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Collective atomic correlations in absorptive optical bistability without adiabatic elimination:
Exemplifying nonclassicality from a linearized treatment of fluctuations
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We determine the incoherent spectrum, squeezing properties, and second-order correlation function of the
collective atomic degrees of freedom in absorptive optical bistability. This is accomplished via a linearized
Fokker-Planck equation in the positive P representation, guided by the analysis of H. J. Carmichael [Phys.
Rev. A 33, 3262 (1986)] which does not resort to adiabatic elimination. We focus on the regimes of weak and
strong intracavity excitation, addressing the good-cavity and bad-cavity limits as well as the limit of collective
strong coupling. Adiabatic elimination of the intracavity field sustained by an auxiliary resonator coupled to
the ensemble is used to probe the atomic correlations via the formation of a collective emission channel. We
compare to the corresponding expressions for the forward-scattered light with reference to experimental results,
discussing key differences between the lower and upper branch of the steady-state semiclassical bistability curve.
Our analysis is carried out around the stable states situated far away from the turning points, where analytical
expressions can be obtained self-consistently, demonstrating a clear departure from classical behavior.
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I. INTRODUCTION

Absorptive optical bistability was theoretically predicted
in the late 1960s as a nonlinear phenomenon occurring in
optical resonators containing saturable absorbers, while an
experimental double-cavity arrangement was simultaneously
proposed to measure the associated hysteresis [1]. Following
a series of experimental and theoretical investigations (see
Ref. [2] for a comprehensive review on the topic), an exact
analytical theory was reported about a decade later for the
case of a unidirectional ring cavity where exact conditions
for absorptive optical bistability were established [3]. Since
then, optical bistability has closely followed the develop-
ment of quantum optics, exemplifying several departures from
classicality demonstrated by incoherent spectra, spectra of
squeezing, and intensity correlation functions through exten-
sive theoretical and experimental investigations. An important
connection to superradiance was noticed in the 1970s; apply-
ing the spectral theorem for thermodynamic Green’s functions
in the low-temperature limit of the Dicke model produces
the state equation of absorptive optical bistability [4]. The
authors of this paper then proposed that “the existence of
the second-order superradiant phase transition in thermody-
namic equilibrium and the existence of optical bistability as a
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first-order phase transition should stem from the same basic
matter-light interaction”.

The bad-cavity limit, in which the photon loss rate ex-
ceeds all other coupling rates, presents a connection between
absorptive optical bistability and the quantum statistical
treatment of superradiance (see e.g., Refs. [5–7]) and the
spontaneous emission enhancement in the perturbative treat-
ment of cavity QED (for the single-atom case, see Ref. [8]).
In contrast, the correlation between unlike atoms vanishes
in the good-cavity limit since the “communication band-
width” of the mediating channel, being equal to the photon
loss rate, tends to zero [see Ref. [9] and Sec. 15.2.4 of
Ref. [10]]. In 1978, the authors of Ref. [11] employed a
mean-field treatment to suggest a transition between a spec-
trum which is “single-peaked when the system is in the
cooperative stationary state” and a “dynamical Stark shift”
(or “one-atom stationary state”) when the Rabi frequency of
the incident field exceeds the so-called cooperative linewidth
of superfluorescence, set by a critical value of the atomic
density, in the bad-cavity limit. The same authors in that year
demonstrated a double-peaked Glauber-Sudarshan P distribu-
tion in the steady state [12] and, alongside Agarwal et al.,
reinforced the idea of a “discontinuous formation of sidebands
along the high-transmission branch” of absorptive bistability.
The latter employed a system-size expansion to take into ac-
count atomic correlation functions after having adiabatically
eliminated the intracavity field [13]; in doing so, they also ob-
tained an asymptotic expression for the fluorescent spectrum
in the “limit of zero density.” An extensive summary and com-
parison of these early results relying on adiabatic elimination
was given in Ref. [14]. The distinction between like and un-
like atom correlations, however, leads to continuous sideband
formation in the fluorescent spectrum along the upper branch
of bistability in the bad-cavity limit while there is no linewidth
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narrowing for the central peak [15]. A number of the findings
reported in the 1970s were corroborated and extended in 1983
by Carmichael et al. in Ref. [16], who derived expressions for
the spectrum of fluctuations from the equations of motion of
the covariance matrix in the positive P representation within
a linearized treatment; their analysis reaches out to disper-
sive bistability. In the dispersive limit, a connection between
optical bistability and the nonlinear polarizability model had
already been established in Ref. [17]. Three years lapsed to
see the development of a “linearized theory of fluctuations
for absorptive bistability without adiabatic elimination of the
atoms or the field” in Ref. [9], invoking the notion of “vacuum
Rabi splitting,” as introduced in Refs. [18,19], to explain the
oscillatory behavior of the second-order correlation function
of the transmitted light. This feature was observed in the
experiment of Raizen et al. [20] for a large cooperativity
parameter and ξ < 1 such that a photon emitted by the atomic
ensemble is likely to be captured and re-emitted multiple
times before its escape from the cavity. In a similar approach
revolving around linearization of the Fokker-Planck equation
(FPE) for the Glauber-Sudarshan P quasiprobability distribu-
tion, the spectrum of squeezing has been studied in Ref. [21].

In the decades that followed, several experiments in quan-
tum electrodynamics reached operating conditions of cavity
QED, whose interest lies primarily with strong coupling for
single atoms where the linearized treatment of fluctuations is
no longer valid. Single-atom absorptive optical bistability was
theoretically predicted in Ref. [22] while spontaneous sym-
metry breaking and dressed-state polarization was associated
with the so-called zero-system size of absorptive bistability
in Ref. [23], a critical effect experimentally demonstrated in
Ref. [24]. A few years later, photon antibunching was ob-
served for a small number of two-level atoms strongly coupled
to a high-finesse cavity [25], while a violation of Schwarz
inequality due to nonclassical correlations in the bunched
light emitted from a collection of atoms strongly coupled to
a cavity mode was reported in Ref. [26]. Experimental data
at weak excitation were also presented in Ref. [27]. Closer
to our days, atom-light field correlations for a small number
of atoms strongly coupled to the intracavity field in optical
bistability were discussed in Ref. [28], where it was reported
that the size of these correlations increases with the number
of atoms for strong driving, along the upper branch of the
bistability curve. The authors bring up the similarity of the
pronounced correlations with the “cavity-QED limit” of a
thresholdless device and the associated gradual evolution of
a quantum nonlinear process, as opposed to the conventional
“thermodynamic limit” where one sends the saturation photon
number to infinity [29]. Alternatively, the Bogolyubov-Born-
Green-Kirkwood-Yvon hierarchy had been used in Ref. [30]
to study the scattering of resonant radiation in a dense two-
level medium, where dispersive bistability is regarded as a
switching mechanism between different spectral patterns.

After the achievement of strong coupling of a Bose-
Einstein condensate (BEC) to an ultrahigh finesse resonator
in Ref. [31] and at a single-atom level [32]—defining a
conceptually new regime of cavity QED—and the recent
theoretical proposals to control optical bistability for a con-
figuration comprising a BEC in a cavity [33–35] akin to
the function of an optical switch, the quantum correlations

of the field scattered by the intracavity atoms are not only
within experimental reach but also in a position to signal
criticality arising from underlying nonlinear interactions. A
hybrid optomechanical setup to tune bistability has been
used in Ref. [36] where a BEC is trapped in a Fabry-Pérot
resonator with a movable mirror. At the same time, active
environments have been very recently shown to enhance the
system nonlinearity in the strong-coupling regime of cavity
QED [37,38]. Our interest in this work is with the linearized
treatment of atomic polarization fluctuations without resorting
to adiabatic elimination. Light-matter correlation functions in
the weak-excitation limit of absorptive bistability have been
recently presented in Ref. [39] within the same framework.
The procedure requires a large number of atoms and calls
for an experimental investigation for the applicability of the
derived formulas when this number ceases to be large in
light of strong-coupling conditions for single atoms; some
restrictions are immediately obvious from general require-
ments such as the non-negativity of the intensity correlation
function or that arise from the comparison with alternative
theoretical approaches, such as the pure-state factorization
for weak excitation [40]. We remain within purely absorptive
optical bistability and apply a linearization procedure about
the steady states lying along the very beginning of the cooper-
ative branch and at the high-excitation part of the input-output
curve; fluctuations are always assumed to follow a Gaussian
distribution. After delineating the transition from the master
equation (ME) to the linearized FPE for the fluctuations in
the phase space in Sec. II, we proceed to the study of atomic
fluctuations about the steady state in Sec. III. We derive an
approximate formula for the correlation spectrum in the weak-
excitation limit in Sec.. III A, placing particular emphasis
on the bad and good cavity limits as well as on the limit
of collective strong coupling between the atomic ensemble
and the intracavity field. We then move on to consider the
high-excitation part of the upper branch in Sec. III B giving
approximate expressions for the incoherent spectrum of the
forward and side-scattered fields. A proposal for accessing the
collective atomic emission is formulated in Sec. IV, taking
into account that side scattering does not occur via a single
collective mode. After a short discussion on squeezing in
Sec. V, we calculate the second-order correlation function of
the collective atomic polarization as a system degree of free-
dom in both weak- and strong-excitation limits of bistability
in Sec. VI before summarizing our findings and bringing up
the relevance to quantum optical experiments in Sec. VII.

II. CONSTRUCTING THE FOKKER-PLANCK EQUATION
FOR FLUCTUATIONS IN ABSORPTIVE OPTICAL

BISTABILITY

We begin with the master equation (ME) of optical
bistability for a collection of N homogeneously broadened
two-level atoms on resonance with a single cavity mode co-
herently driven with amplitude Ē0, and subject to radiative
damping [41],

dρ

dt
= −i

1

2
ω0[Jz, ρ] − iω0[a†a, ρ]

+ g[a†J− − aJ+, ρ] − i[Ē0e−iω0t a† + Ē∗
0 eiω0t a, ρ]
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+ γ

2

(
N∑

j=1

2σ j−ρσ j+ − 1

2
Jzρ − 1

2
ρJz − Nρ

)

+ κ (2aρa† − a†aρ − ρa†a), (1)

where ρ is the system density operator, a† and a are the
creation and annihilation operators, respectively, for the cavity
photons, and J−, J+, and Jz are collective atomic operators
defined via the pseudospin operators σ j±, σ jz, j = 1, . . . , N ,
for each of the N individual atoms comprising the collection,

J± ≡
N∑

j=1

σ j±, Jz ≡
N∑

j=1

σ jz, (2)

satisfying the familiar commutation relations of angular mo-
mentum operators:

[J+, J−] = Jz, [J±, Jz] = ∓2J±. (3)

As far as the energy scale of the dynamics is concerned, ω0

is the resonant frequency coinciding with the frequency of the
drive, γ is the atomic decay rate, κ is the decay rate for the
cavity field, and g is the atom-field dipole coupling strength,
which is assumed to have the same value for every atom, g =
[ω0d2/(2h̄ε0VQ)]1/2, where d is the atomic dipole moment,
ε0 is the vacuum permittivity, and VQ is the mode volume.
We also take n = 0 for the complete reservoir coupled to the
bistable absorber, which is appropriate at optical frequencies.
In ME (1), we have also neglected the inhomogeneous broad-
ening caused by the random movement of atoms comprising
the ensemble (Doppler broadening), which is appreciable at
room temperature.

Our next step is the construction of a phase-space repre-
sentation which is equivalent to the ME (1) within a linearized
treatment of quantum fluctuations. In the positive P represen-
tation, with its initial formulation extending Haken’s theory
for the laser [42], we employ a ten-dimensional space with five
independent phase-space variables (α, α∗, v, v∗, m) featuring
in the FPE constructed from the ME (1). One first defines a
suitable normally ordered characteristic function

χN (ζ , ζ∗, η, η∗, θ ) ≡ tr(ρeiζ∗a†
eiζaeiη∗J+eiθJz eiηJ− ), (4)

generating the hierarchy of normal-ordered operator averages,
and then the quasidistribution function [16,41]

χN (ζ , ζ∗, η, η∗, θ )

≡
∫

d2α

∫
d2α∗

∫
d2v

∫
d2v∗

∫
d2m

× P(α, α∗, v, v∗, m)e−iζ∗α∗e−iζαe−iη∗v∗e−iηve−iθm, (5)

where each integration extends over the entire complex
plane; it is important to note that the characteristic func-
tion χN (ζ , ζ∗, η, η∗, θ ) and the quasidistribution function
P(α, α∗, v, v∗, m) do not form a Fourier-transform pair un-
like what happens in the Glauber-Sudarshan P representation
[10,43]. Physical realizations have ensemble averages satisfy-
ing (α∗)P = (α∗)P, (v∗)P = (v∗)P, and (m)P = (m∗)P (in this
instance exclusively, the long bar signifies a statistical average
in contrast to the short bar on top of a variable or operator

reserved for scaling further on). For the phase-space variables,
we adopt the scaling (see Sec. 15.2.1 of Ref. [10])

ie−iφ0α = n1/2
sc ᾱ, (6a)

−ieiφ0α∗ = n1/2
sc ᾱ∗, (6b)

i
√

2 e−iφ0v = N v̄, (6c)

−i
√

2 eiφ0v∗ = N v̄∗, (6d)

m = Nm̄, (6e)

in parallel with the operator relations

ie−iφ0 a = n1/2
sc a, (7a)

−ieiφ0 a† = n1/2
sc a†, (7b)

i
√

2 e−iφ0 J− = NJ−, (7c)

−i
√

2 eiφ0 J+ = NJ+, (7d)

Jz = NJz, (7e)

where nsc ≡ γ 2/(8g2) is the saturation photon number as-
sociated with the weak-coupling limit of absorptive optical
bistability and the phase φ0 is introduced to ensure that the
driving-field amplitude appears hereinafter as a real parame-
ter. It is also convenient to transform to a frame rotating with
the drive frequency ω0:

ᾱ = e−iω0t ˜̄α, ᾱ∗ = eiω0t ˜̄α∗, (8a)

v̄ = e−iω0t ˜̄v, v̄∗ = eiω0t ˜̄v∗. (8b)

Hereinafter, the tilde on top of the operators and phase-space
variables signifies a transformation to a frame rotating by the
resonant frequency ω0. At this point, we introduce fluctuations
scaling with respect to the number of atoms such that the
small-noise limit admitting the linearized treatment is attained
for N � 1. Based on Ref. [9] and Sec. 15.2.1 of Ref. [10],
we write

ᾱ = 〈ā(t )〉 + N−1/2z, (9a)

ᾱ∗ = 〈ā†(t )〉 + N−1/2z∗, (9b)

v̄ = 〈J̄−(t )〉 + N−1/2ν, (9c)

v̄∗ = 〈J̄+(t )〉 + N−1/2ν∗, (9d)

m̄ = 〈J̄z(t )〉 + N−1/2μ, (9e)

and, demanding that terms of order N1/2 in the FPE vanish,
yields the Maxwell-Bloch equations (macroscopic law),

κ−1 d 〈 ˜̄a〉
dt

=−〈 ˜̄a〉 + 2C 〈 ˜̄J−〉 + Y, (10a)

κ−1 d 〈 ˜̄a†〉
dt

=−〈 ˜̄a†〉 + 2C 〈 ˜̄J+〉 + Y, (10b)

(γ

2

)−1 d 〈 ˜̄J−〉
dt

=−〈 ˜̄J−〉 + 〈J̄z〉 〈 ˜̄a〉 , (10c)

(γ

2

)−1 d 〈 ˜̄J+〉
dt

=−〈 ˜̄J+〉 + 〈J̄z〉 〈 ˜̄a†〉 , (10d)

γ −1 d 〈J̄z〉
dt

=−(〈J̄z〉 + 1) − 1

2

(〈 ˜̄J+〉 〈 ˜̄a〉 + 〈 ˜̄J−〉 〈 ˜̄a†〉),
(10e)
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in which Y ≡ n−1/2
sc (|Ē0|/κ ) is the scaled input. Their steady-

state solution reads

〈 ˜̄a〉ss = 〈 ˜̄a†〉ss ≡ X, (11a)

〈 ˜̄J−〉ss = 〈 ˜̄J+〉ss = − X

1 + X 2
, (11b)

〈J̄z〉ss = − 1

1 + X 2
, (11c)

where the intracavity amplitude X is determined by the state
equation of absorptive optical bistability,

Y = X

(
1 + 2C

1

1 + X 2

)
, (12)

where 2C = 2Ng2/(κγ ) is the cooperativity parameter. The
derivative dY/dX vanishes for X 2

± = C − 1 ± √
C(C − 4),

and bistability occurs for C > 4. In this paper, we will focus
on the linearization about the two stable steady states of the
bistability curve, one along the lower branch, defined by the
inequality X < X− and the other along the upper branch,
defined by the inequality X > X+.

Within the positive P representation and a frame rotating
with the frequency of the drive, we denote the vector of
fluctuations by Z̃ ≡ (z̃, z̃∗, ν̃, ν̃∗, μ), where (z̃, z̃∗) and (ν̃, ν̃∗)
are pairs of independent complex variables. Derivatives in
the extended configuration space of ten variables are suitably
defined so as to produce a positive semidefinite diffusion. The
covariance matrix corresponding to the vector Z̃(t ) is defined
with respect to the scaled quasidistribution function for the

fluctuations

˜̄P(z̃, z̃∗, ν̃, ν̃∗, μ) ≡ 1
2 nscN1/2P( ˜̄α(z̃, t ), ˜̄α∗(z̃∗, t ),

˜̄v(ν̃, t ), ˜̄v∗(ν̃∗, t ), m(μ, t )). (13)

The function ˜̄P(z̃, z̃∗, ν̃, ν̃∗, μ), in the positive P representa-
tion, solves the linearized FPE (see Eq. (15.75) of Ref. [10]),

∂ ˜̄P

∂t
=
(

−Z̃
′


J̄ssZ̃ + 1

2
Z̃

′

D̄ssZ̃

′
)

˜̄P, (14)

with

Z̃ ≡

⎛
⎜⎜⎜⎝

z̃
z̃∗
ν̃

ν̃∗
μ̃

⎞
⎟⎟⎟⎠, Z̃

′ ≡

⎛
⎜⎜⎜⎝

∂/∂ z̃
∂/∂ z̃∗
∂/∂ν̃

∂/∂ν̃∗
∂/∂μ̃

⎞
⎟⎟⎟⎠. (15)

The covariance matrix is then defined as

Css(τ ) ≡ lim
t→∞(Z̃(t )Z̃



(t + τ )) ˜̄P, (16)

and obeys the equation of motion

dCss

dτ
=
{

CssJ̄


ss τ > 0

J̄ssCss τ < 0,
(17)

while at τ = 0,

J̄ssC∞ + C∞J̄ss = −D̄ss. (18)

In the linearized FPE for the fluctuations (14) as well as in
Eqs. (17) and (18), J̄ss is the Jacobian matrix and D̄ss is the
diffusion matrix. These two matrices assume the form

J̄ss = γ

2

⎛
⎜⎜⎜⎝

−ξ 0 ξ2C 0 0
0 −ξ 0 ξ2C 0

−1/(1 + X 2) 0 −1 0 X
0 −1/(1 + X 2) 0 −1 X

X/(1 + X 2) X/(1 + X 2) −X −X −2

⎞
⎟⎟⎟⎠ (19)

and

D̄ss = γ
X 2

1 + X 2

⎛
⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 −1 0 0
0 0 0 1 0
0 0 0 0 4

⎞
⎟⎟⎟⎠, (20)

respectively, with ξ ≡ 2κ/γ the ratio of the two decay rates whose relation to C defines distinct regions of operation for
the bistable absorber. The diffusion matrix of Eq. (20) is manifestly nonpositive semidefinite. In the linearized theory of
fluctuations under current consideration, however, steady-state moments and the spectrum of fluctuations can be calculated in
the original space by a naive application of familiar formal expressions to a FPE in the Glauber-Sudarshan P representation with
a nonpositive-definite diffusion. In other words, we carry on with the calculations exactly as we would if the diffusion matrix
were positive semidefinite. Of course, this is no longer possible when nonlinearity enters into play and divergent trajectories
appear in the stochastic simulations of absorptive optical bistability within the positive P representation [41].

We can now introduce the set of system operators (ā, ā†, J̄−, J̄+, J̄z ), defined in correspondence with the scaling relations (6),
and the fluctuation operators given by

�a ≡ a − 〈a〉ss , (21a)

�a† ≡ a† − 〈a†〉ss , (21b)

�J− ≡ J− − 〈J−〉ss (21c)
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�J+ ≡ J+ − 〈J+〉ss (21d)

�Jz ≡ Jz − 〈Jz〉ss . (21e)

The correlation between these fluctuations in the steady state is given by the symmetric covariance matrix C∞, which has
real entries in purely absorptive bistability. It contains nine independent elements following a reduction from 15 steady-state
correlations [9]:

C∞
N

=

⎛
⎜⎜⎜⎜⎜⎝

〈� ˜̄a� ˜̄a〉ss 〈� ˜̄a†� ˜̄a〉ss 〈� ˜̄a� ˜̄J−〉ss 〈� ˜̄a� ˜̄J+〉ss 〈� ˜̄a�J̄z〉ss

· · · 〈� ˜̄a†� ˜̄a†〉ss 〈� ˜̄a†� ˜̄J−〉ss 〈� ˜̄a†� ˜̄J+〉ss 〈� ˜̄a†�J̄z〉ss

· · · · · · 〈� ˜̄J−� ˜̄J−〉ss 〈� ˜̄J+� ˜̄J−〉ss 〈�J̄z�
˜̄J−〉ss

· · · · · · · · · 〈� ˜̄J+� ˜̄J+〉ss 〈� ˜̄J+�J̄z〉ss
· · · · · · · · · · · · 〈�J̄z�J̄z〉ss

⎞
⎟⎟⎟⎟⎟⎠. (22)

Equipped with the formalism required for treating linearized
quantum fluctuations about the steady state of absorptive
bistability, we proceed to the calculation of the incoherent
correlation spectrum and the variances of the quadrature
phase polarization amplitudes. Our analysis follows closely
the treatment developed in Secs. 15.2.3, 15.2.6, and 15.2.7
of Ref. [10] for the transmitted light and forward photon
scattering in the weak-excitation limit, and is extended to the
strong-excitation regime of absorptive optical bistability.

III. INCOHERENT SPECTRUM OF
ATOMIC CORRELATIONS

To calculate the incoherent spectrum of the collective
atomic degree of freedom, we need to determine the first-order
fluctuation correlation function. The quantity of interest is the
third element in the column vector

Cν∗;i
ss (τ ) ≡

⎛
⎜⎜⎜⎝

C ν̃∗ z̃
ss (τ )

C ν̃∗ z̃∗
ss (τ )

C ν̃∗ ν̃
ss (τ )

C ν̃∗ ν̃∗
ss (τ )

C ν̃∗μ
ss (τ )

⎞
⎟⎟⎟⎠ = N lim

t→∞

⎛
⎜⎜⎜⎜⎜⎝

〈� ˜̄J+(t )� ˜̄a(t + τ )〉
〈� ˜̄J+(t )� ˜̄a†(t + τ )〉
〈� ˜̄J+(t )� ˜̄J−(t + τ )〉
〈� ˜̄J+(t )� ˜̄J+(t + τ )〉
〈� ˜̄J+(t )�J̄z(t + τ )〉

⎞
⎟⎟⎟⎟⎟⎠,

i = z̃, z̃∗, ν̃, ν̃∗, μ, (23)

sequestered as the fourth row of the covariance matrix. From
Eq. (17), this vector obeys the equation of motion

dCν∗;i
ss

dτ
= J̄ssCν∗;i

ss , (24)

with initial conditions (at τ = 0) determined by Eq. (18).
Overlooking all spatial effects due to the different position
of the atoms, as we did when we assumed an equal coupling
strength to the intracavity field in ME (12), the incoherent
power spectrum for the collective atomic polarization as a
system degree of freedom is defined as

T (y) = 〈� ˜̄J+� ˜̄J−〉−1

ss
1

2π

×
∫ ∞

−∞
d τ̄ ei[2(ω−ω0 )/γ ]τ̄ 〈� ˜̄J+(τ̄ )� ˜̄J−(0)〉ss

= 1

πC ν̃∗ν̃
ss (0)

Re
{
C̄ ν̃∗ν̃

ss (s̄)
}

s̄=−i2(ω−ω0 )/γ≡−iy, (25)

where C ν̃∗ν̃
ss (s) = (2/γ )C̄ ν̃∗ν̃

ss (s̄) is the Laplace transform of
C ν̃∗ ν̃

ss (τ ). The spectral distribution of Eq. (25) is normalized
to unity with respect to the dimensionless frequency y ≡
2(ω − ω0)/γ .

A. Spectrum of cooperative atomic correlations in the
weak-excitation limit

In this section, we focus our attention on the regime of very
weak intracavity excitation such that X  X−. The Jacobian
matrix of Eq. (19) is approximated as

J̄w
ss ≈ γ

2

⎛
⎜⎜⎜⎝

−ξ 0 ξ2C 0 0
0 −ξ 0 ξ2C 0

−1 0 −1 0 X
0 −1 0 −1 X
X X −X −X −2

⎞
⎟⎟⎟⎠. (26)

Using this form in Eq. (24), the equations of motion for the
various correlation vector components read

dC ν̃∗ z̃
ss

d τ̄
= −ξC ν̃∗ z̃

ss + ξ2C C ν̃∗ ν̃
ss , (27a)

dC ν̃∗ z̃∗
ss

d τ̄
= −ξC ν̃∗ z̃∗

ss + ξ2C C ν̃∗ ν̃∗
ss , (27b)

dC ν̃∗ ν̃
ss

d τ̄
= −C ν̃∗ ν̃

ss − C ν̃∗ z̃
ss + XC ν̃∗μ

ss , (27c)

dC ν̃∗ ν̃∗
ss

d τ̄
= −C ν̃∗ ν̃∗

ss − C ν̃∗ z̃∗
ss + XC ν̃∗μ

ss , (27d)

dC ν̃∗μ
ss

d τ̄
= −2C ν̃∗μ

ss + X
(
C ν̃∗ z̃

ss + C ν̃∗ z̃∗
ss − C ν̃∗ ν̃

ss − C ν̃∗ ν̃∗
ss

)
, (27e)

where τ̄ ≡ γ τ/2 is the dimensionless time. The initial condi-
tions are produced by Eq. (18) [they are also read from Sec.
15.2.3 of Ref. [10] or Sec. III of Ref. [9]] with Y ≈ (1 + 2C)X
and dY/dX ≈ (1 + 2C):

C ν̃∗ z̃
ss (0) = X 4 ξ2C(2 + ξ + 2C)

(1 + 2C)2(ξ + 1)2
, (28a)

C ν̃∗ z̃∗
ss (0) = −X 2 ξ2C

(1 + 2C)(ξ + 1)
, (28b)

C ν̃∗ ν̃
ss (0) = X 4 2C(2 + ξ + 2C) + (ξ + 1)2

(1 + 2C)2(ξ + 1)2
, (28c)
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C ν̃∗ ν̃∗
ss (0) = −X 2 1 + 2C + 2ξ

(ξ + 1)(1 + 2C)
, (28d)

C ν̃∗μ
ss (0) = X 3 2C + ξ + 1

(1 + 2C)(ξ + 1)
. (28e)

Keeping terms of the same order in X on the right-hand sides
of the equations comprising the system (27) so as to match the
left-hand side as read from the initial conditions (28) [which
amounts to dropping XC ν̃∗μ

ss from Eq. (27c) together with the
terms C ν̃∗ z̃

ss , C ν̃∗ ν̃
ss , from Eq. (27e)], the transformed equations

are conveniently organized in the following three subsets:(
ξ + s̄ −ξ2C

1 1 + s̄

)(
C̄ ν̃∗ z̃

ss
C̄ ν̃∗ν̃

ss

)
=
(

C ν̃∗ z̃
ss (0)

C ν̃∗ ν̃
ss (0)

)
+ X C̄ ν̃∗μ

ss

(
0
1

)
, (29a)

(
ξ + s̄ −ξ2C

1 1 + s̄

)(
C̄ ν̃∗ z̃∗

ss
C̄ ν̃∗ν̃∗

ss

)
=
(

C ν̃∗ z̃∗
ss (0)

C ν̃∗ ν̃∗
ss (0)

)
, (29b)

(2 + s̄)C̄ ν̃∗μ
ss = C ν̃∗μ

ss (0) + X
(
C̄ ν̃∗ z̃∗

ss − C̄ ν̃∗ν̃∗
ss

)
,

(29c)

in which we have introduced the scaled quantities:

s̄ ≡ 2s/γ , C i j
ss (s) = 2

γ
C̄ i j

ss (s̄), (30)

where C i j
ss (s̄) is the Laplace transform of Ci j

ss (τ ), i, j =
z̃, z̃∗, ν̃, ν̃∗, μ. Using the inverse(

ξ + s̄ −ξ2C
1 1 + s̄

)−1

= 1

(ξ + s̄)(1 + s̄) + ξ2C

(
1 + s̄ ξ2C
−1 ξ + s̄

)
, (31)

we find from (29b)

C̄ ν̃∗ z̃∗
ss (s̄) = − ξ2CX 2

(ξ + 1)(1 + 2C)

s̄ + ξ + 2(C + 1)

(ξ + s̄)(1 + s̄) + ξ2C
,

(32a)

C̄ ν̃∗ν̃∗
ss (s̄) = − X 2

(ξ + 1)(1 + 2C)

(1 + ξ + 2C)s̄ + ξ (ξ + 1)

(ξ + s̄)(1 + s̄) + ξ2C
.

(32b)

Then, substituting into Eq. (29c), we obtain

C̄ ν̃∗μ
ss (s̄) = X 3 (ξ + s̄)(ξ + 1) + 2Cs̄

(1 + 2C)(ξ + 1)[(ξ + s̄)(1 + s̄) + ξ2C]
. (33)

From Eq. (29a), we can solve for(
C̄ ν̃∗ z̃

ss
C̄ ν̃∗ν̃

ss

)
= 1

(ξ + s̄)(1 + s̄) + ξ2C

×
(

1 + s̄ ξ2C
−1 ξ + s̄

)[(
C ν̃∗ z̃

ss (0)
C ν̃∗ ν̃

ss (0)

)
+ X C̄ ν̃∗μ

ss

(
0
1

)]
,

(34)

whence the Laplace transform of the correlation function we
seek is the bottom element of the vector on the left-hand side
of Eq. (34). We note the uniformity of all terms in the sum in
the order X 4 since X multiplies the correlation C ν̃∗ ν̃

ss (s̄), which
is of order X 3. This guarantees the consistency of the small-X
expansion in the weak-excitation limit. The final expression

reads

C̄ ν̃∗ν̃
ss (s̄) = (ξ + s̄)

[
C ν̃∗ ν̃

ss (0) + X C̄ ν̃∗μ
ss

]− C ν̃∗ z̃
ss (0)

(ξ + s̄)(1 + s̄) + ξ2C
, (35)

or, separating the two denominators as the determinant of the
2 × 2 matrix in Eq. (34) and its square:

C̄ ν̃∗ν̃
ss (s̄) = X 4 1

(ξ + 1)(1 + 2C)

×
{

[2C(2 + ξ + 2C) + (ξ + 1)2]s̄ + ξ (ξ + 1)2

(ξ + 1)(1 + 2C)[(ξ + s̄)(1 + s̄) + ξ2C]

+ (ξ + s̄)[(ξ + s̄)(ξ + 1) + 2Cs̄]

[(ξ + s̄)(1 + s̄) + ξ2C]2

}
. (36)

Applying Eq. (25) yields the normalized incoherent spectrum
of the collective atomic degree of freedom in the weak-
excitation limit of absorptive bistability,

T (y)= 1

π
Re

{
ξ (ξ + 1)2 − iyA(ξ,C)

A(ξ,C)[(ξ − iy)(1 − iy) + ξ2C]

+(ξ + 1)(1 + 2C)(ξ − iy)[(ξ − iy)(ξ + 1) − 2iCy]

A(ξ,C)[(ξ − iy)(1 − iy) + ξ2C]2

}
,

(37)

where A(ξ,C) ≡ 2C(2 + ξ + 2C) + (ξ + 1)2.
Using Eq. (27c) and the three initial conditions of

Eqs. (28a), (28c), and (28e), we can verify that

dC ν̃∗ ν̃
ss (τ̄ )

d τ̄

∣∣∣∣∣
τ̄=0

= 0, (38)

from which we expect a |ω − ω0|−4 asymptotic behavior of
the correlation spectrum in the weak-excitation limit (see
Appendix B of Ref. [44] and Note 15.8 of Ref. [10]). Next,
we will focus on the three main limits arising in the operation
of the bistable absorber at weak excitation, simplifying the
expression of Eq. (37).

1. Bad-cavity limit

In the bad-cavity regime (ξ � 1, 2C) we take the limit
ξ → ∞ in Eq. (37), yielding

T (y) = 1

π
Re

[
1

1 + 2C − iy
+ (1 + 2C)

(
1

1 + 2C − iy

)2]

= 1

π

2(1 + 2C)3

[(1 + 2C)2 + y2]2
.

(39)
Equation (39) predicts a Lorentzian squared with the same
form to that identified in Ref. [45] for free-space resonance
fluorescence, where the presence of the square is attributed
to squeezing. This distribution with a collectively enhanced
linewidth, as depicted in Fig. 1(a), is also attained for the
forward-scattered field in the bad cavity limit for weak exci-
tation. Guided by the correspondence between the intracavity
field and the atomic fluorescence, we will explore another two
distinct limits of Eq. (37).
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FIG. 1. Normalized incoherent spectrum for the collective atomic polarization in the small-noise limit against the dimensionless frequency
y = 2(ω − ω0)/γ . (a) The spectrum from the full analytical expression of Eq. (37) in solid black line is plotted against the squared Lorentzian
distribution of Eq. (39) in dashed green in the bad-cavity limit for C = 5, ξ = 500. (b) The spectrum from Eq. (37) in solid black line is
plotted against the spectral hole predicted by Eq. (40) in dashed green in the good-cavity limit for C = 5, ξ = 0.01. The two curves match
only for |y| ∼ ξ . (c) The spectrum from Eq. (37) in solid black line is plotted against the many-atom Rabi doublet predicted by Eq. (47) in
dashed green in the good-cavity limit for C = 200, ξ = 1. (d) The spectrum from Eq. (53) in solid black line is superimposed on the spectrum
obtained from Eq. (4.7) of Ref. [13] in dashed green for a scaled intracavity amplitude X = 20. The two Stark-shifted peaks are centered at
y = ±√

2X ≈ ±28.3.

2. Good-cavity limit

In the good-cavity limit (ξ  1, 2C), we note that the
distribution T (y) is peaked about y ∼ ξ  1. With that ob-
servation, we obtain the approximate expression

T (y) = 1

π
Re

{
ξ − i2y(ξ + 2C)(C + 1)

2(ξ + 2C)(C + 1)[ξ (1 + 2C) − iy]

+ (ξ + 1)(1 + 2C)(ξ − iy)[ξ − iy(1 + 2C)]

2(ξ + 2C)(C + 1)[ξ (1 + 2C) − iy]2

}
.

(40)

The above approximation is valid only for |y| ∼ ξ and cap-
tures the effect of a spectral hole creation in the center of
the distribution, as we can see in Fig. 1(b). This effect is as
well observed in the incoherent part of the optical spectrum
for the transmitted light (see Fig. 5 of Ref. [45]) and is due to
squeezing.

3. Collective strong-coupling regime

We will now move to a markedly different regime defined
by the large product of the cooperativity parameter 2C and the
dimensionless dissipation rate ξ . On factorizing the denomi-
nator of both terms in Eq. (37) as

(ξ − iy)(1 − iy) + ξ2C = (λ̄+ + iy)(λ̄− + iy), (41)

with

λ̄± = −1

2
(ξ + 1) ± i

√
ξ2C − 1

4
(ξ − 1)2, (42)

we observe that another limit arises in the many-atom strong
coupling regime, namely for (ξ + 1)  2

√
ξ2C. We can then

write [see Sec. 15.2.6. of Ref [10]]

(ξ − iy)(1 − iy) + ξ2C ≈ P+(y; ξ,C)P−(y; ξ,C), (43)

with

P±(y; ξ,C) ≡ 1
2 (ξ + 1) − i(y ±

√
ξ2C). (44)

Consequently, we accept the following approximations for
the first and second terms inside the real part of Eq. (37),
respectively,

1+ξ

2 − iy

(ξ − iy)(1 − iy) + ξ2C
≈ 1

2

[
1

P+(y; ξ,C)
+ 1

P−(y; ξ,C)

]
(45)

and
(ξ+1)2

2 − 2y2 − 2iy(ξ + 1) − ξ4C

[(ξ − iy)(1 − iy) + ξ2C]2

≈ 1

P2+(y; ξ,C)
+ 1

P2−(y; ξ,C)
. (46)

Close to the resonances at y = +√
ξ2C and y = −√

ξ2C, we
replace y in each nonresonant term by its value on resonance.
With this assumption, the squared Lorentzians dominate, and
after normalization we obtain

T (y) = 1

π

{ [
1
2 (ξ + 1)

]3

{[
1
2 (ξ + 1)

]2 + (y + √
ξ2C)2

}2

+
[

1
2 (ξ + 1)

]3

{[
1
2 (ξ + 1)

]2 + (y − √
ξ2C)2

}2

}
. (47)

The above expression produces a spectrum with a vacuum
Rabi doublet where every peak is a squared Lorentzian,
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FIG. 2. Schematic of the experimental setup proposed to extract
collective emission. The bistable-system cavity mode a, coupled to
the atomic ensemble with strength g, is coherently driven with am-
plitude Ē0. The interatomic distance is much larger than the resonant
wavelength. The distinguishable scatterers are radiatively coupled to
the reservoir modes with rate γ , and the photon loss rate is 2κ . An
auxiliary cavity mode b is weakly coupled to the atomic ensemble
with gaux  g. Operating in the bad-cavity limit (κaux � gaux) allows
for the adiabatic elimination of the auxiliary cavity field, giving
access to the collective atomic polarization J−.

exactly like what happens for the forward-scattered field due
to squeezing of quantum fluctuations in the weak-excitation
limit. An example of a Rabi doublet is depicted in Fig. 1(c),
where the two squared Lorentzians are centered at y =
±√

ξ2C = ±20, while every feature at the center of the spec-
tral distribution has disappeared [compare with Fig. 2(b) of
Ref. [20] for the transmitted light]. The many-atom vacuum
Rabi splitting arises as a distinct feature of collective strong
driving in the weak-excitation limit in contrast to what we
observe for a single driven radiatively damped atom where
the occurrence of level splitting requires a strong drive (see
Sec. V of Ref. [9]).

B. Dynamical Stark shift along the upper branch

For the upper branch with X � X+, the Jacobian matrix
assumes the form

J̄s
ss ≈ γ

2

⎛
⎜⎜⎜⎝

−ξ 0 ξ2C 0 0
0 −ξ 0 ξ2C 0
0 0 −1 0 X
0 0 0 −1 X
0 0 −X −X −2

⎞
⎟⎟⎟⎠. (48)

The equations of motion for the atomic variables are then
decoupled, using the lower block of the Jacobian matrix,⎛

⎝−1 0 X
0 −1 X

−X −X −2

⎞
⎠, (49)

which is the same as the matrix M of Eq. (3.22) of Ref. [13]
for Y ≈ X and under the scaling of Eqs. (6). The resulting
equations read

dC ν̃∗ ν̃
ss

d τ̄
= −C ν̃∗ ν̃

ss + XC ν̃∗μ
ss , (50a)

dC ν̃∗ ν̃∗
ss

d τ̄
= −C ν̃∗ ν̃∗

ss + XC ν̃∗μ
ss , (50b)

dC ν̃∗μ
ss

d τ̄
= −2C ν̃∗μ

ss − X
(
C ν̃∗ ν̃

ss + C ν̃∗ ν̃∗
ss

)
, (50c)

while for the initial conditions we set Y ≈ X , and dY/dX ≈ 1
to obtain

C ν̃∗ ν̃
ss (0) = 1, (51a)

C ν̃∗ ν̃∗
ss (0) = 0, (51b)

C ν̃∗μ
ss (0) = 0. (51c)

The transformed equations for the atomic correlations can be
written in a simple system form, reminiscent of the optical
Bloch equations for resonance fluorescence:⎛

⎝1 + s̄ 0 −X
0 1 + s̄ −X
X X 2 + s̄

⎞
⎠
⎛
⎝ C̄ ν̃∗ν̃

ss
C̄ ν̃∗ν̃∗

ss
C̄ ν̃∗μ

ss

⎞
⎠ =

⎛
⎝C ν̃∗ ν̃

ss (0)
C ν̃∗ ν̃∗

ss (0)
C ν̃∗μ

ss (0)

⎞
⎠. (52)

Following the usual prescription of Eq. (25), after identifying
C̄ ν̃∗ν̃

ss (s̄), the correlation spectrum in the upper branch of the
steady-state bistability curve far away from the turning point
is given by the expression

T (y) = 1

π
Re

{
X 2 + (1 − iy)(2 − iy)

(1 − iy)[2X 2 + (1 − iy)(2 − iy)]

}
, (53)

with y ≡ 2(ω − ω0)/γ . The spectral distribution predicted by
Eq. (53) is plotted in Fig. 1(d) and is compared to the limit of
vanishing atomic density when the cavity field is adiabatically
eliminated [see Eq. (4.7) of Ref. [13]]. The two spectra are
practically indistinguishable from each other; the two Stark-
shifted peaks are centered at y = ±√

2X (see Eq. (89) and the
eigenvalues of the linearized Maxwell-Bloch equations plot-
ted in Fig. 1 of Ref. [46]) and compare with the transmitted
spectrum in Fig. 2(b) of Ref. [16]; compare also with the flu-
orescent spectra in Fig. 4 of Ref. [30] for the upper branch of
dispersive bistability where the slope of the input-output curve
visibly deviates from unity]. We find a ratio 3 : 1 between the
height of the central peak and that of the sidebands, as in [12]
for the bad-cavity limit [see also Fig. 3(d) therein]. We need
to emphasize, however, that this result does not pertain to the
fluorescent spectrum itself since unlike-atom correlations do
not add up constructively to output the correlation function
of the system atomic degrees of freedom (see Sec. IV). We
also note that the distribution of Eq. (53) is independent of ξ

and C and thus applicable to all limits we have discussed in
Sec. III A, marking the lack of cooperation between the emit-
ters coupled to the cavity mode—a justification for calling the
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FIG. 3. Intensity correlations for the collective atomic polariza-
tion in the weak-excitation limit, against the reduced time delay
τ̄ = γ τ/2. (a) The second-order correlation function g(2)(τ̄ ) from
Eq. (81) is plotted in solid black on top of the second-order corre-
lation function of the forwards-scattered field, g(2)

F (τ̄ ), from Eq. (85)
in green dots, for (g, κ, γ )/2π = (1.06, 0.88, 10) MHz, N = 310
[parameters used in the experiment by Raizen et al. [20] to give
C ≈ 40 for the typical hierarchy of scales g

√
N > γ > 2κ .]. (b) The

correlation function g(2)(τ̄ ) from Eq. (81) is plotted in solid black
on top of g(2)

F (τ̄ ) from Eq. (85) in a dot-dash green line, for the same
parameters as those used in frame (a) except for the coupling strength
which is instead lowered to a half of the value used in (a), namely,
g/2π = 0.53 MHz, leading to C ≈ 10.

upper branch the independent atom branch. Well separated
sidebands are also predicted for the incoherent spectrum of
the transmitted light in the mean-field analysis of Ref. [11] for
C � 1 and Y > C, within the framework of a discontinuous
band formation from a centrally symmetric narrow spectral
distribution. For the fluorescent spectrum calculated in the
bad-cavity limit, however, the Stark triplet is present along the
entire upper branch while no narrowing of the central peak is
predicted, following the suppression of collective effects [15].

To determine the autocorrelation function of the cavity-
field amplitude and the spectral distribution of the forward-
scattered field, one follows the same procedure described in
Sec. III A but instead seeking C z̃∗ z̃

ss (s) = (2/γ )C̄ z̃∗ z̃
ss (s̄), where

C z̃∗ z̃
ss (s) is the Laplace transform of Cz̃∗ z̃

ss (τ ), extracted from
the second row of the covariance matrix defined in Eq. (16).
The steps required for the calculation are described in Sec.
15.2.6 of Ref. [10]. For the dimensionless spectrum, which is

normalized to unity, we then obtain

T F(y) = 〈� ˜̄a†
� ˜̄a〉−1

ss
1

2π

×
∫ ∞

−∞
d τ̄ ei[2(ω−ω0 )/γ ]τ̄ 〈� ˜̄a†(τ̄ )� ˜̄a(0)〉ss

= 1

πCz̃∗ z̃
ss (0)

Re
{
C̄ z̃∗ z̃

ss (s̄)
}

s̄=−2i(ω−ω0 )/γ≡−iy. (54)

The initial conditions in the strong-excitation limit read [47]

Cz̃∗ z̃
ss (0) = 4C2 ξ

ξ + 1
K (X, ξ ), (55a)

Cz̃∗ z̃∗
ss (0) = 4C2 ξ

ξ + 1
[K (X, ξ ) − 1], (55b)

Cz̃∗ ν̃
ss (0) = 2C

ξ

ξ + 1
K (X, ξ ), (55c)

Cz̃∗ ν̃∗
ss (0) = 2C

ξ

ξ + 1
[K (X, ξ ) − 1], (55d)

Cz̃∗μ
ss (0) ∼ 1/X ≈ 0, (55e)

where K (X, ξ ) ≡ [X 2 + (ξ + 1)(ξ + 3)]/[2X 2 + ξ (ξ + 3)]
is a saturation factor placing X and ξ on a similar footing.
Based on the Jacobian matrix of Eq. (48), we write

(s̄ + ξ )C̄ z̃∗ z̃
ss (s̄) = Cz̃∗ z̃

ss (0) + 2ξCC̄ z̃∗ν̃
ss (s̄), (56)

with

C̄ z̃∗ ν̃
ss (s̄) = [X 2 + (s̄ + 1)(s̄ + 2)]Cz̃∗ ν̃

ss (0) − X 2Cz̃∗ ν̃∗
ss (0)

(s̄ + 1)[2X 2 + (s̄ + 1)(s̄ + 2)]
. (57)

For X � ξ , giving K (X, ξ ) ≈ 1/2, we obtain the simple ex-
pression after solving for C̄ z̃∗ z̃

ss (s̄),

T F(y) = 1

π
Re

[
1 + ξ − iy

(ξ − iy)(1 − iy)

]
, (58)

which is a Lorentzian distribution independent of the intra-
cavity excitation and of width ∼ξ . On the other hand, in the
bad-cavity limit defined as ξ � X , we obtain K (X, ξ ) ≈ 1,
whence (omitting terms with prefactors of order ξ−1)

T F(y) ≈ 1

π
Re

{
2

ξ − iy

+ ξ [2X 2 + 2(1 − iy)(2 − iy)]

[2X 2 + (1 − iy)(2 − iy)](1 − iy)(ξ − iy)

}
,

(59)

restoring the familiar Stark-triplet spectrum with the side-
bands centered at y = ±√

2X , and a central to sideband peak
height ratio approximately equal to 3 : 1.

IV. ACCESSING THE COLLECTIVE ATOMIC EMISSION

Let us now discuss the physical accessibility of the system
collective degrees of freedom, as dictated by the ME (1). We
will first look at the field scattered into the infinitesimal solid
angle d� in the direction r̂ ≡ (θ, φ) = r−1r (where r is the
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field-observation position vector from the center of coordi-
nates), expressed in photon flux units, which reads [10]

Ês =
√

3d�

8π
sin θ

√
γ

N∑
j=1

e−i kr̂·r j σ j−(t ′), (60)

where k ≡ ω0/c is the wave number and t ′ ≡ t − r/c is the
retarded time with respect to which all steady-state averages
are considered. Hence, the incoherent scattered flux can be
calculated as

〈� ˆ̃E†
sc�

ˆ̃Esc〉ss = N
3γ d�

8π
sin2 θ F (r̂, ξ ,C, X ), (61)

with

F (r̂, ξ ,C, X )

≡ 1

N

N∑
j,k=1

e−ik0 r̂·(r j−rk ) 〈�σ̃k+�σ̃ j−〉ss

=〈�σ̃ j+�σ̃ j−〉ss+
1

N

N∑
j, k = 1
j �= k

e−ik0 r̂·(r j−rk ) 〈�σ̃k+�σ̃ j−〉ss

=〈�σ̃+�σ̃−〉ss
like+〈�σ̃+�σ̃−〉ss

unlike
1

N

N∑
j, k = 1
j �= k

e−ik0 r̂·(r j−rk ),

(62)

where 〈�σ̃+�σ̃−〉ss
like ≡ 〈σ̃ j+σ̃ j−〉 − 〈σ̃ j+〉 〈σ̃ j−〉 for any atom

j in the collection, while 〈�σ̃+�σ̃−〉ss
unlike ≡ 〈σ̃ j+σ̃k−〉 −

〈σ̃ j+〉 〈σ̃k−〉 for any two atoms j and k with j �= k (see
Sec. 15.2.4 of Ref. [10]). Unlike-atom correlations are
of order N−1 individually, yet, as they are N (N − 1) in
number, they contribute overall at the same order as the like-
atom correlations to the incoherent scattered intensity [10].
Since the atoms couple to the resonant cavity mode with
the same strength and radiatively decay at the same rate γ ,
they are interchangeable in any operator average. At this point,
the usual assumption [15]

N∑
j, k = 1
j �= k

e−ik0 r̂·(r j−rk ) ≈ 0 (63)

in Eq. (62), leads to the scattered-field flux assuming the form
of a summed single-atom output [see also Eqs. (35)–(37) of
Ref. [15] for the fluorescent spectrum],

〈� ˆ̃E†
sc�

ˆ̃Esc〉ss = N
3γ d�

8π
sin2 θ

1

2

(
X 2

1 + X 2

)2

, (64)

consistent with the corresponding Lindblad term in the ME of
optical bistability:

γ

2

(
N∑

j=1

2σ j−ρσ j+ − 1

2
Jzρ − 1

2
ρJz − Nρ

)
. (65)

The above correspondence is also consistent with the distin-
guishable nature of the scatterers. Atoms remain far apart

compared with the wavelength λ = 2πc/ω0, allowing in
principle separate imaging of the fluorescence emitted from
each one of them individually. We also observe that in the
weak-excitation limit, Eq. (64) corresponds to the free-space
resonance fluorescence of N emitters, coherently excited with
a reduced amplitude Y/(1 + 2C)—the mean intracavity am-
plitude. The scattered flux is proportional to X 4, in agreement
with the correlation of Eq. (36). We arrive at the same conclu-
sion if we recast the scattered flux as

〈� ˆ̃E†
sc�

ˆ̃Esc〉ss = N
3γ d�

8π
sin2 θ

1

2
X 2
(Y − X

2C

)2

, (66)

with Y ≈ (1 + 2C)X along the initial segment of the lower
branch. In other words, the cooperativity parameter 2C can-
cels out explicitly and the photon flux depends only on the
weak intracavity excitation,

〈� ˆ̃E†
sc�

ˆ̃Esc〉
weak excitation

ss ≈ 3d�

8π
sin2 θRγ X 2, (67)

where Rγ ≡ γ NX 2/2 is the total spontaneous emission rate
in that limit [10]. Finally, we note that in the good-cavity
limit (ξ → 0) we can obviate the assumption of Eq. (63),
since 〈�σ̃+�σ̃−〉ss

unlike → 0 to dominant order in N−1 (see Sec.
15.2.4 of Ref. [10]).

How then can one access the atomic polarization, which
is an internal system degree of freedom, translated into the
output of a collective atomic emission channel? The answer
lies in involving an auxiliary cavity mode supported by a
low-Q cavity and coupled to the same atomic ensemble, as
proposed by Ref. [48] and depicted in Fig. 2. If the Hamil-
tonian Haux = h̄ω0b†b − ih̄gaux(b†J− − bJ+) is added to the
coherent part of the evolution in the ME (1), with gaux  g,
alongside the dissipation term κaux(2bρb† − b†bρ − ρb†b),
with κaux � gaux, then one may adiabatically eliminate the
auxiliary cavity-field to produce (in the Heisenberg picture)

b̃(t ) ≈ gaux

κaux
J̃−(t ) + κ−1

auxξ̂ (t ), (68)

where the last term is due to the vacuum-field contribution
with 〈ξ̂ (t )〉 = 0. It follows that the auxiliary-field fluctuation
correlation function

κaux 〈�b̃†(0)�b̃(τ )〉ss ≈ g2
aux

κaux
〈�J̃+(0)�J̃−(τ )〉ss , (69)

corresponding to a very weak output photon flux, is directly
proportional to the collective atomic correlation function.
Since (g2

aux/κaux)  g, the effect of coupling the auxiliary
mode to the collective atomic degrees of freedom is negligible
even in the weak-excitation limit. Normalizing Eq. (69) by the
incoherent transmitted photon flux κaux 〈�b̃†�b̃〉ss and taking
the Fourier transform yields the collective correlation spec-
trum of Eq. (25) which is hereby translated into the incoherent
fluctuation spectrum of a single collective mode.

V. SQUEEZING OF STEADY-STATE
ATOMIC FLUCTUATIONS

Squeezing is intimately tied to optical bistability and can
already be deduced from the linear theory of quantum fluctu-
ations. The analysis of Ref. [49], for example, demonstrated
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that perfect squeezing is in principle possible at the turning
points of the steady-state input-output curve, while a more
detailed analysis for the squeezing spectrum of dispersive
bistability was carried out in Refs. [21,50]. To explicitly
demonstrate the presence of squeezing, using the scaling rela-
tions (7c) and (7d), we define the quadrature operators

�J̃0 ≡ 1√
2N

(�J̃− e−iφ0 + �J̃+ eiφ0 ),

�J̃π/2 ≡ 1√
2N

[e−i(φ0+π/2)�J̃− + ei(φ0+π/2)�J̃+], (70)

with steady-state variances

(�J̃0)2
ss = 1

2 N[〈� ˜̄J+� ˜̄J−〉ss − 〈� ˜̄J+� ˜̄J+〉ss] − 1
4 〈J̄z〉ss

= 1
2

[
C ν̃∗ ν̃

ss (0) − C ν̃∗ ν̃∗
ss (0)

]− 1
4 〈J̄z〉ss (71)

and

(�J̃π/2)2
ss = 1

2 N[〈� ˜̄J+� ˜̄J−〉ss + 〈� ˜̄J+� ˜̄J+〉ss] − 1
4 〈J̄z〉ss

= 1
2

[
C ν̃∗ ν̃

ss (0) + C ν̃∗ ν̃∗
ss (0)

]− 1
4 〈J̄z〉ss , (72)

respectively, where the correlation functions are read from
Eqs. (28c) and (28d) in the weak-excitation limit, with
〈J̄z〉ss ≈ −1. Squeezing of fluctuations occurs when C ν̃∗ ν̃

ss (0) +
C ν̃∗ ν̃∗

ss (0) < 0, which is indeed the case for small intracav-
ity amplitudes, since the ratio of the quadrature amplitude
fluctuations over the intensity fluctuations is negative, while
(| 〈� ˜̄J+� ˜̄J+〉ss |/ 〈� ˜̄J+� ˜̄J−〉ss ) diverges as ∼1/X 2, violating
the classical bound of unity (see also Sec. 15.2.3 of Ref. [10]).
In the bad-cavity limit (ξ � 2C) this divergence is further
accentuated by the atomic cooperativity. We note that along
much of the lower branch, | 〈� ˜̄J+� ˜̄J+〉ss | > 〈� ˜̄J+� ˜̄J−〉ss,
which is not possible for a classical stochastic field. The
negative sign for the normal-ordered variances of the squeezed
forward-scattered field may be picked by means of a con-
ditional homodyne detection scheme proposed in Ref. [51].
Squeezing for many atoms coupled to a cavity mode was ex-
perimentally observed in Ref. [46], where the spectral density
of fluctuations was measured at a particular frequency within
the squeezing spectrum in a balanced homodyne detection
scheme.

Such a divergence for the aforementioned ratio of fluctua-
tions, however, does not occur in the strong-excitation limit.
As one could anticipate from the Lorentzian spectrum of
Eq. (58), when computing

|〈�ã�ã〉ss|
〈�ã

†
�ã〉ss

= |Cz̃z̃
ss (0)|

Cz̃∗ z̃
ss (0)

= |Cz̃∗ z̃∗
ss (0)|

Cz̃∗ z̃
ss (0)

= 1, (73)

we obtain the expected upper bound for classical light with no
presence of squeezing [compare also with the asymptotic val-
ues of N 〈�ã

†
�ã〉ss and N 〈�ã�ã〉ss in Figs. 15.1(d)–15.1(f)

of Ref. [10], which are in agreement with Eqs. (55a) and
(55b)]. The same conclusion is drawn for the collective atomic
correlations along the independent branch. We also recall that
in the single-atom free-space resonance fluorescence, phase
information is destroyed in the strong-field limit and intensity
correlations win over self-homodyning (see Ref. [8] and Sec.
2.3.6 of Ref. [52]).

VI. SECOND-ORDER COHERENCE OF
ATOMIC CORRELATIONS

As a further application of the linear theory of quantum
fluctuations—valid provided that N−1 remains the smallest
parameter in the system—we will discuss the second-order
coherence properties of the collective atomic polarization in
the two extreme regions of the bistability state equations,
where once again analytical expressions can be found. The
normalized intensity correlation function is defined by the
expression

g(2)(τ ) = 〈 ˜̄J+(0) ˜̄J+(τ ) ˜̄J−(τ ) ˜̄J−(0)〉ss(〈 ˜̄J+ ˜̄J−〉ss

)2 , (74)

where

〈 ˜̄J+(0) ˜̄J+(τ ) ˜̄J−(τ ) ˜̄J−(0)〉ss

≡ lim
t→∞ 〈 ˜̄J+(t ) ˜̄J+(t + τ ) ˜̄J−(t + τ ) ˜̄J−(t )〉 .

Expanding the collective atomic operators as sums of a mean
and a fluctuation component, we can write

〈 ˜̄J+ ˜̄J−〉ss = 〈 ˜̄J+〉ss 〈 ˜̄J−〉ss + 〈� ˜̄J+� ˜̄J−〉ss . (75)

Expanding the numerator of the correlation function yields

〈 ˜̄J+(0) ˜̄J+(τ ) ˜̄J−(τ ) ˜̄J−(0)〉ss

= (〈 ˜̄J+〉ss 〈 ˜̄J−〉ss + 〈� ˜̄J+� ˜̄J−〉ss

)2

+ 〈 ˜̄J+〉ss 〈 ˜̄J−〉ss [〈� ˜̄J+(0)� ˜̄J−(τ )〉ss + c.c.]

+ (〈 ˜̄J−〉ss

)2 〈� ˜̄J+(0)� ˜̄J+(τ )〉ss + c.c.

= [
X 2 + N−1C ν̃∗ ν̃

ss (0)
]2 + 2N−1X 2

[
C ν̃∗ ν̃

ss (τ ) + C ν̃∗ ν̃∗
ss (τ )

]
,

(76)

where in this approximation we have neglected the fluctuation
term 〈� ˜̄J+(0)� ˜̄J+(τ )� ˜̄J−(τ )� ˜̄J−(0)〉ss which is of second
order in N−1, and we have used the fact that third-order
terms in the fluctuations vanish when averaged by a Gaussian
distribution in the linearized analysis about the steady state of
optical bistability.

A. Intensity correlations along the cooperative branch

In the region of very weak intracavity excitation along
the lower branch of the bistability curve, X  X−, we
approximate

〈 ˜̄J+ ˜̄J−〉ss ≈ X 2 + N−1C ν̃∗ ν̃
ss (0). (77)

Keeping dominant terms in X 2 and N−1, which amounts to
neglecting the contribution from C ν̃∗ ν̃

ss (τ ) ∼ X 4, we obtain

g(2)(τ ) = 1 + 2N−1 C ν̃∗ ν̃∗
ss (τ )

X 2
. (78)

Neglecting the standard correlation C ν̃∗ ν̃
ss (τ ) in favor of the

anomalous correlation C ν̃∗ ν̃∗
ss (τ ) ∼ X 2 in the weak-excitation

limit is indicative of the nonclassicality in the fluctuations
along the lower branch, and is also observed in the second-
order correlation function of the forward-scattered light. From
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Eq. (32b), we write

− (ξ + 1)(1 + 2C)

X 2
C̄ ν̃∗ν̃∗

ss (s̄)

= (1 + ξ + 2C)s̄ + ξ (ξ + 1)

(ξ + s̄)(1 + s̄) + ξ2C

= 1

λ̄+ − λ̄−

[
ξ (ξ + 1)

(
1

s̄ − λ̄+
− 1

s̄ − λ̄−

)

+ (1 + ξ + 2C)

(
λ̄+

s̄ − λ̄+
− λ̄−

s̄ − λ̄−

)]
, (79)

whence, after calculating the inverse Laplace transform we
obtain the correlator

C ν̃∗ ν̃∗
ss (τ̄ ) = − X 2

(ξ + 1)(1 + 2C)
e− 1

2 (ξ+1)τ̄

× [(1 + ξ + 2C) cos(Ḡτ̄ )

+ (ξ + 1)(ξ − 1 − 2C)

2Ḡ
sin(Ḡτ̄ )

]
. (80)

In Eq. (80), Ḡ ≡
√

ξ2C − 1
4 (ξ − 1)2 is the scaled frequency

of the vacuum Rabi oscillation [9], which we have met in
Eq. (42), an expression which also applies to the single-atom
case N = 1 [we note that G ≡ (γ /2)Ḡ = √

Ng for impedance
matching, γ = 2κ]. Finally, substituting in Eq. (78), we get
the following expression for the second-order correlation
function of collective atomic polarization in the weak-
excitation limit of absorptive bistability:

g(2)(τ̄ ) = 1 − 2(1 + ξ + 2C)

N (ξ + 1)(1 + 2C)
e− 1

2 (ξ+1)τ̄

×
[

cos(Ḡτ̄ ) + (ξ + 1)(ξ − 1 − 2C)

2Ḡ(1 + ξ + 2C)
sin(Ḡτ̄ )

]
.

(81)

In the good-cavity limit (ξ  1), the size of the nonclassical
fluctuation g(2)(τ̄ ) − 1 ≈ −2N−1 is indicative of the number
of atoms in the cavity; in the bad-cavity limit (ξ � 2C), this
deviation is further compromised by the large atomic coop-
erativity 2C. The expression of Eq. (81) can be recast in the
following form:

g(2)(τ ) = 1 − 2(κ + γ ′/2)

N (κ + γ /2)(1 + 2C)
e− 1

2 (κ+γ /2)τ

×
[

cos(g′τ ) + r(κ, γ , 2C)

g′ sin(g′τ )

]
, (82)

where we have defined the effective impedance

r(κ, γ , 2C) ≡ 1

2
(κ + γ /2)

κ − γ ′/2

κ + γ ′/2
,

with g′ ≡
√

Ng2 − [(1/2)(κ − γ /2)]2, γ ′ ≡ γ (1 + 2C), and
2C = 2Ng2/(κγ ) featuring explicitly as the collective spon-
taneous emission enhancement factor. We compare with Eq.
(16.65) of Ref. [10] giving the second-order correlation func-
tion of the side-scattered light obtained from a pure-state

factorization [40] for a single atom (N = 1):

g(2)(τ )=
{

1−e− 1
2 (κ+γ /2)τ

[
cos(g′τ )+ r(κ, γ , 2C)

g′ sin(g′τ )

]}2

.

(83)

It becomes explicit that neglecting second-order terms in N−2

in the derivation of Eq. (81) amounts to missing the third term
in the expansion of the square in Eq. (83) that always produces
g(2)(0) = 0 for N = 1 (as expected from a single atom) setting
aside the difference in the coefficient of the middle term in the
expansion of the square—the difference in the two prefactors
can be neglected in the bad-cavity limit and in the absence of
bistability, formally for ξ → ∞,C → 0. Moreover, overlook-
ing for the moment the constraints imposed by the small-noise
analysis, one requires [2g2/(κγ )] > [(κ + γ /2)/(κ − γ /2)]
for Eq. (82) to be admissible and produce a non-negative
intensity correlation; this condition is certainly not satisfied
for κ < γ /2, as was used in Fig. 3, for instance, and in the
experiment of Ref. [20], precluding N = 1 altogether. This
example explicitly demonstrates the limitations of the linear
theory of quantum fluctuations. It is also instructive to contrast
Eqs. (81) and (82), with the expression of the correlation
function for the side scattered light when the cooperativity
parameter 2C is large but 2C/N (i.e., the single-atom coop-
erativity) is negligible [see Eq. (16.69) of Ref. [10] and Sec.
2.3.4 of Ref. [52]],

g(2)(τ ) = 1 + X 2[2e−τ − e−2τ ], (84)

which predicts weak photon bunching, g(2)(0) = 1 + X 2, and
never drops below unity. For the derivation of Eq. (84).
we use the fact that the ratio of unlike-atom to like-atom
correlations is of order N−1 as well as —in a frame ro-
tating with ω0 —the approximation 〈�σ̃+(0)�σ̃−(τ )〉ss ≈
X 4[e−τ − (1/2)e−2τ ] in the weak-drive limit of resonance
fluorescence (the intracavity-field amplitude replaces here the
drive strength in free-space resonance fluorescence).

Let us now consider the second-order correlation function
of forward-photon scattering,

g(2)
F (τ̄ ) = 1 − 2

N

(
ξ

ξ + 1

)(
4C2

1 + 2C

)
e− 1

2 (ξ+1)τ̄

×
[

cos(Ḡτ̄ ) + ξ + 1

2Ḡ
sin(Ḡτ̄ )

]
, (85)

which predicts antibunching along the initial part of the
lower branch of absorptive bistability in the bad-cavity limit
[16,53]. The intensity correlation function of atomic polar-
ization g(2)(τ̄ ), from Eq. (81), is compared to g(2)

F (τ̄ ) from
Eq. (85) in Fig. 3(a) for the parameters used in the experiment
of Ref. [20]. Lowering the atom-field coupling strength to half
of its initial value, and consequently decreasing substantially
the cooperativity, reduces the relative deviation from unity for
the two correlators, as we observe in Fig. 3(b): the magnitude
of the fluctuation |g(2)(τ ) − 1| remains fixed to the value 2N−1

while photon antibunching for the forward-scattered light is
weaker due to a decrease in 2C. In the weak-excitation limit,
the negative source-field spectrum of squeezing can be ex-
tracted via the auxiliary output channel, introduced in Sec. IV,
as proportional to the dominant contribution of Re[C̄ ν̃∗ν̃∗

ss (s̄)]
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read from Eq. (32b) with s̄ = −2iω/γ . This is accomplished
via homodyne detection for a local oscillator in phase with the
mean atomic polarization. The negative spectrum of squeez-
ing and antibunching for the auxiliary output field of collective
emission are then both linked to the same anomalous correla-
tion of order X 2, as it happens for the forward-scattered light.

Specializing now for simplicity to the case of impedance
matching, κ = γ /2 (ξ = 1) frequently encountered in the lit-
erature we obtain

g(2)(τ ) − 1 = − 1

N (1 + 2C)
e−κτ

× [2(1 + C) cos(
√

Ngτ ) −
√

2C sin(
√

Ngτ )].

(86)

As for the forwards-scattered light for κ = γ /2,

g(2)
F (τ ) − 1 = − 4C2

N (1 + 2C)
e−κτ

× [cos(
√

Ngτ ) + (1/
√

2C) sin(
√

Ngτ )].

(87)

We note that for a dominant cavity-emission enhancement, the
right-hand sides of Eqs. (86) and (87) differ primarily by a
factor of 2C which sets the ratio between the total spontaneous
emission rate and the rate of cavity emissions through the
mirrors of the resonator (see Note 16.4 of Ref. [10]). As the
collective light-matter coupling strength decreases, the two
intensity correlations oscillate out of phase with each other.

B. One-atom behavior along the independent branch

In the regime where X � X+, the steady-state collective
polarization is 〈 ˜̄J+〉ss = 〈 ˜̄J−〉ss ≈ 1/X , while 〈� ˜̄J+� ˜̄J−〉ss ≈
1/N . Both these quantities are considered through their ratio,
albeit very small in their own right. This means that the in-
tracavity excitation is to be compared against the system-size
parameter. After inverting the Laplace transform of

C̄ ν̃∗ν̃
ss (s̄) + C̄ ν̃∗ν̃∗

ss (s̄) = s̄ + 2

2X 2 + (s̄ + 1)(s̄ + 2)
= 1

ρ̄+ − ρ̄−

×
[

2

(
1

s̄ − ρ̄+
− 1

s̄ − ρ̄−

)

+
(

ρ̄+
s̄ − ρ̄+

− ρ̄−
s̄ − ρ̄−

)]
, (88)

where ρ̄± = −3/2 ± i
√

2X , and using Eqs. (74) and (76) with
the appropriate steady-state averages, we obtain the strong-
excitation counterpart of Eq. (81):

g(2)(τ̄ ) − 1

= 2NX 2

(N + X 2)2
[C ν̃∗ν̃

ss (τ̄ ) + C ν̃∗ ν̃∗
ss (τ̄ )]

= 2NX 2

(N + X 2)2
e−3τ̄ /2

[
cos(

√
2X τ̄ ) + 1

2
√

2
sin(

√
2X τ̄ )

]
.

(89)

We note that g(2)(0) > 1 for every value of the intracavity
excitation in this limit; the linearized treatment of fluctu-

ations imposes the constraint X 2  N yielding a prefactor
[2NX 2/(N + X 2)2] ≈ 2X 2/N  1. In the expression for the
intensity correlation function, terms of order N−2 may still be
neglected. In Eq. (89), the two correlation functions C ν̃∗ ν̃

ss (τ̄ )
and C ν̃∗ ν̃∗

ss (τ̄ ) contribute by the same order of magnitude to the
final result, unlike in the correlation function of Eq. (81) in the
weak-excitation limit. Once more, similarly to the spectrum
of Eq. (53), this expression does not depend on C or ξ , while
the number of atoms N only sets the upper boundary for the
intracavity excitation to determine the size of the fluctuation
[g(2)(0) − 1].

VII. CONCLUDING DISCUSSION

In this paper, we have investigated the small-noise inco-
herent correlation spectrum of absorptive optical bistability
alongside squeezing of fluctuations and the intensity correla-
tion function of the sideways-scattered field without recourse
to the adiabatic elimination of any system variables. This was
done in the weak-excitation limit, where analytical expres-
sions can be obtained in a consistent way via the expansion
to lowest order of the equations of motion for the covariance
matrix and the initial conditions, and in the high excitation
region with apparent similarities to free-space resonance flu-
orescence. Furthermore, we have proposed a setup employing
an auxiliary low-Q cavity to translate the atomic correlations
to a measurable output, since collective effects are suppressed
in the side scattering from distinguishable atoms with individ-
ual detectable records. Adiabatically eliminating the auxiliary
cavity field sets up a collective emission channel through
which the atomic fluorescent spectrum can be imaged with
the inclusion of unlike-atom correlations.

We have seen that, in the weak-excitation limit, the col-
lective atomic polarization correlations—corresponding to the
fluctuations of an internal system degree of freedom—follow
those of the forward-scattered field which is readily accessi-
ble by the experiment in a single collective mode. We have
focused on three limiting regimes defined by the ratio of the
effective coupling strength to the dissipation rates as well as
by the ratio between those rates themselves. The presence of
squeezing is the element reinforcing the correspondence be-
tween the two coupled degrees of freedom, whose fluctuations
have spectral densities exhibiting a |ω − ω0|−4 dependence
for large frequencies. Along the upper branch of the bistability
curve with quasiunitary slope, however, the forward-scattered
field and the atomic polarization have differing spectral distri-
butions. The latter exhibits a dynamical Stark shift depending
only on the scaled intracavity amplitude, a fact marking the
absence of cooperation between the two-level emitters. The
former is a Lorentzian having a width which is solely deter-
mined by dissipation.

Lastly, let us briefly comment on the relevance of the
regime of optical bistability under consideration to current
investigations on cavity-mediated atomic coherence. External
manipulation of bistability and the associated critical slowing
down underlies numerous proposals in optical switching since
the late 1970s [54]. Weak pulses of light can be used to realize
an all-optical switch where the detuning of a few-photon
probe controls a more intense output beam. Based on the
phenomenon of recoil-induced resonance, the backaction of
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optical bistability was captured from the coherent interac-
tion between weak light fields and the collective motion of
a strongly dispersive atomic gas of about 5 × 108 Rb atoms
in the experiment of Ref. [55]. A year earlier, the access of
both branches of dispersive optical bistability, occurring at
photon numbers below unity due to the feedback from optical
forces exerted in an ensemble of 105 Rb atoms with long-lived
coherence, had been reported by Ref. [56]. In the proposed
optical-switch configuration of Ref. [33], a BEC of more than
104 atoms is confined in a high-finesse optical cavity driven
by two fields, following the experiment of Ref. [57] where a
single coherent field drives the cavity mode (see also Fig. 3 of
Ref. [58]). The transverse driven mode employed in Ref. [33]
is used to control optical bistability while the longitudinal
intracavity field, driven with a significant detuning from the
atomic resonance, follows adiabatically the condensate since
the photon-loss rate dominates. An analogy can be drawn with
to the setup proposed in Sec. IV for accessing the collective
atomic emission, where the auxiliary mode with very weak
photon flux follows the atomic ensemble. For the optical
switch transversely driven on resonance with the cavity fre-
quency, the steady-state amplitude of the longitudinal cavity
field is given by the expression (see Eq. (4) of Ref. [33])

α =
εd,‖ − iεd,⊥

∫
dx|ψ (x; α + α∗, |α|2)|2 cos(kx)

κ + iU0

∫
dx|ψ (x; α + α∗, |α|2)|2 cos(kx)

, (90)

where ψ (x; α + α∗, |α|2) is the condensate wave function (the
dependence on α + α∗ originates from the cavity drive), U0 is
the depth of the cos2(kx) standing wave potential generated
by the atom-light interaction —a function of the coupling
strength g—times the mean-field intracavity excitation |α|2,
and εd,(‖,⊥) are the two drive-field amplitudes.

Measurements along the upper branch of the bistability
curve with a high intracavity photon number have been re-
cently reported in Ref. [59] for a collection of about 1.5 × 105

thermal ytterbium atoms, marking a resurgence of interest
in the nonlinearity arising from the coupling of cold trapped
atoms to an optical cavity since the exemplary demonstration
of strong bistability for laser cooled and trapped cesium atoms
in 1995 [60]. The dynamics for a system with a steady state
described by Eq. (90) is considerably more involved than
what is described by ME (1), let alone the inherent spatial
dependence of the coupling strength. Atoms in a BEC occupy
a single mode of the matter-wave field with displaying macro-
scopic coherence; in that respect they cannot be perceived as
distinguishable scatterers. The decoherence leading to indi-

vidual scattering records on the one hand and the cooperation
between the individual emitters mediated by a common chan-
nel provided by the intracavity field on the other hand sets up
a meaningful basis for the comparison of an atomic ensemble
subject to ME (1) and an atomic ensemble forming a BEC
coupled to a cavity mode. In the former, unlike-atom corre-
lations do not add up constructively to a measurable output
whereas in the latter, the ensemble is described by a wavefunc-
tion and couples to the cavity mode as a single superatom with
an enhanced strength. We note here that in the weak-excitation
limit, the cooperativity of the BEC is a function of g̃

√
N ,

where g̃ is the average of the position-dependent single-atom
coupling strength against the atomic density.

In the experiment of Ref. [31], the atomic ensemble oscil-
lates between its ground state and a symmetric excited state
where a single excitation is shared by all the atoms. This
instance calls for the employment of symmetrized states in
the pure-state factorization for many atoms in the cavity as
has been done within the frame of a perturbative expansion of
the density-matrix equations of motion in powers of the drive
amplitude —excursions out of the manifold of symmetrized
states due to spontaneous emission are neglected (see Sec.
16.1.2 of Ref. [10] and references therein). Here we meet
with the difficulty of employing an enormous Hilbert space of
dimension 2N , which is required when dealing with spatial ef-
fects (see Sec. 16.2 and Introduction to Sec. 16.3 of Ref. [10]).
The repulsive interactions between the atoms in the BEC will
influence the onset of bistability which will in turn impact
on the spectral distribution. Upon accessing the upper branch
in the good-cavity limit, for example, do we then expect
the incoherent spectrum of the transmitted light to transition
from a spectral hole to a sharp Lorentzian distribution? Will
the spectrum of collective atomic emission extracted via the
auxiliary mode show the familiar Stark triplet? Questions of
the kind point to the role of the collective modes as probes of
the criticality exhibited by macroscopic dissipative systems;
in this paper we have focused on the extraction of collective
atomic coherence against a background of unlike-atom cor-
relations which do not add up constructively when collecting
the side-scattering record.
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