and summing the contri-
butions from all three possible coupling schemes in Fig. 1,
we obtain the effective coupling strength for the three-photon
resonance:

	
3-ph
eff = −

(
27

√
6λκ2

ω2
a

+ 9
√

6λ3

4ω2
a

)
. (8)

Note that the second term in the final result agrees with the
result for three-photon resonance in the original Rabi model
[34]. We compare the results from perturbation theory and
numerical diagonalization.

In Fig. 2, we show the percentage difference between the
resonant frequency from Eq. (7) and numerical diagonal-
ization. Also, we obtain numerically the three-photon Rabi
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FIG. 3. The energy splitting at the three-photon resonance as a
function of κ/ωa. Here, we fix λ/ωa = 0.05. The results for the
general case without the RWA are denoted by a blue solid line
(perturbation theory) and a red dotted line (numerical diagonaliza-
tion). The other two lines present results with the application of the
RWA. The gray dashed line and purple crosses denote results from
perturbation theory and numerical simulation, respectively.

splitting at the resonance, i.e., � = 2|	3−ph
eff |, and its percent-

age difference from Eq. (8). For λ/ωa < 0.1 and κ/ωa < 0.1,
the approximate result for the resonant frequency has a per-
centage error of 5% or smaller in most of the region. At the
same time, there is a considerable region where the approxi-
mate energy splitting has a percentage error smaller than 10%.
For another illustration, we plot �/ωa as a function of κ/ωa

with λ/ωa = 0.05 in Fig. 3. For comparison, both results from
numerical simulation and Eq. (6) are included.

B. Rotating-wave approximation

When the atom-photon interaction is weak, the RWA leads
to the Jaynes-Cummings-type Hamiltonian:

HRWA = ωa

2
σz + ωca†a + λ(aσ+ + a†σ−)

+ κ (a2σ+ + a†2
σ−). (9)

Here, we define the symbols σ+ = |e〉〈g| and σ− = |g〉〈e|.
From Fig. 1(a), it is observed that a three-photon resonance
can also occur in the gRM when the RWA applies. This is
drastically different from the situation in the original Rabi
model, where the resonance can only happen with the pres-
ence of counter-rotating terms [34]. From Eq. (6), we deduce
the effective coupling strength of the three-photon resonance
under the RWA as

	
3−ph
RWA, eff = −18

√
6κ2λ

ω2
a

. (10)

The corresponding resonant frequency is

(
ω′

c

ωa

)3-ph

RWA

= 1

3
+ 2

(
λ

ωa

)2

+ 8
( κ

ωa

)2
. (11)

(a)

(b)

(c)

FIG. 4. Three different coupling schemes for the four-photon
resonance in the gRM in Eq. (1). Here, counter-rotating processes are
labeled by dashed lines. Single (double) lines with arrows indicate
coupling between the bare states by the single-photon (two-photon)
term in the generalized Rabi model. The values near the arrowed
lines are the matrix elements 〈α1, n1|V |α2, n2〉.

IV. MULTIPHOTON RESONANCES
WITH FOUR TO SIX PHOTONS

The additional two-photon term in the generalized Rabi
model leads to the possibility of realizing multiphoton res-
onances with larger numbers of photons. By limiting to
resonances involving two intermediate states, four- to six-
photon resonances can be achieved.

A. Four-photon resonance

We begin by considering the four-photon resonance be-
tween the bare states |g, 4〉 and |e, 0〉. The resonance is
interesting for two reasons. First, the two bare states belong
to different symmetry classes under �1 and �2. Thus it is
impossible to realize the resonance in the Rabi model with
only one- or two-photon terms. A possible solution is in-
troducing a parity-violating term in the Hamiltonian. This
is achievable in circuit QED systems [6]. Nevertheless, a
higher-order coupling involving three intermediate states is
required. The second feature of the four-photon resonance
is the necessity of having counter-rotating terms if only two
intermediate states are involved. This is demonstrated in the
three different coupling schemes in Fig. 4. Using Eqs. (5) and
(6), we determine the resonant frequency,

(
ω′

c

ωa

)4-ph

= 1

4
+ 8

3

(
λ

ωa

)2

+ 12
( κ

ωa

)2
, (12)
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FIG. 5. An avoided crossing in the energy levels of the fourth and
fifth excited states in the gRM when ωc/ωa ≈ 1/4. The Dirac kets
show the major components of the eigenstates away from the four-
photon resonance. The resonant frequency is determined numerically
as ω′

c/ωa ≈ 0.258, with a corresponding energy splitting �/ωa ≈
1.57 × 10−3. Here, we set λ/ωa = 0.05 and κ/ωa = 0.01. Note that
both λ and κ must be nonzero to achieve the resonance.

and the effective coupling as

	
4-ph
eff = −128

√
6

9

(
λ

ωa

)2

κ. (13)

In Fig. 5, we plot the energies of fourth excited and fifth
excited states of the gRM at ωc ≈ ωa/4, λ/ωa = 0.05, and
κ/ωa = 0.01. Percentage differences between the results from
perturbation theory and numerical diagonalization are shown
in Fig 6.

It is necessary to clarify that a four-photon resonance can
also occur under the RWA, for example, via the leading-
order coupling scheme: |e, 0〉 → |g, 2〉 → |e, 1〉 → |g, 3〉 →
|e, 2〉 → |g, 4〉. However, this is a fifth-order process which is
suppressed and cannot be effectively realized when λ/ωa <

0.1 and κ/ωa < 0.1.

B. Five- and six-photon resonance

By involving two intermediate states, multiphoton reso-
nances involving five and six photons can also be realized in
the gRM. First, consider the five-photon resonance between
|e, 0〉 and |g, 5〉. To the leading order, these two states can be
connected in three different ways:

|e, 0〉 → |g, 1〉 → |e, 3〉 → |g, 5〉,
|e, 0〉 → |g, 2〉 → |e, 3〉 → |g, 5〉,
|e, 0〉 → |g, 2〉 → |e, 4〉 → |g, 5〉. (14)

Using Eqs. (5) and (6), it is straightforward to determine the
resonant frequency,

(
ω′

c

ωa

)5-ph

= 1

5
+ 5

2

(
λ

ωa

)2

+ 40

3

( κ

ωa

)2
, (15)

FIG. 6. Percentage errors between (a) the resonant frequencies
ω′

c/ωa and (b) energy splitting �/ωa for the four-photon resonance
from perturbation theory and numerical diagonalization. For refer-
ence, we mark the regions (below the red dashed lines) in (a) and
(b) that have percentage errors less than 5% and 10%, respectively.

and the effective coupling strength,

	
5-ph
eff = −125

√
30κ2λ

9ω2
a

. (16)

Similarly, the following leading-order coupling

|e, 0〉 → |g, 2〉 → |e, 4〉 → |g, 6〉 (17)

leads to a possible six-photon resonance between |e, 0〉 and
|g, 6〉. The corresponding resonant frequency and the effective
coupling are determined as(

ω′
c

ωa

)6-ph

= 1

6
+ 12

5

(
λ

ωa

)2

+ 15
( κ

ωa

)2
(18)

and

	
6-ph
eff = −27

√
5κ3

ω2
a

. (19)
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In principle, one can obtain similar plots for the percentage
difference between the results from perturbation theory and
numerical diagonalization. As the number of photons being
involved increases, third-order perturbation theory is accurate
in a much smaller region of the parameter space. Nevertheless,
the multiphoton resonances do exist. At the same time, the
perturbation theory approach is still valid given that the atom-
photon interaction is sufficiently weak.

C. Possible application in NOON state generation

In previous works, different applications of multiphoton
resonances have been proposed. Some examples include pro-
duction of coherent photons [34], simultaneous excitation of
several atoms [36], frequency conversion [39], and prepara-
tion of different entangled photon states [45,48]. Here, we
want to address a possible application of our results in NOON
state generation. The discussion follows our previous work
closely [34]. Such a discussion also allows us to highlight the
advantage of realizing and exploiting multiphoton resonances
in the generalized Rabi model.

Suppose we have two spatially separated qubits which have
identical transition frequency, i.e., ωa = ωa,1 = ωa,2. Each of
them is coupled to its own microwave resonator. There is no
coupling between different resonators or different qubits. We
further assume the whole setup can be modeled by a sum
of two copies of Eq. (1), but with ωc being time dependent.
Initially, the two qubits are prepared in the entangled state:
(|g, e〉 + |e, g〉)/

√
2. Meanwhile, both resonators have the

same mode frequency and contain zero excitation. At the be-
ginning, the mode frequency ωc = ωc,1 = ωc,2 is smaller than
the multiphoton resonant frequency ω′

c. Following Ref. [34],
we increase ωc(t ) adiabatically and finally reach ωc(t f ) >

ω′
c. After reaching ωc(t f ), ωc remains unchanged. In the

ideal situation, the bare states |e, 0〉 and |g, 0〉 will evolve to
|g, N〉 and |g, 0〉, respectively. As a result, the two resonators
will acquire a final state |NOON〉 = (|N, 0〉 + eiθ |0, N〉)/

√
2,

whereas both qubits are in the ground state.
In fact, the above discussion assumed that the two nearly

degenerate eigenstates of the gRM take the form |ψ±〉 =
(|e, 0〉 ± |g, N〉)/

√
2 at the N-photon resonance. This is a

good approximation only when both λ/ωa and κ/ωa are suffi-
ciently small. If this condition is violated, then |ψ±〉 also con-
tain significant projections along other bare states in addition
to |e, 0〉 and |g, N〉. In this scenario, the final state obtained
from the adiabatic passage does not have a high overlap with
|NOON〉. This issue makes it difficult to put our proposal in
practice. For a linearly increasing ωc(t ), the transition across
the multiphoton resonance can be approximated by a Landau-
Zener transition [34]. Within this approximation, the sweep-
ing speed of ωc(t ) should be small compared to the energy
splitting squared at the avoided crossing. At the same time,
spontaneous decay of qubits (or two-level atoms) and photon
leakage from resonators (or microwave cavities) occur in a
real setup. Therefore, the sweeping speed must be small but si-
multaneously large enough to prevent significant damping ef-
fects. Our previous discussion shows that the gap �/ωa scales
with the third order of the qubit-photon coupling strength. To
achieve a good overlap between the final state and |NOON〉,
it is essential to set λ/ωa < 0.1 and κ/ωa < 0.1. Under this

condition, a sweeping speed in the order of 10−7ω2
a can pro-

vide an adiabatic passage across the multiphoton resonance.
In order to put our scheme into practice, the qubit decay rate
and Q factor of the resonator should be properly controlled.

From the above discussion, one immediately notices the
advantage of realizing multiphoton resonances in the general-
ized Rabi model. For the original Rabi model and asymmetric
Rabi model, only a single-photon coupling term exists. Then,
at least N − 1 intermediate states are involved to achieve an
N-photon resonance. A simple perturbation theory analysis
suggests that the gap at avoided crossing scales as (λ/ωa)N .
Since λ/ωa � 0.1, this high-order process is suppressed and
cannot be effectively realized as in the gRM. For application,
it becomes more challenging to realize adiabatic passage and
generate NOON states with N � 4.

V. EFFECTS OF MULTIPHOTON RESONANCES ON
CHIRAL TRANSPORT IN CIRCUIT QED LATTICES

Recently, chiral quantum optics has become a burgeoning
field that may find potential applications in quantum infor-
mation and quantum communication [85]. The propagation
is said to be chiral if light travels in a single direction with
a strong suppression of backscattering. It may also turn out
that the absorption and emission of photons from an emitter
depend on the propagation direction of light. Clearly, this
type of chiral transport and light-matter interaction breaks
time-reversal symmetry. One possible mechanism to achieve
this is providing a tight confinement in the transverse direction
of light, which develops into an emergent transverse spin.
Then, the locking of spin and the propagation direction leads
to the unidirectional flow of photons and chiral light-matter
coupling [86–89]. This task has become practical thanks to
the tremendous progress in fabricating different nonreciprocal
nanophotonic structures, such as photonic-crystal waveguides
and optical nanofibers [90–104].

In addition to the above mechanism, chiral photon trans-
port can be also achieved by inducing a synthetic gauge field
for photons [75–82]. This approach can be better understood
if one analogizes it to the quantum Hall effect in electronic
systems. In the simplest case of an integer quantum Hall
liquid, electrons propagate with a definite chirality on the
edge of the system [105,106]. This chiral flow of electrons
originates from the breaking of time-reversal symmetry (TRS)
and the nontrivial topology in the system due to the exter-
nal magnetic field [107,108]. A similar effect, known as the
quantum anomalous Hall effect, may also occur in a lattice
without any external magnetic field [109]. In this case, elec-
trons hop in the lattice with a complex hopping amplitude, and
the accumulated Aharonov-Bohm phase plays the role of an
effective magnetic flux. With this knowledge, one may think
of breaking TRS and achieving chiral transport in photonic
lattices in a similar fashion. However, this task is not straight-
forward as photons are chargeless in an electromagnetic field.
In order to put the scheme in practice, it was proposed to insert
on-chip circulators made up of Josephson rings with enclosed
magnetic fluxes in cQED lattices [75]. By doing so, a complex
phase factor in the photon-hopping term is induced. At the
end, both TRS breaking and chiral transfer of a Fock state
with a single photon can be accomplished by tuning the phase
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factor properly. Based on the current development in cQED
architecture, the proposal is argued to be accessible in real
practice.

In the above discussion, light-matter interaction was com-
pletely left out of consideration. When the interaction is
included, both the energy spectrum and the quantum dynamics
of the system can be modified. Instead of trapped atoms and
cavity photons [110], microwave resonators and supercon-
ducting qubits are the basic elements to simulate quantum
optical processes in a cQED system [4]. Meanwhile, the
system can be still described by the Rabi model and its gen-
eralization. By coupling the microwave resonators and their
corresponding individual qubits as a light-matter interaction,
photon transport in cQED lattices equipped with synthetic
fluxes was examined in Ref. [76]. The previous study focused
on the regime where the RWA applies, such that the system re-
duces to a Jaynes-Cummings lattice. Both quantum dynamics
and the corresponding homodyne transmission amplitude of
the system were found to depend sensitively on the coupling
strength. This result is believed to have a profound impact on
quantum measurement.

By taking counter-rotating processes into account, we
demonstrated in previous sections a possible coupling be-
tween a two-level system and photons via multiphoton
resonances. Since the ultrastrong-coupling regime can be
reached effectively in a cQED system, this kind of resonant
coupling is relevant and should not be neglected. Reviewing
the system being investigated in Ref. [76], it is unclear how
photon transfer and multiphoton resonances will interplay
with each other. Supposing there are n > 1 photons in the sys-
tem, one may ask if they can be still transferred chirally in the
cQED lattice. This problem is not trivial as these photons can
be absorbed to excite a qubit via an n-photon resonance. At the
opposite extreme, one may also ask, can the photon-hopping
process being suppressed? The answers to these questions will
provide insight into chiral photon transport in the USC regime
and complement previous work. More generally, the results
may also suggest the importance of investigating the effect
of light-matter interaction in topological photonic systems, in
which chiral propagation of light may also be observed.

In the following discussion, we revisit the setup considered
in Ref. [76]. To be specific, the system is a junction con-
nected to three microwave resonators as shown in Fig. 7. Each
microwave resonator is coupled to a superconducting qubit.
Here, we do not employ the RWA. We further assume that
each qubit-resonator system is described by the generalized
Rabi model in Eq. (1). In addition, photons can hop between
the neighboring resonators with a complex hopping amplitude
J ′ = Jeiθ . It was suggested that the TRS can be broken by
choosing 3θ �= πZ [75,76]. The breaking of TRS is necessary
(but not sufficient) for realizing a chiral transfer of photons in
the system. Based on the above discussion, the Hamiltonian
describing the system is

H =
3∑

j=1

HgRM
j + J

3∑
j=1

(a†
j+1a je

−iθ + H.c.). (20)

Here, the symbol HgRM
j denotes the generalized Rabi Hamil-

tonian for the jth resonator. It takes the form in Eq. (1).

FIG. 7. Schematic diagram of the system with a junction con-
nected to three microwave resonators. Each resonator is coupled to a
qubit as shown in the inset. Time-reversal symmetry is broken by
introducing a synthetic magnetic flux in the system. An effective
Aharonov-Bohm phase of 3θ is gained when a photon hops around
the system.

In addition, we tune the optical frequencies for all three
resonators to the multiphoton-resonant frequency ω′

c, as pre-
dicted from the perturbation theory approach in Sec. II. The
value of ω′

c depends on which multiphoton resonance one
wants to study.

Before solving the Hamiltonian exactly, we can understand
and predict some features of the short-time dynamics of the
system. When the dynamics is completely dominated by pho-
ton hopping, it suffices to neglect the qubits and focus on the
following Hamiltonian:

Hhop =
3∑

j=1

ωca†
j a j + J

3∑
j=1

(a†
j+1a je

−iθ + H.c.). (21)

This Hamiltonian can be easily diagonalized. Suppose the
TRS is broken by choosing θ = π/6. Then, a chiral photon
transfer was predicted if the system has one photon in any
one of the resonators initially [75]. It requires a time tH =
TH/3 = 2π/(3

√
3J ) for the photon to hop to the neighboring

resonator. Here, TH is the period of photon hopping around
the whole system. Different from the original work, our initial
state has n photons in one of the resonators. If the dynamics of
the system is dominated by photon hopping, a chiral transfer
of n photons is expected.

On the other hand, one may consider the opposite limit by
assuming the photon-hopping effect is negligible. Thus the
photons are trapped in the same resonator. Suppose we choose
an initial state: |g, n〉 for the first resonator and |g, 0〉 for the
other two resonators. In this case, a multiphoton resonance is
expected in the first resonator due to the coupling between
the bare states |g, n〉 and |e, 0〉. When both λ/ωa 	 1 and
κ/ωa 	 1 are satisfied, the multiphoton resonance can be
approximated by the effective Hamiltonian in Eq. (4). Then,
the quantum state of the first resonator evolves approximately
as

|ψ (t )〉 ≈ e−iEt [cos (	efft )|g, n〉 + i sin (	efft )|e, 0〉]. (22)
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Here, E = Ei + �Ei = E f + �E f for the two bare states with
the energy corrected by Stark shift. The form of |ψ (t )〉 sug-
gests that a time interval tR = TR/2 = π/(2	eff ) is required
for the qubit to be excited by the photons. We emphasize that
both E and 	eff are approximate results from perturbation
theory. Thus Eq. (22) has neglected all possibly small but
nonzero projections along other bare states. These projections
also affect the quantum dynamics of the system, and are not
negligible when the qubit-photon interaction becomes suffi-
ciently strong.

From the above discussion, one can define a scaleless
parameter μ = tR/tH = 3

√
3J/(4	eff ). Depending on μ, the

short-time dynamics of the system can transit from a chiral
photon transfer to a suppression of photon transfer. In the
following discussion, we use the four-photon resonance as a
demonstration. The two extreme limits μ 
 1 and μ 	 1 are
discussed separately.

A. μ � 1: Chiral transfer of photons

We first consider the scenario when tR 
 tH . In this case,
there is not enough time for the qubit to be excited before the
photons are transferred to the next resonator. Hence, the short-
time dynamics of the system is dominated by photon hopping.
From the previous discussion, a chiral transfer of four photons
and unexcited qubits are predicted. Nevertheless, the actual
dynamics of the system will be modified by the qubit-photon
interaction.

We set λ/ωa = 0.05 and κ/ωa = 0.01 for the strengths
of one-photon and two-photon terms (same parameters as
in Fig. 5). As a result, ω′

c ≈ 0.258ωa is predicted for the
optical frequency to achieve a four-photon resonance. We
set our initial state as |�(0)〉 = |g, 4〉1 ⊗ |g, 0〉2 ⊗ |g, 0〉3. By
setting μ = 10 and θ = π/6, we simulate the time evolution
of the system numerically. Using the result, we evaluate both
〈�(t )|a†

j a j |�(t )〉 and 〈�(t )|σ+
j σ−

j |�(t )〉. For convenience,

these quantities are abbreviated as 〈a†
j a j〉 and 〈σ+

j σ−
j 〉 in

the following discussion. The numerical results are shown in
Fig. 8.

For the short-time dynamics, the system shows a chiral
transfer of photons between the resonators with a period of
TH . At the same time, 〈a†

j a j〉 show decreasing peaks due
to the modulation from four-photon Rabi oscillations. By
increasing μ, the peaks can attain values closer to 4. Also,
the chiral transfer of photons can persist for a longer period
of time. Note that the eigenstates of the qubit-photon sys-
tem at the multiphoton resonance are not perfectly given by
|±〉 = (|e, 0〉 ± |g, 4〉)/

√
2. There are small projections along

other bare states, such as |e, 1〉, |e, 2〉, etc. The possibility of
exciting the qubits to these bare states also contributes to the
decreasing 〈a†

j a j〉 and nonvanishing 〈σ+
j σ−

j 〉. Their contribu-
tions are small and the corresponding oscillations should be
much faster.

To investigate the transition out of the short-time dynamics,
we simulated the time evolution of the system for t � 50TH .
Within this period of time, 〈σ+

j σ−
j 〉 remain small and do not

go beyond 0.1. It indicates that the qubits are nearly unexcited.
For a better illustration, we only show 〈a†

j a j〉 with t � 25TH

in Fig. 8(c). From the figure, we identify the occurrence of
transition at t ≈ 11TH . Although the amplitudes of 〈a†

j a j〉

FIG. 8. Time evolution of the expectation values of (a) photon
numbers 〈a†

j a j〉 and (b) qubit excitations 〈σ+
j σ−

j 〉 in the short-time
regime. The transition out of the short-time dynamics is illustrated
in (c). Here, the initial state of the system is |�(0)〉 = |g, 4〉1 ⊗
|g, 0〉2 ⊗ |g, 0〉3. The solid red (darkest) line, dashed orange (lighter
gray) line, and dotted yellow (lightest gray) line display the values
for the first, second, and third resonators, respectively. Here, the
parameters are ωc/ωa ≈ 0.258, λ/ωa = 0.05, κ/ωa = 0.01, μ = 10,
and θ = π/6.
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are decreasing, photons are transferred among the resonators
chirally before the transition. After the transition, the chiral
transfer becomes less obvious and less significant.

B. μ � 1: Multiphoton Rabi oscillation
and suppression of photon transfer

By changing μ to 0.1 and keeping all parameters un-
changed, we examine the dynamics in the opposite limit. The
short-time dynamics of the system is dominated by multi-
photon resonance. Once the rotating-wave approximation is
made, there will be no multiphoton resonance (except the
three-photon resonance when κ �= 0). Therefore, the dynam-
ics strongly depends on the counter-rotating processes in the
generalized Rabi model.

Using the same initial state as before, we simulate the
time evolution of the system for 0 � t � TH . In the short-
time regime, four-photon resonance in the first resonator is
anticipated. Since μ = 0.1, we have TH = 15TR. Hence, ap-
proximately 15 four-photon Rabi oscillations between |g, 4〉
and |e, 0〉 should be observed. Our numerical results are
shown in Fig. 9 which support our prediction. Small projec-
tions along other bare states and the tiny probability of photon
transfer out of the resonator make the multiphoton Rabi
oscillation between |g, 4〉 and |e, 0〉 imperfect. We have nu-
merically verified that this can be improved by tuning λ → 0,
κ → 0, or reducing the photon-hopping strength, i.e., μ → 0.
This feature actually agrees with Ref. [68], which studied the
gRM in the absence of photon hopping. When both λ and κ

are nonzero, there would be two different Rabi frequencies
in the system. Hence, their interplay makes it impossi-
ble to observe a perfect Rabi oscillation. Although neither
the single-photon oscillation nor the two-photon oscillation is
the most relevant in our present case, the simultaneous pres-
ence of two Rabi frequencies still makes the multiphoton Rabi
oscillation imperfect. In addition, Fig. 9 clearly confirms the
absence of four-photon resonance under the RWA. Since the
photon frequency is largely detuned from the transition fre-
quency of the qubit, the probabilities of exciting the qubit by
one-photon and two-photon co-rotating processes are small.
This is reflected in the slight modulation of 〈a†

1a1〉 and the
small-amplitude rapid oscillation in 〈σ+

1 σ−
1 〉 when the RWA

is applied.
Another important feature in the short-time dynamics is

the small magnitudes of 〈a†
2a2〉 and 〈a†

3a3〉. Naively, one may
expect photon transfer across the resonator junction would
occur within a time scale t � TH . However, our numerical
result for the dynamics in a longer time regime in Fig. 10
disproves the idea. The figure shows that 〈a†

2a2〉 and 〈a†
3a3〉

remain small even when t ≈ 10TH . Instead of the original time
scale tH = TH/3, a much longer time t ≈ 30TH is required for
photon transfer between different resonators. In other words,
the process is strongly suppressed by the four-photon reso-
nance in the first resonator. At the same time, there is no
preferred chirality in the photon transfer.

C. Possible implication for energy transfer

Suppose the first and the third resonators in Fig. 7 are
coupled to heat baths with temperatures �h and �l , re-

FIG. 9. Time evolution of the expectation values of (a) photon
numbers 〈a†

j a j〉 and (b) qubit excitations 〈σ+
j σ−

j 〉 in the short-time
regime. The solid red (darkest) line, dashed orange (gray) line, and
dotted yellow (lightest gray) line display the values for the first,
second, and third resonators, respectively. For comparison, the ex-
pectation values 〈a†

1a1〉 and 〈σ+
1 σ−

1 〉 with the RWA are shown by
the purple fuzzy lines. The same initial state of the system and
parameters in Fig. 8 are adopted, except μ is changed to 0.1.

spectively. This coupling introduces dissipation from photon
leakage and qubit decay, with the respective decay rates γp

and γa. The nonzero temperature � of the heat bath modifies
the effective decay rates by the Bose-Einstein distribution
nB(�). Here, the dissipation is assumed to be weak such
that [nB(�)γp]−1, [nB(�)γa]−1 
 min (TH , TR). Consider the
case when �h > �l , for which heat and energy flow in the
system. This flow of energy relies on the photon-hopping
process between different resonators. Based on the previous
results, we discuss qualitatively possible implication for en-
ergy transfer in the system.

The nonequilibrium distribution of photon number in each
resonator can be very complicated. However, the chiral trans-
fer of photons is affected only when the qubit frequency and
photon frequency match the condition of multiphoton reso-
nance. Supposing the condition is satisfied, a chiral transfer
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FIG. 10. Time evolution of the expectation values of (a) photon
numbers 〈a†

j a j〉 and (b) qubit excitations 〈σ+
j σ−

j 〉 in a longer time
regime. The same initial state of the system and parameters in Fig. 9
are adopted.

of photons is still expected when μ 
 1. Thus we expect
heat flows in the system with a preferred chirality, the same
as the photon hopping discussed in Sec. V A. On the other
hand, a similar argument and the result in Sec. V B suggest the
suppression of energy flow in the μ 	 1 regime. A quantita-
tive analysis can be performed by employing the generalized
master equation developed in Ref. [44]. This will be addressed
elsewhere.

Furthermore, it is tempting to study the effect of photon-
atom interaction on energy transport in topological photonic
systems. For example, a chiral flow of thermal current was
reported in a Hofstadter square lattice with bosons [111]. This
flow was shown to be robust against disorder, and stemmed
from a topological protection. It is unclear if this chiral flow
persists or not when atoms and photon-atom coupling are
introduced to the lattice. As a first guess, our results may sim-
ply suggest that the chiral flow persists whenever the period
of photon hopping is much shorter than the period of Rabi
oscillation from the resonant coupling.

VI. CONCLUSIONS

To conclude, we have investigated different multiphoton
resonances in the generalized Rabi model (gRM) at ωc ≈

ωa/N . We have focused on three-photon to six-photon reso-
nances because they involve only two intermediate states. This
feature allowed us to apply third-order perturbation theory
and derive an effective Hamiltonian to describe the resonance.
In particular, we have obtained an analytic approximation
for the resonant frequency ω′

c/ωa and energy splitting �/ωa

of the avoided crossing. The validity of the approximation
has been checked explicitly for three-photon and four-photon
resonances. By comparing to the results from numerical di-
agonalization, we found that both approximate ω′

c/ωa and
�/ωa have errors less than 10%, when λ/ωa < 0.05 and
κ/ωa < 0.05.

Our work has highlighted the versatility and effectiveness
of realizing multiphoton resonances in the gRM. They orig-
inate from the additional two-photon term in the model. We
have provided a concrete example, showing that the lack of
parity symmetry enabled us to achieve four-photon and six-
photon resonances. Furthermore, the lowest-order coupling
between |g, N〉 and |e, 0〉 via counter-rotating processes in the
asymmetric Rabi model is an N th-order process. Therefore,
�/ωa ∼ (λ/ωa)N for the corresponding N-photon resonance.
In contrast, our study showed that a third-order dependence
holds for all three- to six-photon resonances in the gRM. For a
typical circuit QED setup operating in the ultrastrong regime,
both λ/ωa and κ/ωa can reach the order of 0.1. It is believed
that all these resonances are significant and achievable in
current experiments. We have further exploited this advantage
and outlined a possible application of our results in NOON
state generation. Our proposal relies on an adiabatic sweeping
of the photon frequency across the multiphoton resonance.
A large splitting of the energy levels at the resonance is
preferred. The possibility of achieving high-number photon
resonances via a lower-order coupling scheme makes it feasi-
ble to realize them in a real circuit QED setup. It is beyond
the scope of the current paper to include a thorough numerical
study of the proposal and include dissipative effects.

In addition, we have revisited the setup of a junction of
three resonators coupled to their individual qubits [76]. By not
employing the rotating-wave approximation, it enabled us to
realize multiphoton resonances in the system and examine its
interplay with photon transport. Specifically, we quantified the
competition between multiphoton resonances and the photon-
hopping effect by defining the ratio μ = 3

√
3J/(4	eff ). We

chose ωc ≈ ωa/4, and studied the short-time dynamics of
the system at μ = 10 and μ = 0.1 numerically. The system
underwent a transition from chiral transfer of four photons
in the former case to a suppression of photon transfer in the
latter case. This behavior is similar to the scenario when the
system contains one photon only. In general, we expect the
same transition can occur whenever ωc ≈ ωa/N .

Finally, we believe our work has further motivated future
studies of the generalized Rabi model. On the application
side, our work may shed light on quantum measurement and
manipulation of energy transport in cQED systems in the
ultrastrong-coupling regime. A concrete example comes from
quantum nondemolition measurements (QNMs) [112], which
rely on a dispersive interaction. In this situation, multipho-
ton resonances should be avoided. Given that both photon
hopping and qubit-photon interaction strengths are tunable in
realistic circuit QED setups, our results on chiral transport are
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relevant for real practice. For future work, it will be tempting
to examine how chiral light transport in different topological
photonic systems is affected by light-matter interaction.
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APPENDIX: AN ALTERNATIVE DERIVATION
OF EFFECTIVE HAMILTONIANS FOR

MULTIPHOTON RESONANCES

In this Appendix, we derive the effective Hamiltonian for
multiphoton resonances in the generalized Rabi model by
employing the James effective Hamiltonian approach [84].
By doing so, we verify the resonant frequency and effective
coupling strengths in the main text.

We start by rewriting the gRM Hamiltonian in the in-
teraction picture with H0 = (ωa/2)σz + ωca†a. From the
Heisenberg equations of motion, i.e., dÔ/dt = i[H0, Ô], we
have

a(t ) = ae−iωct , (A1)

a2(t ) = a2e−2iωct , (A2)

σ+(t ) = σ+eiωat . (A3)

Using the above results, it is straightforward to deduce that

HI (t ) = λ
[
aei(ωa−ωc )t + a†ei(ωa+ωc )t

]
σ+ + H.c.

+ κ
[
a2ei(ωa−2ωc )t + a†2

ei(ωa+2ωc )t
]
σ+ + H.c. (A4)

Here, HI (t ) denotes the Hamiltonian for the generalized Rabi
model in the interaction picture. For the n-photon resonance,
we set ωa = nωc. Then, we have

HI (t ) = λ
[
aei(n−1)ωct + a†ei(n+1)ωct

]
σ+ + H.c.

+ κ
[
a2ei(n−2)ωct + a†2

ei(n+2)ωct
]
σ+ + H.c. (A5)

Based on the James effective Hamiltonian approach, the
effective Hamiltonian for multiphoton resonance can be ob-
tained as [84]

Heff(t ) = H (2)
eff (t ) + H (3)

eff (t ) + · · · . (A6)

Since we only focus on multiphoton resonances involving two
intermediate states, a third-order perturbation theory is suffi-
cient. Explicitly, the second-order and third-order correction
terms are

H (2)
eff = 1

i
HI (t )

∫ t

HI (t ′) dt ′, (A7)

H (3)
eff = − HI (t )

∫ t

HI (t1)
∫ t1

HI (t2) dt2 dt1. (A8)

For convenience, we denote the photon-number operator
N̂ = a†a. By only keeping terms which do not have oscillating
phase factors, we obtain

H (2)
eff = λ2

(n2 − 1)ωc
[2nN̂ + (n + 1)]σ+σ−

− λ2

(n2 − 1)ωc
[2nN̂ + (n − 1)]σ−σ+

+ 2κ2

(n2 − 4)ωc
[(n + 2) + (n + 4)N̂ + nN̂2]σ+σ−

− 2κ2

(n2 − 4)ωc
[(n − 2) + (n − 4)N̂ + nN̂2]σ−σ+.

(A9)

For H (3)
eff , the nonoscillating terms depend on the value of

n. For example, we choose n = 3 and obtain the third-order
effective Hamiltonian for the three-photon resonance:

H (3)
eff = −

(
λ3 a† 3

4ω2
c

+ κ2λa† 2
a a† 2

ω2
c

+ κ2λa† 4
a

4ω2
c

)
σ−

−
(

λ3a3

4ω2
c

+ κ2λa2a†a2

ω2
c

+ κ2λa4a†

4ω2
c

)
σ+. (A10)

By choosing different values of n, one may also obtain H (3)
eff

for the four-, five-, and six-photon resonances. All results here
are consistent with the calculation by Eq. (6) in the main text.

Resonant frequency

Consider the reduced Hilbert space formed by bare states
|e, n0〉 and |g, n0 + n〉. Then, Eq. (A9) gives a 2 × 2 diagonal
Hamiltonian. An effective Hamiltonian can be obtained by
rotating the result back to the laboratory frame. Then, the
resonant frequency for the n-photon resonance between the
bare states |e, n0〉 and |g, n0 + n〉 is derived by equating the
two diagonal matrix elements:(

ω′
c

ωa

)n-ph

= 1

n
+ 2n(2n0 + n + 1)

n2 − 1

(
λ

ωa

)2

+ 2n
[
n2

0 + (n0 + n)2 + 2n0 + n − 2
]

n2 − 4

( κ

ωa

)2
.

(A11)

Physically, the quadratic correction terms come from the Stark
shift in the energy levels. All equations for the resonant
frequencies (without the RWA) in the main text can be repro-
duced from Eq. (A11). Similarly, one can deduce the resonant
frequency for the three-photon resonance between |e, n0〉 and
|g, n0 + 3〉 under the RWA:(

ω′
c

ωa

)3-ph

RWA

= 1

3
+ (n0 + 2)

(
λ

ωa

)2

+ 2(n0 + 2)2
( κ

ωa

)2
.

(A12)

By setting n0 = 0, Eq. (11) in the main text is
reproduced.
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